亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        線性代數(shù)學習難點與對策

        2021-06-21 08:06:00王芝蘭戴忠智
        贏未來 2021年1期
        關鍵詞:概念學生

        王芝蘭,戴忠智

        中國礦業(yè)大學(北京)理學院,北京100083

        線性代數(shù)是重要的基礎課程,在理工類學科中有重要應用,從二維碼到網頁排序,從計算機圖形學到機器學習,都會用到線性代數(shù)的知識。線性代數(shù)的學習起點不高,具有初中數(shù)學知識就可以學習,但同時線性代數(shù)的學習難度比較大,學生往往難以理解其中的代數(shù)學概念。本文將結合筆者在教學與學習中的實例,對怎樣應對線性代數(shù)學習中出現(xiàn)的難點,提出一些見解。

        1 把握知識脈絡,抓住重點知識

        線性代數(shù)概念很多,行列式、矩陣、方程組、向量空間等等概念中又穿插著各種各樣的性質與定理,學生往往“只見樹木不見樹林“,不能把握其中的聯(lián)系。我們要弄清楚知識點之間的聯(lián)系,特別是抓住重點知識的作用。

        線性代數(shù)中的很多概念都是圍繞線性方程組展開的。我們可以通過線性方程組的系數(shù)與未知數(shù)來引入矩陣與向量,從求解方程與未知數(shù)一樣多的線性方程組看到行列式,而線性方程組的解空間也是向量空間的重要例子。也就是說,這些重要概念都可以從線性方程組中發(fā)現(xiàn)。另一方面,我們也可以利用線性方程組的理論來理解這些概念。比如,在理解矩陣乘法時,就是把以第一個矩陣為系數(shù)的方程,代入以第二個矩陣為系數(shù)的方程,得到的新的線性方程組的系數(shù)矩陣,就是原來兩個矩陣的乘積。再比如,在判斷向量組是否線性相關時,我們考查的是以向量組矩陣為系數(shù)的齊次線性方程是否有非零解。于是我們發(fā)現(xiàn),抓住線性方程組,我們就可以收獲更多的概念與性質。

        線性代數(shù)的另外一個重要知識點是矩陣的運算與變換。矩陣的運算包括矩陣的轉置、求和、數(shù)乘、乘法、求逆及求行列式,矩陣的變換指矩陣的初等行列變換。這些是解決線性代數(shù)題目的基本工具,需要通過練習熟練掌握。

        如果能夠掌握矩陣的運算與變換,同時抓住線性方程組與其相關知識,那么線性代數(shù)的題目就可以掌握大半了。除此之外,只剩下矩陣的特征值與特征向量、二次型等內容。

        2 從實例出發(fā),從特殊例子理解一般情況

        線性代數(shù)中,定義和定理中出現(xiàn)的矩陣的階數(shù)、向量的維數(shù)等等經常是任意的,學生面對這種抽象的一般情況,往往束手無策。我們可以利用特殊的例子,從直觀上把握定義與定理的本質。

        例如,當我們學習如何解線性方程組時,如果直接學習任意階矩陣的高斯消元法是很困難的。我們可以從我國古代的著名問題雞兔同籠出發(fā):“今有雉(雞)兔同籠,上有三十五頭,下有九十四足。問雉兔各幾何?!蔽覀兛梢杂孟旅孢@種有趣的解法:先號令所有動物抬起一條腿,這樣剩下五十九條腿;再號令所有動物再抬一條腿,這樣雞沒有腿了坐在了地上,只剩兔子兩條腿著地,剩下二十四條腿,于是有十二只兔子,二十三只雞。我們比較這一過程與高斯消元法可以看到,讓動物抬腿的過程,正是消元的過程。這樣,我們就對如何解線性方程組有了直觀的認識。

        再比如,學習行列式按行展開的計算時,書上給出的證明往往是對一般的n 階行列式,學生比較難于理解。而我們可以只考慮3 階行列式的證明,此時的證明非常簡明清爽,學生很容易就可以接受。一般的n 階情況與3 階情況的證明思想完全相同,掌握了3 階情況的證明,再看n 階情況,就能看清證明本質了。

        3 與幾何相結合,用圖形幫助理解

        線性代數(shù)與解析幾何是密切相關的。對于很多抽象的概念,如果直接從代數(shù)學的角度看,可能會比較復雜,可以利用圖形作為輔助,建立幾何背景,幫助我們理解和思考原來的代數(shù)學問題。

