周冬梅 何亮亮 李偉山 馮輝 趙敏 糾敏 魏利輝
摘要:?在根結(jié)線蟲危害嚴(yán)重的番茄田塊采集健康植株的根際,從中分離并篩選對(duì)根結(jié)線蟲病具有防治作用的生防菌株。采用稀釋分離法以及離體試驗(yàn)獲得16株能顯著殺滅南方根結(jié)線蟲二齡線蟲(J2)的菌株,其中菌株MF11對(duì)J2的致死率最高。基于生理生化分析、gyrB 和16S rRNA基因堿基序列比對(duì),確定菌株MF11為熒光假單胞菌(Pseudomonas fluorescens)。菌株MF11發(fā)酵液浸泡番茄幼苗24 h后,J2在番茄根尖的聚集數(shù)量顯著減少,侵入番茄根尖的蟲量下降80.65%,表明菌株MF11可降低J2對(duì)番茄的侵染力。溫室試驗(yàn)結(jié)果表明, 菌株MF11發(fā)酵液處理可以顯著降低番茄植株86.53%根結(jié)數(shù),以及70.2%的卵塊數(shù)。田間試驗(yàn)結(jié)果表明,菌株MF11發(fā)酵液處理降低了根結(jié)線蟲病的病情指數(shù),其平均防效達(dá)66.71%,與10%噻唑膦顆粒劑處理防效相當(dāng)。綜上所述,菌株MF11不僅對(duì)根結(jié)線蟲具有毒殺作用,還能降低根結(jié)線蟲的侵染、發(fā)育和繁殖能力,從而有效防治作物根結(jié)線蟲病。
關(guān)鍵詞:?南方根結(jié)線蟲;生防菌;熒光假單胞菌;防治效果
中圖分類號(hào):?S432.4+5??文獻(xiàn)標(biāo)識(shí)碼:?A??文章編號(hào):?1000-4440(2021)02-0326-07
Abstract:?Rhizosphere of healthy tomato plants in fields severely infected by root-knot nematode was collected to isolate and screen biocontrol strains with antagonistic effects on diseases caused by Meloidogyne incognita.?16 bacterial strains with significant nematocidal activity on the second-stage larvae (J2) of M.?incognita were obtained by separation method of dilution and in vitro experiment.?Among them, MF11 strain showed the highest lethality rate to J2.?The MF11 strain was identified to be Pseudomonas fluorescens based on physiological, biochemical analysis and gene sequence alignment between gyrB and 16S rRNA.?The number of J2 aggregated around the root tips of tomatoes decreased significantly 24 h after the tomato seedlings immersed in the fermentation broth of MF11 strain.?The number of root-knot nematode invading the root tips of tomato reduced by 80.65%, indicating that MF11 strain could reduce the infecting effect of J2 to tomato.?Experimental results in the greenhouse showed that, tomato plants treated with MF11 strain fermentation broth could decrease the number of root-knots by 86.53% and reduce the egg mass in MF11-treated tomato roots by 70.52% significantly.?The results of field experiment showed that, the disease indexes of diseases caused by root-knot nematode in tomato plants treated with MF11 reduced compared with that of water control, with an average control efficacy of 66.71%, which was the same as the treatment by fosthiazate 10% granules.?In summary, MF11 strain not only has toxic action on root-knot nematode, but can also decrease the infection, growth and fertility abilities of root-knot nematode to control the diseases caused by root-knot nematode in crops effectively.
