葉海旺,郭曉亞,雷濤,2,王其洲,2 ,李寧,2,龍梅
(1.武漢理工大學資源與環(huán)境工程學院,湖北武漢430070;2.礦物資源加工與環(huán)境湖北省重點實驗室,湖北武漢430070;3.武漢理工大學圖書館,湖北武漢430070)
在礦床地下開采中,隨著礦山工程規(guī)模的不斷擴大,采場數(shù)量、開采深度以及規(guī)模的不斷增加,頂板冒落等災害給礦山工作人員和設備帶來嚴重威脅,并造成了重大的財產(chǎn)損失,故而采場穩(wěn)定性評價至關(guān)重要,但巖土工程中存在著大量的層狀巖體,由于其各向異性和非均質(zhì)性特征[1],使層狀巖體尤其是薄層狀巖體的采場穩(wěn)定性評價方法和評價過程更為復雜。何忠明等[2-3]采用室內(nèi)實驗與數(shù)值模擬相結(jié)合的方法,得出了層理構(gòu)造對巖石應力應變的影響程度的結(jié)論;周火明等[4]利用FLAC3D數(shù)值模擬研究了尺寸效應對層狀復合巖體變形參數(shù)的影響;王洪武等[5]利用模糊可靠度結(jié)合遺傳算法得到頂板在不同控頂高度以及跨度下的穩(wěn)定性可靠度,并對采場參數(shù)進行優(yōu)化設計;IDRIS等[6]借助人工神經(jīng)網(wǎng)絡,利用可靠度計 算方法完成對礦柱穩(wěn)定性的隨機評估;將室內(nèi)實驗、理論分析、相似模擬、現(xiàn)場試驗和數(shù)值模擬多種方法聯(lián)合運用,對緩傾斜層狀礦體的穩(wěn)定性進行評價,并做出相應的控制措施[1,7];張欽禮等[8]結(jié)合能量釋放機理,建立采場尖點突變模型,推導系統(tǒng)失穩(wěn)的充要力學模型。但在以上絕大多數(shù)研究中,層狀巖體的不同僅體現(xiàn)在巖石力學參數(shù)的設置上,并未考慮層理面與層理面之間的聯(lián)系,即假定各層理面之間為完全線彈性,忽略各層理面之間的相對位移,不考慮巖體層理面間的摩擦效應。
基于某薄礦體寶玉石礦山板巖層理結(jié)構(gòu)的特殊性,在FLAC3D中設置無厚度接觸面模擬各層的摩擦[9],討論分析摩擦效應對層狀巖體采場穩(wěn)定性的影響程度;并以各層面的位移為基本未知量,利用虛功原理建立頂板—礦柱系統(tǒng)的控制微分方程計算采場可靠度指標,并對采場參數(shù)做出優(yōu)化,為采場安全有效開采提供保障。
圖1 層狀巖體開采模型Fig.1 Layered rock mass mining model
以貴州某玉石礦實際開采情況為研究背景[10],研究層狀巖體采場的特性,該玉石礦巖體層理結(jié)構(gòu)相對完好,各層面間厚度較小。以雙層組合梁的摩擦效應模型[11-13]為出發(fā)點,建立如圖1所示的層狀巖體開采模型,設層狀巖體跨度為L,且層理較多,為直觀表示其特性,現(xiàn)對其進行適當簡化,并以頂板與礦柱連接部位為展示對象,在模型中部截面形心部位建立笛卡爾坐標系Oixyizi(i=a,b代表不同的分層),其中Oix為層理切線方向,Oizi為層理的法線方向,Oiyi為采場掘進的方向,模型上部所承受均布荷載用q(x)表示。
設層面i的切向位移Ui(x,zi)和法向位移Wi(x,zi)[11-13]分別為:
(1)
ui0(x)和ui1(x)分別表示為層面i沿軸線x方向的切向位移以及切向轉(zhuǎn)角;ui2(x)和ui3(x)表示層面i沿x方向切向位移的高階翹曲項;wi0(x)表示層面i沿軸線x方向的法向位移,wi1(x)和wi2(x)分別表示沿x方向的高階畸變項。
