龐麗君 劉道潔 林明華
[摘要] 目的 構建血管內皮生長因子(VEGF)原核表達載體并誘導其表達蛋白,為后續(xù)進行VEGF相關研究奠定基礎。 方法 通過逆轉錄聚合酶鏈式反應(RT-PCR)擴增得到目的片段,將DNA片段克隆至帶組氨酸標簽的pET-30a(+)載體上;構建的重組質粒經過菌液聚合酶鏈式反應(PCR)及測序方法鑒定;利用異丙基-β-D-硫代半乳糖苷(IPTG)誘導重組質粒表達,通過蛋白質印跡法(Western blot)進行鑒定。 結果 以HepG2細胞為模板擴增出大小正確的片段;構建的pET-30a-VEGF重組質粒經菌液PCR及DNA測序證實序列正確;考馬斯亮藍染膠和Western blot結果顯示IPTG誘導表達的融合蛋白分子量正確且條帶單一。 結論 成功構建pET-30a-VEGF原核表達質粒,后續(xù)可進行大量誘導表達用于肝癌的診療相關研究。
[關鍵詞] 血管內皮生長因子;肝細胞癌;基因克隆;原核表達
[中圖分類號] R735.7 ? ? ? ? ?[文獻標識碼] A ? ? ? ? ?[文章編號] 1673-7210(2020)08(b)-0004-04
[Abstract] Objective To construct a prokaryotic expression vector containing vascular endothelial growth factor (VEGF) and induce to express protein, it may lay a foundation for the follow-up study of VEGF. Methods Amplified The target fragment was amplified by reverse transcription polymerase chain reaction (RT-PCR) and the DNA fragment was cloned into pET-30a(+) vector with histidine tag. The recombinant plasmid was identified by polymerase chain reaction (PCR) and sequencing. The expression of recombinant plasmid was induced by isopropylthio-β-D-galactoside (IPTG) and identified by Western blot. Results The right size of the fragment was amplified from HepG2 cells. The recombinant plasmid pET-30a-VEGF was confirmed by PCR and DNA sequencing. Coomassie brilliant blue staining and Western blot results showed that the molecular weight of the fusion protein induced by IPTG was correct and the band was single. Conclusion The prokaryotic expression plasmid of pET-30a-VEGF is successfully constructed, in addition, it might lay the foundation for development of HCC diagnostic and treatment research.
[Key words] Vascular endothelial growth factor; Hepatocellular carcinoma; Gene cloning; Prokaryotic expression