Key words:?Meloidogyne incognita;biocontrol bacteria;Pseudomonas fluorescens;control efficacy
根結(jié)線蟲(Meloidogyne spp.)是世界性分布的威脅農(nóng)業(yè)生產(chǎn)的主要土傳病原物之一[1]。根結(jié)線蟲侵染后可導(dǎo)致植物組織發(fā)生變化,致使寄主更易受到青枯、枯萎、根腐等病原菌的侵染,造成復(fù)合病害,加重這些土傳性病害的發(fā)生嚴(yán)重度[2]。由于寄主廣泛,不同生態(tài)環(huán)境下根結(jié)線蟲的發(fā)生流行規(guī)律存在差異,從而導(dǎo)致作物根結(jié)線蟲病的防控十分困難[3-4]。在中國(guó)對(duì)農(nóng)作物以及蔬菜危害嚴(yán)重且造成重大經(jīng)濟(jì)損失的主要有南方根結(jié)線蟲(M. incognita)、花生根結(jié)線蟲(M. arenaria)、爪哇根結(jié)線蟲(M. javanica)、北方根結(jié)線蟲(M. hapla)以及象耳豆根結(jié)線蟲(M. enterolobii) [5]。其中由南方根結(jié)線蟲(M. incognita)引起的根結(jié)線蟲病害在國(guó)內(nèi)普遍發(fā)生,主要危害番茄、辣椒和黃瓜等蔬菜作物[6-8]。
對(duì)于根結(jié)線蟲的防治,生產(chǎn)上以化學(xué)藥劑為主[9]。由于化學(xué)殺線劑對(duì)環(huán)境污染嚴(yán)重,同時(shí)在使用過程中對(duì)人畜也不安全,而且導(dǎo)致土壤質(zhì)地退化、生物多樣性喪失等,因此,人們?cè)絹碓蕉嗟貜闹参镒陨砑纯剐云贩N選育和生物防治的角度尋求新的防治方法[10-12]。
利用環(huán)境有益微生物來控制病害的發(fā)生以及誘導(dǎo)作物提高抗逆能力是近些年來研究的熱點(diǎn),尤其這些微生物對(duì)環(huán)境無污染,能克服化學(xué)藥劑防治帶來的缺陷。Kloepper & Schroth 提出植物根際促生細(xì)菌(PGPR)假說,這類細(xì)菌可以增強(qiáng)植物對(duì)養(yǎng)分的吸收,促進(jìn)植物生長(zhǎng)發(fā)育,誘導(dǎo)植株產(chǎn)生系統(tǒng)性抗性以抵抗不良環(huán)境條件或病原物的侵染[13]。PGPR(如Pseudomonas spp.和Bacillus spp.)已被證實(shí)含有裂解根結(jié)線蟲細(xì)胞壁的酶類和具有引起植物抗性的能力,從而有效防治根結(jié)線蟲病害[14-16]。例如,熒光假單胞菌UTPF5的粗提物對(duì)爪哇根結(jié)線蟲二齡幼蟲的致死率可達(dá)到100%,且不同濃度的UTPF5抽提物都能對(duì)二齡幼蟲活性產(chǎn)生影響[17]。將水楊酸與熒光假單胞菌CHAO混合使用,可有效激起番茄體內(nèi)PR1基因的表達(dá),進(jìn)而有效抵御爪哇根結(jié)線蟲的侵染[18]。Wei等從苦瓜根際中篩選到1株枯草芽孢桿菌(Bacillus subtilis) ,該菌株的上清液能殺死二齡幼蟲和抑制卵的孵化,溫室盆栽和田間試驗(yàn)結(jié)果顯示該菌株能有效防治根結(jié)線蟲病害[19]。Choi等對(duì)2株芽胞桿菌B. thuringiensis KYC 和 B. velezensis CE的抗根結(jié)線蟲能力進(jìn)行了測(cè)定,發(fā)現(xiàn)這2株芽胞桿菌能有效抑制卵的孵化能力以及對(duì)二齡幼蟲具有較強(qiáng)的致死作用;溫室試驗(yàn)結(jié)果表明,這2株細(xì)菌能夠顯著降低根結(jié)數(shù)以及卵塊數(shù),顯示出較高的抗線蟲能力[20]。
