黃家超
[摘 要]要求教師研讀高中數(shù)學(xué)教材,挖掘出教材中所蘊(yùn)含的數(shù)學(xué)思想,設(shè)置合理的教學(xué)模式和教學(xué)活動(dòng);要求學(xué)生積極主動(dòng)地參與到教學(xué)過(guò)程中去,在探究過(guò)程中發(fā)現(xiàn)數(shù)學(xué)問(wèn)題中所蘊(yùn)含的數(shù)學(xué)思想,形成解題的思路.這是高中數(shù)學(xué)“思維型”課堂的關(guān)鍵之處.
[關(guān)鍵詞]“思維型”課堂;高中數(shù)學(xué);函數(shù)與方程
[中圖分類號(hào)]? ? G633.6? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼]? ? A? ? ? ? [文章編號(hào)]? ? 1674-6058(2021)08-0005-03
函數(shù)與方程是高中數(shù)學(xué)的重要組成部分,與其他知識(shí)點(diǎn)有著密切的聯(lián)系,這部分內(nèi)容也是高考熱點(diǎn).因此,學(xué)好這部分知識(shí)對(duì)學(xué)生具有重要的意義.函數(shù)與方程的知識(shí)點(diǎn)較多,而且函數(shù)與方程之間有著一定的聯(lián)系和區(qū)別,兩者結(jié)合在一起的題目比較靈活,對(duì)學(xué)生來(lái)說(shuō)是學(xué)習(xí)的重點(diǎn)和難點(diǎn).因此,教師在講解這部分知識(shí)時(shí),一定要在備課方面下足功夫.
一、利用數(shù)形結(jié)合思想解決一元二次方程根的分布問(wèn)題
(一)利用數(shù)形結(jié)合思想解決一元二次方程根的分布問(wèn)題的重要性
方程根的分布問(wèn)題也常常稱為函數(shù)零點(diǎn)的分布問(wèn)題,這兩個(gè)問(wèn)題在函數(shù)與方程的教學(xué)過(guò)程中可以進(jìn)行等價(jià)轉(zhuǎn)換.有關(guān)這兩個(gè)問(wèn)題的題目是高中數(shù)學(xué)教學(xué)中的重點(diǎn)和難點(diǎn),教師在教學(xué)過(guò)程中必須重視基礎(chǔ)知識(shí)講解,并將數(shù)形結(jié)合思想貫穿于數(shù)學(xué)課堂中.用數(shù)形結(jié)合思想去解決一元二次方程根的分布問(wèn)題或者函數(shù)零點(diǎn)分布問(wèn)題的數(shù)學(xué)思維,是高中數(shù)學(xué)“思維型”課堂的精髓所在.
教師通過(guò)創(chuàng)新高中數(shù)學(xué)課堂的模式,既繼承了傳統(tǒng)數(shù)學(xué)課堂上注重講解數(shù)學(xué)知識(shí)的本質(zhì),又在課堂上融入新思想和數(shù)學(xué)方法,教師運(yùn)用數(shù)形結(jié)合思想,幫助學(xué)生理解數(shù)學(xué)知識(shí)、解決問(wèn)題,避免在求解過(guò)程中出現(xiàn)錯(cuò)誤.教師在課堂上在向?qū)W生講解基礎(chǔ)知識(shí)的同時(shí),傳授數(shù)學(xué)解題思想和數(shù)學(xué)解題方法,提高學(xué)生的數(shù)學(xué)素養(yǎng).
[? ?參? ?考? ?文? ?獻(xiàn)? ?]
[1]? 邢田宇,孫小軍,鐘天琦.基于“思維型”課堂的高中數(shù)學(xué)教學(xué)探討:以“函數(shù)與方程”教學(xué)為例[J].中學(xué)數(shù)學(xué)教學(xué)參考,2019(13):13-16.
[2]? 魏清泉.數(shù)學(xué)實(shí)驗(yàn) 合作探究:以“方程的根與函數(shù)的零點(diǎn)”教學(xué)為例[J].中學(xué)數(shù)學(xué)教學(xué)參考,2018(27):44-48.
(責(zé)任編輯 黃桂堅(jiān))