        比如,在學習行列式時,我們可以從行列式是原矩陣列向量生成的平行六面體的有向體積來理解,這樣,原本的代數(shù)表達式就有了優(yōu)美的幾何意義。再比如,向量組的線性無關是比較抽象的概念,我們從幾何的角度去看,對于兩個向量來說,它們線性無關,就是不可能落在同一條直線上;三個向量線性無關,就是它們不可能落在同一個平面內。進一步地,n 個向量線性無關,就是它們不可能落在同一個n-1 維空間中。這樣,原本抽象的概念,就有了直觀的幾何解釋。

        4 關注數(shù)學發(fā)展歷史,看清問題來龍去脈

        數(shù)學家陳省身先生曾指出:“了解歷史的變化,是了解這門科學的一個步驟?!痹诰€性代數(shù)中,學生常常不知道為什么要引進某個概念,于是也很難接受和理解這個概念。我們應該關注這些內容的由來與發(fā)展,了解知識的來龍去脈,理解問題的動機。

        例如,矩陣的秩是線性代數(shù)中的重要概念,也是讓很多學生疑惑它是從何而來的概念。很多線性代數(shù)的教科書會先講矩陣的秩,再講線性方程組的解法。而在歷史發(fā)展中,人們是先找到了線性方程組的解法,然后在研究齊次線性方程組解的性質時,通過解的結構,才考慮了矩陣的秩這一概念。因此,我們在學習這部分內容時,可以先學習線性方程組的解法,再學習矩陣的秩,再按書本的順序,從矩陣的秩來重新描述線性方程組的解的性質。這樣,為什么要引進矩陣的秩,矩陣的秩又有什么作用,就比較清晰了。

        5 了解前沿領域應用,激發(fā)學習興趣

        線性代數(shù)的知識都比較抽象,學生可能不知道學習線性代數(shù)有什么用,于是逐漸喪失了學習的興趣。如果能夠了解線性代數(shù)在前沿領域的應用,知道線性代數(shù)在后續(xù)學習與工作中的重要意義,就會有更大的熱情來學習。

        例如,線性代數(shù)在機器學習中有非常重要的作用。人工智能、機器學習和神經網絡是目前國內外研究的熱點。其中的神經網絡,就是一層層神經元,而從一層神經元變到另一層神經元,就是先通過一個線性變換,再做其他變換。為了達到人工智能的效果,就是要調整線性變換中的系數(shù)。而機器學習,就是通過訓練得到這些系數(shù)的過程。

        總結:在線性代數(shù)的學習中,我們應該把握知識脈絡,抓住重點知識,通過實例,結合幾何意義,理解其中的抽象概念,同時要去了解線性代數(shù)發(fā)展的歷史,也了解它在前沿領域中的應用,看清來龍去脈,激發(fā)學習興趣,最終學好線性代數(shù)這門課,給未來的發(fā)展打下基礎。

        猜你喜歡
        概念學生
        Birdie Cup Coffee豐盛里概念店
        快把我哥帶走
        幾樣概念店
        《李學生》定檔8月28日
        電影(2018年9期)2018-11-14 06:57:21
        趕不走的學生
        學習集合概念『四步走』
        聚焦集合的概念及應用
        學生寫話
        學生寫的話
        論間接正犯概念之消解
        青青草免费在线手机视频| 国产白丝无码视频在线观看 | 国产精品免费久久久久软件| 女女同性黄网在线观看| 91精品国产综合久久久蜜臀九色| 三级国产精品久久久99| 久久久精品人妻无码专区不卡| 四虎永久免费影院在线| 国产白浆精品一区二区三区| 东北熟妇露脸25分钟| 日韩放荡少妇无码视频| 久久久久久久久久久熟女AV| 亚洲视频一区二区三区免费| 森中文字幕一区二区三区免费| 东京热人妻一区二区三区| 在线人妻无码一区二区| 亚洲天堂一二三四区在线| 国产精品毛片无遮挡高清| 青青草97国产精品免费观看| 日韩精品一区二区三区毛片| 熟女免费观看一区二区| 亚洲av成人片色在线观看高潮| 少妇熟女视频一区二区三区| 狠狠亚洲超碰狼人久久老人| 亚洲一区二区三区国产| 国产成人精品无码一区二区老年人| 欧美成人a在线网站| 久久久精品久久久国产| 国产av一区二区三区无码野战| 欧美巨大xxxx做受l| 胳膊肘上有白色的小疙瘩| 激情五月开心五月麻豆| 在线欧美中文字幕农村电影| 亚洲精品黄网在线观看| 日韩亚洲一区二区三区在线| 免费又黄又爽又色的视频| 无码人妻一区二区三区免费 | 亚洲六月丁香色婷婷综合久久| 少妇人妻中文字幕hd| 久久AV老司机精品网站导航| 91精品国产色综合久久不|