本研究以分離自南京市六合區(qū)番茄大棚未受根結(jié)線蟲侵染的健康植株根際中的一株具有拮抗作用的熒光假單胞菌MF11為研究靶標(biāo),通過對(duì)二齡幼蟲致死能力檢測(cè)以及對(duì)根結(jié)線蟲吸引能力測(cè)定初步分析MF11對(duì)根結(jié)線蟲病的生防機(jī)制,結(jié)合盆栽和田間試驗(yàn)評(píng)估MF11作為一種生防資源用于根結(jié)線蟲病防治的應(yīng)用前景。
1?材料與方法
1.1?生防菌的分離和鑒定
供試細(xì)菌分離自江蘇省南京市六合區(qū)竹鎮(zhèn)番茄大棚中未受根結(jié)線蟲侵染的番茄根際。利用平板稀釋法在R2A培養(yǎng)基上進(jìn)行分離獲得供試菌株MF11,并根據(jù)《常見細(xì)菌系統(tǒng)鑒定手冊(cè)》對(duì)篩選細(xì)菌菌株進(jìn)行生理生化性狀分析[21]。利用細(xì)菌基因組試劑盒(康為公司)提取MF11菌株基因組 DNA,用16Sr RNA通用引物 27F/1492R 和gyrB引物UP-1S從基因組DNA 中分別擴(kuò)增16S rRNA和gyrB基因序列[22]。PCR產(chǎn)物測(cè)序結(jié)果在NCBI數(shù)據(jù)庫(kù)進(jìn)行 BLAST 比對(duì)分析。采用MEGA 7 基于16S rRNA和gyrB基因堿基序列以Neibour-Joining 法構(gòu)建系統(tǒng)發(fā)育樹,確定分類地位。
1.2?菌株MF11發(fā)酵液的制備
用接種環(huán)挑取細(xì)菌單菌落于LB培養(yǎng)液中,28 ℃ 180 r/min振蕩培養(yǎng)2 d,10 000 r/min離心15 min,收集上清液并通過0.22 μm濾器過濾菌體,獲得MF11發(fā)酵液。發(fā)酵液用無菌水梯度稀釋后備用。
1.3?根結(jié)線蟲二齡幼蟲的準(zhǔn)備
供試根結(jié)線蟲種群最早分離自發(fā)病番茄根組織,并在室內(nèi)進(jìn)行單卵塊培養(yǎng)繁殖,經(jīng)形態(tài)學(xué)和分子鑒定,確定為南方根結(jié)線蟲1號(hào)生理小種。番茄根組織剪碎后,加入10%次氯酸鈉劇烈振蕩并通過500 目篩收集蟲卵,并利用蔗糖密度法純化蟲卵;將收集的蟲卵轉(zhuǎn)移至線蟲孵化器,25 ℃避光孵育,1~2 d后收集根結(jié)線蟲二齡幼蟲(J2)。
1.4?發(fā)酵液對(duì)二齡幼蟲活性以及侵染能力的影響
在24孔細(xì)胞培養(yǎng)板中依次加入1 ml的發(fā)酵上清液和100頭J2,并將細(xì)胞培養(yǎng)板置于25 ℃恒溫培養(yǎng)箱中,分別在4 h、8 h、12 h、24 h后觀察線蟲活性,統(tǒng)計(jì)線蟲死亡頭數(shù),以LB培養(yǎng)液和滅菌水處理作為對(duì)照,每個(gè)處理3次重復(fù)。
番茄種子(Moneymaker)用20% 次氯酸鈉滅菌15 min,滅菌水清洗4~5 次,于滅菌平板保濕黑暗培養(yǎng)4~5 d,待番茄根長(zhǎng)約 1.5 cm 時(shí)使用。將細(xì)菌發(fā)酵液加入無菌培養(yǎng)皿中,然后將番茄幼苗根部浸入發(fā)酵液中,于搖床上80 r/min、28 ℃培養(yǎng)30 min。然后將番茄苗置于0.8%的水瓊脂培養(yǎng)基上,并在番茄根尖下方約2 mm處接種200頭J2懸浮液,25 ℃培養(yǎng)箱中放置12 h。番茄苗經(jīng)染色、脫色處理后,統(tǒng)計(jì)進(jìn)入番茄根尖的線蟲數(shù)量。每個(gè)處理20株苗,重復(fù)3次。