肝細胞癌(hepatocellular carcinoma,HCC)是我國腫瘤發(fā)病率排第2位的惡性腫瘤,是全世界第4大癌癥死亡原因[1]。在肝癌早期,臨床治療效果尚佳,然而70%~80%的患者被發(fā)現(xiàn)時已發(fā)展為晚期[2]。盡管開發(fā)了有效的抗病毒藥物[3-5],但肝癌的發(fā)病率仍然呈現(xiàn)逐漸增加的趨勢,對人類健康的影響非常大。血管內皮生長因子(vascular endothelial growth factor,VEGF)在肝癌患者中高表達,能誘導腫瘤,促進腫瘤生長和轉移,而在正常肝組織中穩(wěn)定低表達[6]。VEGF是腫瘤血管生成的重要標志物,直接參與肝癌的生長、轉移及擴散[7]。研究表明,VEGF可以更好地預測肝癌的預后、血管的侵犯,并可能指導肝臟的靶向治療[7-9]。本研究進行了VEGF的克隆、表達載體的構建,并誘導表達VEGF重組蛋白,為后續(xù)的相關研究奠定了基礎。
1 材料與方法
1.1 實驗材料
1.1.1 細胞株與主要儀器 ?HepG2肝癌細胞系和pET-30a(+)載體由北京市肝病研究所實驗室提供。T100 PCR擴增儀(美國Bio-Rad公司);Tanon-1600凝膠成像系統(tǒng);MaxQ HP481EPS 搖床(Thermo Scientific公司);EF-C5高壓細胞破碎儀(加拿大Avestin公司);EPS-300電泳儀(美國Bio-Rad公司);Bio-Rad ChemiDoc XRS+化學發(fā)光成像分析系統(tǒng)(美國Bio-Rad公司)。
1.1.2 主要試劑 ?氨芐青霉素和硫酸卡那霉素(Solarbio,A7490、K8020);IPTG(GPC Biotech,AC367-5G);胰蛋白胨和酵母提取物(OXOID,LP0042、LP0021);考馬斯亮藍R250(北京鼎國,C061);PCR Taq mix(Takara,RR902A);DNA marker、藍色預染蛋白質marker和感受態(tài)細胞DH5α和Rosetta(DE3)(Biomed,MD102、PM202、BC102、BC204);Ni-NTA Agarose、化學發(fā)光底物、限制性內切酶NdeI和XhoI(Thermo Fisher Scientific,R901-01、34580、FD0583、FD0694);硝酸纖維素膜(NC膜)(Life Sciences,PALL 66485);RNA提取試劑盒(Qiagen,74004)。
1.2 方法
1.2.1 目的片段的擴增 ?提取HepG2細胞總RNA并進行反轉錄,得到的cDNA作為擴增的模板。設計引物如下,VEGF-upper:5′-CATATGATGGTTGTTAAA-TTCATGGAC-3′,VEGF-lower:5′-CTCGAGGCACAA-CAAATGCGAATGCCGT-3′,兩端加入酶切位點NdeI和XhoI,片段長度為279 bp。PCR擴增條件:94℃預變性5 min;95℃變性30 s,56℃復性30 s,72℃延伸30 s,共30個循環(huán);最后72℃延伸5 min。擴增產物經電泳鑒定后膠回收。
1.2.2 原核表達載體的構建 ?PCR擴增時保留C端的組氨酸(His)標簽用于后續(xù)純化和鑒定。將上述擴增片段和pET-30a(+)載體用NdeI和XhoI內切酶分別在37℃水浴鍋中酶切后膠回收,兩者在連接酶的作用下常溫連接過夜。連接產物轉入DH5α細胞,37℃孵育過夜。次日挑取單克隆,搖菌過夜后通過菌液PCR鑒定,片段大小正確的克隆提取質粒DNA,并送北京博邁德基因技術有限公司進行測序。
1.2.3 重組蛋白的誘導表達 ?將重組質粒pET-30a-VEGF轉入Rosetta(DE3)細胞,37℃培養(yǎng)過夜后挑單克隆于含有50 mg/mL卡那霉素的LB培養(yǎng)基中,在37℃恒溫搖床培養(yǎng)12 h后按1∶50比例擴大培養(yǎng),繼續(xù)培養(yǎng)2 h,菌體生長到對數(shù)期后先留取5 mL菌液作為對照,剩余菌液加入誘導劑IPTG(0.1、0.5、1 mmol/L)后繼續(xù)培養(yǎng)4 h。
1.2.4 裂解重組蛋白并用SDS-PAGE電泳鑒定 ?離心收集誘導后的菌體,用PBS重懸菌體沉淀之后加入終濃度為1 μg/mL的溶酶菌,冰上靜置30 min;再加入1% NP40、終濃度1 mmol/L的蛋白酶抑制劑PMSF,冰上靜置30 min;利用高壓均質機破碎菌體;12 000 g,離心30 min收集上清。向裂解后的液體加入蛋白上樣緩沖液,98℃加熱10 min后吸取上清液進行SDS-PAGE電泳。用考馬斯亮藍過夜染SDS-PAGE膠,脫色后拍照觀察蛋白誘導情況。
