白瑞豐
(河北省豐寧滿族自治縣第一中學(xué),河北 承德 068350)
從數(shù)學(xué)學(xué)習(xí)的認(rèn)知本質(zhì)看,數(shù)學(xué)學(xué)習(xí)離不開情境。事實上,學(xué)生學(xué)習(xí)知識的過程本身是一個建構(gòu)的過程,無論是對知識的理解,還是知識的運用,都離不開知識產(chǎn)生的環(huán)境和適用的范圍。新課標(biāo)強調(diào)讓學(xué)生在現(xiàn)實情境和已有的生活、知識經(jīng)驗的基礎(chǔ)上學(xué)習(xí)和理解數(shù)學(xué),“問題—情境”是數(shù)學(xué)課程標(biāo)準(zhǔn)倡導(dǎo)的教學(xué)模式。它包含兩層含義:首先是要有“問題”,即當(dāng)學(xué)生利用已有的認(rèn)知還不能理解或者不能正確解答的數(shù)學(xué)問題,當(dāng)然,問題的障礙性不能影響學(xué)生接受和產(chǎn)生興趣,否則,至少不能稱為好問題;其次是“情境”,即數(shù)學(xué)知識產(chǎn)生或應(yīng)用的具體環(huán)境,這種環(huán)境可以是真實的生活環(huán)境、虛擬的社會環(huán)境、經(jīng)驗性的想象環(huán)境,也可以是抽象的數(shù)學(xué)環(huán)境等等。因此,在新課的引入過程中,教師要對教材內(nèi)容進行二次開發(fā),精心創(chuàng)設(shè)問題情境,通過教師的適當(dāng)引導(dǎo),使學(xué)生進入最佳的學(xué)習(xí)狀態(tài),同時還要激活學(xué)生的主體意識,充分調(diào)動學(xué)生的積極性、主動性和創(chuàng)造性,使學(xué)生最大限度地參與探究新知識活動,讓學(xué)生在參與中感受成功的興奮和學(xué)習(xí)的樂趣,促使學(xué)生全身心地投入學(xué)習(xí),注意把知識內(nèi)容與生活實踐結(jié)合起來,精心設(shè)問。那么,創(chuàng)設(shè)引人問題情境的基本策略是什么呢?如何在引人中設(shè)問呢?
教育近代教育學(xué)家斯賓塞指出:“教育要使人愉快,要讓一切教育有樂趣”。烏辛斯基也指出:“沒有絲毫興趣的強制性學(xué)習(xí),將會扼殺學(xué)生探求真理的欲望”。因此,教師設(shè)計問題時,要新穎別致,使學(xué)生學(xué)習(xí)有趣味感、新鮮感。
案例1:“二分法”的引入
在央視由著名節(jié)目主持人李泳主持的“非常6+1”中有一個欄目叫“競猜價格”,你知道如何才能最快速度猜準(zhǔn)價格嗎?
“一石激起千層浪”學(xué)生紛紛議論,趁機我又設(shè)計了一個小游戲:同位同學(xué)相互合作猜生日,看那一組能用“最少的次數(shù)”猜出對方同學(xué)的生日?你共用了多少次?
通過創(chuàng)設(shè)趣味性的問題情境,增強了學(xué)生的有意注意,調(diào)動學(xué)生學(xué)習(xí)的主動性和積極性,激發(fā)了學(xué)生學(xué)習(xí)的求知欲和學(xué)習(xí)數(shù)學(xué)的興趣。
心理學(xué)家把問題從提出到解決的過程稱為“解答距”。并根據(jù)解答距的長短把它分為“微解答距”、“短解答距”、“長解答距”和“新解答距”四個級別。所以,教師設(shè)計問題應(yīng)合理配置幾個級別的問題。對知識的重點、難點,應(yīng)象攀登階梯一樣,由淺入深,由易到難,由簡到繁,已達(dá)到掌握知識、培養(yǎng)能力的目的。
(1)它是奇函數(shù)還是偶函數(shù)?
(2)它的圖象具有怎樣的對稱性?