1.5?發(fā)酵液處理后番茄對(duì)線蟲的吸引能力測(cè)定
番茄生長(zhǎng)條件同方法1.4,將番茄幼苗根部分別浸入不同濃度的生防菌發(fā)酵液和LB培養(yǎng)液中,于搖床上80 r/min、28 ℃培養(yǎng)30 min。將番茄苗取出后置于含有1 500頭 J2的Pluronic F-127凝膠的細(xì)胞培養(yǎng)皿中,每孔放2株苗,室溫放置[23]。在體視顯微鏡下分別于1 h、4 h、12 h、18 h、24 h、48 h觀察番茄根對(duì)南方根結(jié)線蟲的吸引情況,并統(tǒng)計(jì)侵入番茄根尖的線蟲數(shù)量。
1.6?溫室盆栽試驗(yàn)
將表面消毒的番茄種子播種于滅菌土壤中,置于25 ℃、16 h光照/8 h黑暗條件下生長(zhǎng)。14 d后移栽至含有滅菌基質(zhì)中(沙∶營(yíng)養(yǎng)基質(zhì)=9∶1,質(zhì)量比),移栽3 d后每株番茄苗灌根10 ml發(fā)酵液。生防菌發(fā)酵液處理7 d后,每株番茄苗接種500頭J2懸浮液,在J2接種后21 d統(tǒng)計(jì)根結(jié)數(shù),56 d后統(tǒng)計(jì)卵塊數(shù)。每個(gè)處理24株苗,重復(fù)3次。
1.7?生防菌對(duì)根結(jié)線蟲病的田間防效測(cè)定
于2019年4月在江蘇省農(nóng)業(yè)科學(xué)院六合示范基地根結(jié)線蟲常發(fā)大棚進(jìn)行防效測(cè)定。田間試驗(yàn)共設(shè)置3個(gè)處理:10%噻唑膦GR(拜耳)處理(30 kg/hm2)、清水對(duì)照、生防菌處理(每株100 ml生防菌發(fā)酵液)。每小區(qū)12 m2,每小區(qū)栽種60棵番茄苗。每處理3次重復(fù),相鄰小區(qū)之間設(shè)保護(hù)行,隨機(jī)排列。40 d后,對(duì)所有小區(qū)番茄植株進(jìn)行分級(jí)調(diào)查病情[24]:0級(jí),根系無蟲癭,無發(fā)病;1級(jí),根系有少量蟲癭;3級(jí),2/3根系布滿蟲癭;5級(jí),根系布滿小蟲癭并有次生蟲癭;7級(jí),根系形成須根團(tuán)。根據(jù)公式計(jì)算病情指數(shù)和相對(duì)防效[25]:病情指數(shù)=∑(各級(jí)病植株數(shù)×各級(jí)代表值)/(調(diào)查總植株數(shù)×最高級(jí)代表值)×100,防治效果=(對(duì)照病情指數(shù)-處理病情指數(shù))/ 對(duì)照病情指數(shù)×100%。
2?結(jié)果與分析
2.1?菌株MF11對(duì)根結(jié)線蟲的致死作用
根據(jù)菌株發(fā)酵液在4 h、8 h、12 h、24 h時(shí)對(duì)南方根結(jié)線蟲二齡幼蟲的致死率,以12 h線蟲死亡率達(dá)到80%及以上為指標(biāo)共篩選出16株具有拮抗線蟲效果較好的菌株,其中菌株rH15、rH13、rH26、MF11對(duì)線蟲致死率較高,達(dá)90%以上,MF11的致死率最高為94%(圖1)。后續(xù)試驗(yàn)以MF11為研究對(duì)象,研究其生防機(jī)制以及防病效果。
2.2?菌株MF11的鑒定結(jié)果
菌株MF11在LB平板上活化培養(yǎng)后的淡黃色透明菌落表面光滑,邊緣整齊(圖2A);革蘭氏染色結(jié)果為革蘭氏陰性菌。如表1所示,菌株MF11為需氧型細(xì)菌。氧化酶接觸酶試驗(yàn)均呈陽(yáng)性反應(yīng),明膠液化。在pH值為5或6的液體培養(yǎng)基中均可以正常生長(zhǎng)。菌株還能夠在含1% NaCl、4% NaCl的培養(yǎng)液中正常生長(zhǎng),而在8% NaCl的培養(yǎng)液中卻無法生長(zhǎng)。