Fu(uab)和Fw(wab)為剪力鍵切向滑移uab、法向變形wab所引起的切向力和法向力[11-13]。
Fu(uab)=Ku×uab,
(2)
Fw(wab)=αKw×wab,
(3)
根據(jù)虛功原理[11],有:
W-U=0。
(4)
均布荷載q(x)做的功表示為:
(5)
系統(tǒng)的應變能[11-13]表示為:
(6)
各層面間摩擦效應所消耗的能量[11-13]表示為:
(7)
故建立的功能函數(shù)為:
(8)
其中,式(8)需要滿足以下的幾何方程:
(9)
其中,εix、γi、εiz可以表示為沿層面i的切向正應變、切向應變和法向正應變;Vi為層面i所需滿足的空間。
為簡便計算與建模,現(xiàn)假設各層面巖體均為各向同性線彈性體,垂直x-zi面的正應力忽略不計,因此,各層面的應力和應變可以表示為[11-13]:
(10)
Ei、νi和Gi分別代表層面i的楊氏模量、泊松比以及剪切模量。
鑒于該玉石礦山地質(zhì)條件較為復雜,層理結(jié)構(gòu)平均厚度較小,在能夠較好模擬層狀巖體特性的前提下,適當?shù)臏p少層理結(jié)構(gòu)。計算模型共劃分為14層,各層理厚度為0.5~1.0 m,將5組巖石力學參數(shù)隨機設置在14個分層中,其中,巖石力學參數(shù)如表1所示。利用FLAC3D建立三維數(shù)值模型,該模型沿礦體的走向布置,礦房跨度和礦柱高度為固定值,礦柱寬度為變量;采場上覆巖層的重量可簡化為均布荷載,該數(shù)值可根據(jù)采場的埋深和巖體的密度計算得出;兩側(cè)的水平應力可根據(jù)金尼克假說設置,底部設置位移約束;在以上的基礎上,建立對比模型,一組添加界面摩擦力,一組不添加摩擦力,摩擦力應用無厚度的接觸面單元代替。本構(gòu)模型選用適用于薄層狀材料的遍布節(jié)理的塑性模型。
接觸面單元參數(shù)的選取根據(jù)礦山實際賦存條件以室內(nèi)實驗分析得出,法向剛度kn以及切向剛度ks以 “最硬”相鄰區(qū)域等效剛度的10倍取值。
(11)
圖2~圖4分別表示200 m埋深,7 m礦柱寬度時,兩組模型中采場切向應力、法向位移以及法向應力的變化情況。由圖2(a)、(b)對比可知,添加界面摩擦力的模型,頂板處的最大切向拉應力明顯低于未施加摩擦力的模型,且其模型中部以及礦房邊緣部分切向壓應力變??;由圖3(a)、(b)礦柱法向應力局部圖對比可知,摩擦效應對法向應力的影響主要集中在礦柱邊緣部分,摩擦的存在使得礦柱法向應力變?。挥蓤D4(a)、(b)對比可知,界面摩擦力的存在導致頂板處及其上部最大法向位移范圍明顯變小,礦柱處變化并不明顯。
(a) 摩擦
(b) 無摩擦
(a) 摩擦
(b) 無摩擦
(a) 摩擦
(b) 無摩擦
表1 巖石力學參數(shù)Tab.1 Rock mechanics parameters
表2 接觸面參數(shù)Tab.2 Parameters of contact surface
為直觀展示摩擦效應對采場整體法向位移的影響,現(xiàn)繪制兩幅有關(guān)采場關(guān)鍵位置法向位移沿巖層水平坐標x的變化曲線圖,在FLAC3D中模擬時,在礦柱上部0.7 m位置處以及礦柱與頂板交界處分別布置測線,用于監(jiān)測采場頂板和礦柱的位移變化,如圖5所示,摩擦效應的存在對采場法向位移的影響不甚明顯;頂板和礦柱處的位移變化趨勢沿中心軸對稱,兩側(cè)位移較大,對稱中心處位移最?。惶砑幽Σ亮r頂板以及礦柱的法向位移明顯低于未添加摩擦時的位移。