1.2.5 蛋白質印跡法鑒定重組質粒 ?向上述上清液中加入適量Ni-NTA,4 ℃孵育過夜,2000 g離心1 min,Ni-NTA清洗3次,離心棄上清液;向沉淀的Ni-NTA中加入適量洗脫液,競爭洗脫目的蛋白。蛋白樣品加入上樣緩沖液,98℃加熱10 min后進行SDS-PAGE電泳,轉膜后對NC膜進行封閉、洗膜、孵育抗體,最后進行曝光。
2 結果
2.1 PCR擴增目的片段
以HepG2細胞為模板進行PCR擴增,利用瓊脂糖凝膠電泳驗證,擴增出大小正確的DNA片段。見圖1。
2.2 重組質粒pET-30a-VEGF的構建及鑒定
上述PCR產物克隆至pET-30a載體中,重組轉化后挑單克隆進行菌液PCR,瓊脂糖電泳顯示條帶大小正確,見圖2。將驗證的重組質粒送北京博邁德基因技術有限公司測序,序列完全正確,顯示該質粒構建成功,見圖3(封三)。
2.3 誘導表達VEGF融合蛋白
測序正確的質粒pET-30a-VEGF轉化入感受態(tài)細胞,用不同濃度IPTG誘導,裂解菌液后經過考馬斯亮藍染SDS-PAGE膠。與未誘導組比較,在11 kD位置有明顯的蛋白條帶,且3個誘導濃度的蛋白表達量沒有明顯差別。見圖4。
2.4 蛋白質印跡法鑒定重組載體表達情況
由于pET-30a-VEGF質粒有His標簽,純化后的融合蛋白可以用His抗體進行鑒定,可以看到一條明顯的蛋白條帶,大小和目的蛋白一致,提示所構建的重組載體可以正確表達。見圖5。
3 討論
肝細胞癌是最常見的癌癥之一,由感染引起的肝硬化是其主要病因,其他因素如酒精、藥物、自身免疫性肝炎和非酒精性脂肪肝也與肝癌的發(fā)生有關[10-11]。大部分肝癌患者確診時已屬晚期,失去了最佳手術時期,并且放化療對肝癌幾乎無效[12]。索拉非尼作為治療晚期肝癌的一線治療藥物,被報道可以延長患者的整體生存期2~3個月[13-14],它是一種多靶點酪氨酸激酶抑制劑,靶向多種信號通路,其中就包括以VEGF為中心的通路[15]。有研究報道索拉非尼和其他VEGF抑制劑能明顯影響肝癌血管生成和血管通透性[16-17]。VEGF信號通路調控血管形態(tài)對肝細胞構筑和腫瘤生長都很重要,VEGF的濃度決定血管生成的方向和血管的延伸以及增長[18]。除了促進血管生成和血管通透性,VEGF還可以在腫瘤中發(fā)揮免疫抑制作用,例如VEGF能抑制樹突狀細胞的成熟并誘導免疫抑制性炎癥細胞的積聚[19-20]。此外,在缺氧的腫瘤環(huán)境中,VEGF能通過缺氧誘導因子使依賴性途徑上調,通過表達更高水平的促炎細胞因子和免疫抑制介質影響腫瘤微環(huán)境中的免疫抑制功能[21]。腫瘤微環(huán)境中過量的VEGF產生可能有助于癌細胞以多種直接和間接的方式逃避免疫系統(tǒng),正如相關基礎和臨床研究所示,抗VEGF治療在某些情況下可促進抗腫瘤的免疫反應[22-23]。
在免疫微環(huán)境中,阻斷VEGF是一把雙刃劍,它可以增加或減少免疫抑制。因此,聯(lián)合使用抗血管生成靶向藥物和免疫檢查點抑制劑治療肝癌和其他惡性腫瘤時,對于提高療效至關重要[24-25]。本實驗構建的VEGF表達載體能夠誘導表達VEGF融合蛋白,無論是將其作為抗原應用或作為后續(xù)制備VEGF單克隆抗體,對于肝癌診療的相關研究都奠定了一定的基礎。
[參考文獻]
[1] ?Yang JD,Hainaut P,Gores GJ,et al. A global view of hepatocellular carcinoma:trends,risk,prevention and management [J]. Nat Rev Gastroenterol Hepatol,2019,16(10):589-604.
[2] ?Lee HW,Cho KJ,Park JY. Current Status and Future Direction of Immunotherapy in Hepatocellular Carcinoma:What Do the Data Suggest? [J]. Immune Netw,2020,20(1):e11.