經(jīng)測(cè)序以及在NCBI數(shù)據(jù)庫(kù)中進(jìn)行Blast比對(duì),結(jié)果顯示,菌株MF11的16S rDNA部分堿基序列以及gyrB基因堿基序列與 Pseudomonas fluorescens堿基序列同源性高達(dá)99%。使用MEGA7.0軟件,結(jié)合16S rRNA、gyrB基因堿基序列,以Neighbor-joining法構(gòu)建系統(tǒng)發(fā)育樹,發(fā)現(xiàn)MF11與熒光假單胞菌Pseudomonas fluroescens 位于系統(tǒng)發(fā)育樹同一支,聚為一類(圖2B)。結(jié)合生理生化鑒定結(jié)果,MF11為熒光假單胞菌(登錄號(hào)MW493146)。
2.3?菌株MF11對(duì)南方根結(jié)線蟲侵染的抑制作用
菌株MF11發(fā)酵液處理番茄幼苗30 min后,將幼苗放入含有1 500頭 J2的Pluronic F-127凝膠中,觀察線蟲在根部的聚集及侵染情況。結(jié)果顯示,1~4 h時(shí)處理組和對(duì)照組番茄根周圍(1 mm內(nèi))有零星線蟲聚集,未檢測(cè)到線蟲進(jìn)入根內(nèi)。8 h時(shí),對(duì)照組距根尖1 mm以內(nèi)的數(shù)量已增加到20至30頭,處理組線蟲數(shù)量低于20頭。12~18 h時(shí),對(duì)照組番茄對(duì)線蟲吸引的數(shù)量逐漸增加,且有逐漸聚攏成團(tuán)的趨勢(shì);而處理組線蟲在根尖的聚集數(shù)量開始增加,至18 h時(shí)開始有聚團(tuán)現(xiàn)象。24 h后,處理組和對(duì)照組線蟲在根尖的聚團(tuán)現(xiàn)象消失,線蟲進(jìn)入根內(nèi)。
對(duì)不同時(shí)間點(diǎn)的線蟲侵染數(shù)量統(tǒng)計(jì)結(jié)果表明:菌株MF11發(fā)酵液處理的番茄幼根中線蟲數(shù)量明顯低于對(duì)照(圖3A)。12 h時(shí)發(fā)酵液處理的番茄根與對(duì)照相比,對(duì)線蟲的侵染抑制效果最好,線蟲侵染數(shù)量降低了80.65%,其他時(shí)間點(diǎn)發(fā)酵液處理與對(duì)照相比,均顯著降低了線蟲侵染數(shù)量(圖3B)。表明,菌株MF11可降低番茄對(duì)根結(jié)線蟲的吸引,進(jìn)而影響線蟲的侵染。
2.4?菌株MF11對(duì)南方根結(jié)線蟲的溫室盆栽防效
選取對(duì)線蟲致死率最高的菌株MF11用于溫室盆栽試驗(yàn)。試驗(yàn)結(jié)果表明:與對(duì)照相比,菌株MF11發(fā)酵液處理番茄植株21 d后,番茄根結(jié)數(shù)目降低,單位根質(zhì)量的根結(jié)數(shù)目減少了86.53%(圖4)。菌株MF11發(fā)酵液處理番茄56 d后,與對(duì)照相比,卵塊數(shù)降低了70.52%,表明菌株MF11對(duì)南方根結(jié)線蟲的繁殖能力具有一定的抑制效果(圖4)。
2.5?菌株MF11對(duì)南方根結(jié)線蟲的田間防效
田間防效測(cè)定結(jié)果顯示:菌株MF11發(fā)酵液處理的番茄植株病情指數(shù)顯著低于清水對(duì)照,與10%噻唑膦處理效果無顯著差異(表2)。表明菌株MF11可用于根結(jié)線蟲的田間防治。
3?討論