(a) 礦柱上方0.7m位置處測線處
(b) 礦柱與頂板的交界處測線處
從以上兩組模型的對比來看,界面摩擦力的存在對采場關(guān)鍵位置的位移以及應力均產(chǎn)生了不同程度的影響,故而界面摩擦在采場穩(wěn)定性評價中不可忽略。
在坐標系中沿x、y、z方向均以0.5 m為步長設置節(jié)點提取數(shù)據(jù),利用最小二乘法,對模擬結(jié)果中所提取的位移數(shù)值多項式擬合,擬合生成4i-1(i為層理數(shù))多項式函數(shù),包括沿x軸的位移函數(shù)、接觸面處關(guān)于x軸的位移函數(shù)和沿z軸的位移函數(shù)。
將以上函數(shù)根據(jù)式(9)、(10)進行應力應變幾何關(guān)系運算,最后根據(jù)式(8)建立的功能函數(shù),將巖石的力學參數(shù)作為隨機變量,采用蒙特卡洛計算方法,循環(huán)105次,得出不同埋深下,多種寬度的礦柱可靠度指標,在此基礎上獲取最優(yōu)的采場參數(shù)。
以100 m和200 m埋深為例,繪制可靠度指標隨礦柱寬度的變化曲線(圖6),圖6(a)表示埋深為100 m,圖6(b)表示埋深為200 m,由圖6可知,兩組模型中可靠度指標隨礦柱寬度變化趨勢基本一致,均隨著礦柱寬度的增大而增大,但其變化速度并不相同。
(a) 100 m埋深
(b) 200 m埋深
由眾多學者的研究表明[14-17],當失效概率小于5 %時,即可靠度指標大于1.64時,結(jié)構(gòu)能夠很好的保持穩(wěn)定性。秉持安全經(jīng)濟開采的理念,基于以上研究,不同采場參數(shù)下礦柱寬度的選擇如表3所示。由表3中數(shù)據(jù)可以看出,考慮摩擦效應時最優(yōu)的礦柱寬度不大于忽略摩擦的礦柱寬度。
表3 采場參數(shù)優(yōu)化Tab.3 Optimization of stope parameters
為驗證優(yōu)化結(jié)果的正確性,進行現(xiàn)場試驗,在礦體埋深300 m,礦房寬度9 m時,礦柱寬度分別設置為9 m和11 m?,F(xiàn)場試驗結(jié)果證明,兩個采場都能夠保持穩(wěn)定。300 m埋深時,考慮摩擦的分析模型礦柱寬度和采場跨度同為9 m,能夠保證隔一采一采礦工序的順利進行,但不考慮摩擦的分析模型,礦柱寬度為11 m無法保障采礦工序的有序進行。并且在同樣保持穩(wěn)定的情況下,不考慮摩擦的分析模型偏于保守。
①以組合梁界面摩擦模型為原型,建立考慮摩擦的巖體分析模型,并借助虛功原理建立以位移為基本未知量的功能函數(shù);
②在FLAC3D分析模擬中,在模型均布荷載的作用下,設置無厚度接觸面模擬界面摩擦力,有摩擦和無摩擦兩組模型通過對切向應力、法向應力以及法向位移的對比,證明界面摩擦效應能夠?qū)Σ蓤鲫P(guān)鍵部位的力學行為產(chǎn)生影響,如添加摩擦的模型位移低于未添加摩擦的模型,故而摩擦效應對采場的穩(wěn)定性影響不可忽略;
③利用蒙特卡羅法得到礦房跨度保持9 m不變時,不同埋深下的可靠度指標;并得到最優(yōu)的礦柱寬度分別為3、4、6、7、9 m,小于等于忽略摩擦的模型?,F(xiàn)場試驗證明兩種分析模型均能夠保持穩(wěn)定,無摩擦模型偏保守。