[3] ?Akinyemiju T,Abera S,Ahmed M,et al. The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global,Regional,and National Level:Results From the Global Burden of Disease Study 2015 [J]. JAMA Oncol,2017,3(12):1683-1691.
[4] ?Kim BH,Park JW. Epidemiology of liver cancer in South Korea [J]. Clin Mol Hepatol,2018,24(1):1-9.
[5] ?Lee JS,Cho IR,Lee HW,et al. Conditional Survival Estimates Improve Over Time for Patients with Hepatocellular Carcinoma:An Analysis for Nationwide Korea Cancer Registry Database [J]. Cancer Res Treat,2019,51(4):1347-1356.
[6] ?Wang D,Luo L,Chen W,et al. Significance of the vascular endothelial growth factor and the macrophage migration inhibitory factor in the progression of hepatocellular carcinoma [J]. Oncol Rep,2014,31(3):1199-1204.
[7] ?Niu G,Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy [J]. Curr Drug Targets,2010,11(8):1000-1017.
[8] ?Zhang W,Kim R,Quintini C,et al. Prognostic role of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma undergoing liver transplantation [J]. Liver Transpl,2015,21(1):101-111.
[9] ?Syed YY. Ramucirumab:A Review in Hepatocellular Carcinoma [J]. Drugs,2020,80(3):315-322.
[10] ?Medavaram S,Zhang Y. Emerging therapies in advanced hepatocellular carcinoma [J]. Exp Hematol Oncol,2018, 7:17.
[11] ?Li TY,Yang Y,Zhou G,et al. Immune suppression in chronic hepatitis B infection associated liver disease:A review [J]. World J Gastroenterol,2019,25(27):3527-3537.
[12] ?Villanueva A. Hepatocellular Carcinoma [J]. N Engl J Med,2019,380(15):1450-1462.
[13] ?Lou W,Liu J,Gao Y,et al. MicroRNA regulation of liver cancer stem cells [J]. Am J Cancer Res,2018,8(7):1126-1141.
[14] ?Kim DW,Talati C,Kim R. Hepatocellular carcinoma(HCC):beyond sorafenib-chemotherapy [J]. J Gastrointest Oncol,2017,8(2):256-265.
[15] ?Kirstein MM,Wirth TC. Multimodal treatment of hepatocellular carcinoma [J]. Internist:Berl,2020,61(2):164-169.
[16] ?Zhu AX,Duda DG,Sahani DV,et al. HCC and angiogenesis:possible targets and future directions [J]. Nat Rev Clin Oncol,2011,8(5):292-301.
[17] ?Bangaru S,Marrero JA,Singal AG. Review article:new therapeutic interventions for advanced hepatocellular carcinoma [J]. Aliment Pharmacol Ther,2020,51(1):78-89.
[18] ?Rossetto A,Re VD,Steffan A,et al. Carcinogenesis and Metastasis in Liver:Cell Physiological Basis [J]. Cancers:Basel,2019,11(11):1731.
[19] ?Terme M,Colussi O,Marcheteau E,et al. Modulation of immunity by antiangiogenic molecules in cancer [J]. Clin Dev Immunol,2012,2012:492920.
[20] ?Rivera LB,Meyronet D,Hervieu V,et al. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy [J]. Cell Rep,2015,11(4):577-591.
[21] ?Gabrilovich DI,Ostrand-Rosenberg S,Bronte V. Coordinated regulation of myeloid cells by tumours [J]. Nat Rev Immunol,2012,12(4):253-268.
[22] ?Voron T,Colussi O,Marcheteau E,et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors [J]. J Exp Med,2015,212(2):139-148.
[23] ?Kudo M. Scientific Rationale for Combined Immunotherapy with PD-1/PD-L1 Antibodies and VEGF Inhibitors in Advanced Hepatocellular Carcinoma [J]. Cancers:Basel,2020,12(5):1089.
[24] ?Hato T, Zhu AX, Duda DG. Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma [J]. Immunotherapy,2016,8(3):299-313.
[25] ?Cheng AL,Hsu C,Chan SL,et al. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma [J]. J Hepatol,2020,72(2):307-319.
(收稿日期:2020-05-26)