利用根際微生物防治根結(jié)線蟲是近些年的研究熱點(diǎn)。由于微生物種群多樣性與植物生長(zhǎng)發(fā)育息息相關(guān),從健康植物的根際中篩選到具有生防潛力的微生物的概率將大幅度提高[26]。Zhou等從健康茄子的根際中篩選到2株生防菌株P(guān)seudomonas sp. B1 和 Bacillus sp.B32,溫室盆栽試驗(yàn)結(jié)果顯示B1和B32能夠顯著降低根結(jié)線蟲的侵染[27]。本研究從健康番茄植株根際中分離到1株具有良好殺蟲作用及田間防效較高的菌株MF11,經(jīng)鑒定為熒光假單胞菌(Pseudomonas fluorescens)。
生防菌可產(chǎn)生具有毒殺線蟲的活性酶、抗生素、揮發(fā)性物質(zhì)和毒素等代謝物,通過毒殺作用、抑制卵孵化等方式來防治根結(jié)線蟲病害。例如短小芽胞桿菌能夠直接作用于根結(jié)線蟲體表,在離體試驗(yàn)中對(duì)根結(jié)線蟲起到顯著防效[28];枯草芽胞桿菌可產(chǎn)生抗菌物質(zhì)、殺線蟲揮發(fā)物以及脂肽類化合物直接殺死二齡幼蟲和卵[29-31]。菌株MF11發(fā)酵液具有較高殺線蟲活性并且隨著時(shí)間的延長(zhǎng)殺蟲作用明顯,說明菌株MF11的代謝產(chǎn)物含有對(duì)南方根結(jié)線蟲二齡幼蟲具有毒殺作用的活性物質(zhì),代謝產(chǎn)物的活性成分尚有待探究。
植物根系分泌物是由植物根部分泌的各種化學(xué)物質(zhì),主要包括有機(jī)酸、糖類、酚類和各種氨基酸等,是植物根際微生物重要的營(yíng)養(yǎng)物質(zhì),可作為植物和根際微生物間的信號(hào)物質(zhì)參與根際微生物與寄主的識(shí)別[32-35]。研究結(jié)果表明根系分泌物對(duì)線蟲卵的孵化、存活、線蟲運(yùn)動(dòng)的方向性、線蟲穿刺以及發(fā)育等有影響。生防菌可通過改變植物根系分泌物組成進(jìn)而排斥線蟲和影響線蟲發(fā)育以及降低卵孵化效率等[36-38]。本研究發(fā)現(xiàn)熒光假單胞菌MF11處理番茄植株后,番茄根對(duì)南方根結(jié)線蟲的吸引力顯著下降,從而影響了線蟲的侵染;盆栽試驗(yàn)中發(fā)現(xiàn)菌株MF11處理后,線蟲產(chǎn)卵率顯著下降,表明菌株MF11的定殖可能影響了植物根系分泌物的組成,進(jìn)而影響了線蟲與寄主的識(shí)別以及線蟲的發(fā)育。菌株MF11影響根結(jié)線蟲識(shí)別和導(dǎo)向寄主植株根部的具體機(jī)制仍不清楚,還需進(jìn)一步研究。
生防制劑在田間的應(yīng)用受到土壤溫度、濕度、pH等外界因素的影響,防治效果不穩(wěn)定[39]。本研究中,菌株MF11在田間的防治效果與目前廣泛使用的化學(xué)藥劑噻唑膦相當(dāng),達(dá)到66.71%。但由于化學(xué)殺線劑環(huán)境相容性差,危害大,使用成本高,所以熒光假單胞菌MF11可作為化學(xué)殺線劑替代品,具有良好的開發(fā)前景。后續(xù)要在其應(yīng)用技術(shù)例如劑型開發(fā)、施用方法等方面進(jìn)行研究,進(jìn)一步提高其防治效果。
參考文獻(xiàn):
[1]?ADAM M, WESTPHAL A, HALLMANN J, et al. Specific microbial attachment to root knot nematodes in suppressive soil [J]. Appl Environ Microbiol, 2014, 80(9): 2679-2686.
[2]?PARK C S. Rapid detection of Pythium porphyrae in commercial samples of dried Porphyra yezoensis sheets by polymerase chain reaction [J]. J Appl Phycol, 2006, 18(2):203-207.