上述第(3)、(4)問的解決實際上為偶函數(shù)在對稱區(qū)間單調(diào)性的關(guān)系揭示提供了一個具體示例。在這樣的感性認(rèn)識下,接著可安排如下訓(xùn)練題:
(3)奇、偶函數(shù)在關(guān)于原點對稱區(qū)間上的單調(diào)性有何規(guī)律?
根據(jù)“解答距”的四個級別,層層設(shè)問,步步加難,把學(xué)生思維一步一個臺階引向求知的高度。在面對這樣一個題目時,學(xué)生心理已經(jīng)有了準(zhǔn)備,不會感覺到無從下手。同時上一個問題解決也為一般結(jié)論的得出提供了一個思考的方向。這樣知識的掌握的過程是一種平緩的過程,新的知識的形成不是一蹴而就的,理解起來就顯得比較容易接受,掌握起來就會顯得更加牢固。
懸念是一種學(xué)習(xí)心理的強刺激,使學(xué)生產(chǎn)生“欲罷不能”的期待情境,能引起學(xué)生學(xué)習(xí)的興趣、調(diào)動學(xué)生的思維和引發(fā)求知動機。
案例3:今天以后的22006天是星期幾?這樣的問題喚起了學(xué)生對二項式定理應(yīng)用的濃厚興趣。通過在學(xué)生的認(rèn)識沖突中提出問題導(dǎo)入新課,使學(xué)生產(chǎn)生“欲知而后快”的期待情境,以激起不斷探求的興趣,既喚起學(xué)生對知識的愉悅,又喚起學(xué)生參與的熱情。事實上,現(xiàn)階段所使用的新教材在每一章的引言均有這樣的設(shè)置。同時,教材增加了不少與現(xiàn)實聯(lián)系十分緊密的內(nèi)容,為數(shù)學(xué)教師提供了寬廣的知識平臺,為新課引人的設(shè)問創(chuàng)造了有利的條件。
華羅庚說過:“數(shù)缺形時少直觀,形少數(shù)時難入微”。數(shù)形結(jié)合是研究數(shù)學(xué)的重要方法,“以形助數(shù)”是數(shù)形結(jié)合的主要方面,它借助圖形的性質(zhì),可以加深對概念、公式、定理的理解,體會概念、公式、定理的幾何意義
學(xué)生在完成此題的過程中,通過作圖,找到特殊點,然后再確定時的解析式。顯然他們并不會滿足于這樣“拄著拐杖走路”,很希望能脫離函數(shù)圖象這一中介的輔助,“脫離拐杖而獨立行走”。于是他們會問(或者老師啟發(fā))若不作函數(shù)圖象,能求出的解析式嗎?在完成此題目的基礎(chǔ)上他們也許還會盡一步發(fā)問:此方法可以推廣嗎?對一般的奇函數(shù)也適用嗎?若為偶函數(shù)又該怎么處理?經(jīng)過這樣一連串的發(fā)問,那么該題目的解決過程就顯得豐滿、充實。達(dá)到了以點帶面、把“薄書讀厚”的目的,這樣知識的升華就顯得潤物細(xì)無聲。
總之,在新課引人時的問題情景一方面應(yīng)是學(xué)生關(guān)心的話題,能激發(fā)學(xué)生的學(xué)習(xí)積極性,另一方面應(yīng)使學(xué)生迫切想知道如何運用所知識解決問題,能喚起學(xué)生的求知欲。其次,注意問題的趣味性。趣味性的知識總能吸引人,趣味性的問題總能引發(fā)學(xué)生對問題的探究和深層次的思考。在新課引人時,多為學(xué)生提供一些數(shù)學(xué)史或其它有趣的知識,既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又能擴大學(xué)生的知識面并在穿插數(shù)學(xué)史介紹的過程中,加強對學(xué)生數(shù)學(xué)思想的滲透和數(shù)學(xué)文化的浸潤,讓學(xué)生在東西方數(shù)學(xué)文化觀的對比中,感受到數(shù)學(xué)理性精神對人類進步的偉大作用,從而提高學(xué)習(xí)數(shù)學(xué)的興趣。