[3]?CAKMAK I, EKMEN Z I, KARAGOZ M, et al. Development and reproduction of Sancassania polyphyllae (Acari: Acaridae) feeding on entomopathogenic nematodes and tissues of insect larvae [J]. Pedobiologia, 2010, 53(4):235-240.
[4]?XU H, RUAN W B, GAO Y B, et al. Effects of root-knot nematodes on cucumber leaf N and P contents, soil pH, and soil enzyme activities [J]. Chinese J Appl Ecol, 2010, 21(8):2038-2044.
[5]?劉維志. 植物病原線蟲學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000.
[6]?FAN H, YAO M, WANG H, et al. Isolation and effect of Trichoderma citrinoviride Snef 1910 for the biological control of root-knot nematode, Meloidogyne incognita[J]. BMC Microbiol, 2020, 20(1):299.
[7]?ZHANG S W, GAN Y T, LIU J, et al. Optimization of the fermentation media and parameters for the bio-control potential of Trichoderma longibrachiatum T6 against nematodes.[J]. Front Microbiol, 2020, 11(1): 574-601.
[8]?D′ERRICO G, MORMILE P, MALINCONICO M, et al. Trichoderma ssp. and a carob (Ceratonia siliqua) galactomannan to control the root-knot nematode Meloidogyne incognita on tomato plants[J]. Can J Plant Pathol, 2020(3):1-8.
[9]?SHARMA N, KHANNA K, MANHAS R K, et al. Insights into the role of Streptomyces hydrogenans as the plant growth promoter, photosynthetic pigment enhancer and biocontrol agent against Meloidogyne incognita in Solanum lycopersicum seedlings [J]. Plants Basel, 2020, 9(9):1-18.
[10]GHAHREMANI Z, ESCUDERO N, DANIEL B A, et al. Bacillus firmus strain I-1582, a nematode antagonist by itself and through the plant [J]. Front Plant Sci, 2020, 11. DOI:10.3389/fpls.2020.00796.
[11]NIMNOI P, RUANPANUN P. Suppression of root-knot disease and plant growth promotion of chili (Capsicum flutescens L.) using co-inoculation of Streptomyces spp. strains KPS-A032 and KPS-E004 [J]. Biol Contr, 2020,145. DOI: 10.1016/j.biocontrol.2020.104244.
[12]PORNTHIP R, PONGRAWEE N. Evaluation on the efficiency and persistence of Streptomyces jietaisiensis strain A034 in controlling root knot disease and promoting plant growth in the plant-parasitic nematode infested soils [J]. Biol Contr, 2020,144. DOI: 10.1016/j.biocontrol.2020.104221.
[13]ULLAH M A, HAFEEZ F Y. Plant growth--romoting rhizobacteria as zinc mobilizers: A promising approach for cereals biofortification[J]. Springer Berlin Heidelberg, 2014, 9:217-235.
[14]ALMAGHRABI O A, MASSOUD S I, ABDELMONEIM T S. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions [J]. Saudi J Biol Sci, 2013, 20(1):57-61.
[15]WEI X, PEI S Y, HAN Q W, et al. Antagonizing Aspergillus parasiticus and promoting peanut growth of Bacillus isolated from Peanut geocarposphere soil [J]. J Integrat Agri, 2014, 13(11):2445-2451.
[16]NI X, LAWRENCE K S , KLOEPPER J W, et al. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean[J]. PLoS One, 2017, 12(7):e0181201.
[17]BAGHERI N, AHMADZADEH M, HEYDARI R. Effects of Pseudomonas fluorescens strain UTPF5 on the mobility, mortality and hatching of root-knot nematode Meloidogyne javanica [J]. Archiv Phytopathol Plant Protect, 2014, 47(6):744-752.
[18]SEYEDEH Z D, MOHAMMAD A, HABIBALLAH C, et al. Combined of salicylic acid and Pseudomonas fluorescens CHA0 on the expression of PR1 gene and control of Meloidogyne javanica in tomato[J]. Biol Contr, 2020, 141. DOI: 10.1016/J.BIOCONTROL.2019.104134.
[19]WEI L H, SHAO Y, WAN J, et al. Isolation and characterization of a rhizobacterial antagonist of root-knot nematodes.[J]. PLoS One, 2014, 9(1):e85988.
[20]CHOI T G, MAUNG C E, LEE D R, et al. Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato[J]. Biocontr Sci Technol, 2020, 30(7):685-700.
[21]東秀珠, 蔡妙英. 常見細(xì)菌系統(tǒng)鑒定手冊(cè)[M]. 北京:科學(xué)出版社, 2001.
[22]GALKIEWICZ J P, KELLOGG C A. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology [J]. Appl Environ Microbiol, 2008, 74(24):28-31.
[23]MORISHITA M, BARICHELLO J M, TAKAYAMA K, et al. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin[J]. Int J Pharm, 2001, 212(2):289-293.
[24]BRIDGE J, PAGE S. Estimation of root-knot nematode infestation levels on roots using a rating chart [J]. Tropic Pest Manag, 1980, 26(3):296-298.
[25]XUE Q Y, CHEN Y, LI S M, et al. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato [J]. Biol Contr, 2009, 48(3):252-258.
[26]BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health [J]. Trend Plant Sci, 2012, 17(8):478-486.
[27]ZHOU D M, FENG H, SCHUELKE T, et al. Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection [J]. Microb Ecol, 2019, 78(2):470-481.
[28]MOGHADDAM M R, MOGHADDAM E M, RAVARI S B, et al. The nematicidal potential of local Bacillus species against the root-knot nematode infecting greenhouse tomatoes [J]. Biocontr Sci Tech, 2014, 24(3):279-290.
[29]KILLANI A S, ABAIDOO R C, AKINTOKUN A K, et al. Rice husk extract is potentially effective as a phytopesticide against root-soil-borne fungal pathogens of cowpea[J]. Nat Sci, 2011, 9(3):72-79.
[30]HUANG Y, XU C K, MA L, et al. Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita [J]. Eur J Plant Pathol, 2010, 126(3):417-422.
[31]KAVITHA P G, JONATHAN E L, NAKKEERAN S. Effects of crude antibiotic of Bacillus subtilis on hatching of eggs and mortality of juveniles of Meloidogyne incognita [J]. Nematol Mediter, 2012, 40(2):203-206.
[32]羅麗芬,江冰冰,鄧琳梅,等. 三七根系分泌物中幾種成分對(duì)根腐病原菌生長(zhǎng)的影響[J].南方農(nóng)業(yè)學(xué)報(bào),2020,51(12):2952-2961.
[33]黃鑫星,蔣家陸,羅?沛,等. 氨態(tài)氮濃度和收割頻率對(duì)綠狐尾藻根系泌氧特性的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),2020,36(5):1112-1118.
[34]張?坤,刁?明,景?博,等. 不同灌水量與灌水頻率對(duì)加工番茄 根系生長(zhǎng)和產(chǎn)量的影響[J].排灌機(jī)械工程學(xué)報(bào),2020,38(1):83-89.
[35]高偉勤,劉春艷,吳強(qiáng)盛.鉀脅迫對(duì)枳生長(zhǎng)及根系激素和信號(hào)物質(zhì)水平的影響[J].江蘇農(nóng)業(yè)科學(xué),2020,48(8):139-141.
[36]YANG G, ZHOU B, ZHANG X, et al. Effects of tomato root exudates on Meloidogyne incognita [J]. PLoS One, 2016, 11(4):e0154675.
[37]李?霞. 蠟樣芽孢桿菌調(diào)控番茄根系分泌物對(duì)南方根結(jié)線蟲的作用[D].南京:南京師范大學(xué),2019.
[38]BIRKETT M, DUTTA T K, POWERS S J, et al. Effect of small lipophilic molecules in tomato and rice root exudates on the behaviour of Meloidogyne incognita and M. graminicola [J]. Nematol, 2012, 14(3):309-320.
[39]OSMAN H A, MAHMOUD Y, ABD E M, et al. Effect of reniform nematode, Rotylenchulus reniformis as biotic inducer of resistance against root-knot nematode, Meloidogyne incognita in potato [J]. J Plant Protect Res, 2012, 52(3):333-336.
(責(zé)任編輯:張震林)