郭曉玲 康麗霞 任美芳 檀金川
(河北省中醫(yī)院腎病科,石家莊 050011)
糖尿病腎病(Diabetic nephropathy,DN)是常見的糖尿病并發(fā)癥,近些年的發(fā)病率呈逐年上升趨勢(shì),已成為引起糖尿病患者死亡的主要原因,其發(fā)病及病因機(jī)制復(fù)雜,涉及到血流動(dòng)力學(xué)、糖代謝、遺傳、氧化應(yīng)激等多個(gè)方面的因素[1,2]。大量的研究表明,高血糖是引起糖尿病腎病發(fā)生及發(fā)展的關(guān)鍵因素,但作用機(jī)制尚不清楚[3]。有研究指出,在糖尿病腎病發(fā)生早期可觀察到腎小管細(xì)胞的凋亡、氧化損傷,而腎小管上皮細(xì)胞的凋亡可促進(jìn)細(xì)胞的間質(zhì)纖維化和萎縮,ROS的過度產(chǎn)生是糖尿病并發(fā)癥的原始啟動(dòng)因子和細(xì)胞損傷的首要因素,此外,腎小管上皮細(xì)胞的轉(zhuǎn)分化也是腎小管間質(zhì)纖維化發(fā)生的關(guān)鍵環(huán)節(jié)[4,5]。黃芪的主要成分有黃芪多糖、一氨基丁酸、黃芪皂苷、黃酮類等,對(duì)免疫系統(tǒng)、心血管、腎臟、血液等均有作用[6]。研究顯示,黃芪多糖(Astragalus polysaccharides,APS)對(duì)糖尿病腎病有保護(hù)作用,可通過對(duì)足細(xì)胞的修復(fù)、減少腫瘤壞死因子而延緩糖尿病腎病的發(fā)展[7,8]。有研究指出,黃芪多糖能改善STZ誘導(dǎo)的大鼠脂、糖代謝,可對(duì)腎臟功能起保護(hù)作用,可對(duì)糖尿病小鼠的早期腎臟病變有治療作用[9,10]。但黃芪多糖對(duì)糖尿病腎病腎小管上皮細(xì)胞的影響及機(jī)制研究尚未清楚,因此,本研究檢測(cè)了黃芪多糖對(duì)糖尿病腎病腎小管上皮細(xì)胞凋亡、轉(zhuǎn)分化及ROS的影響,并進(jìn)一步探討其作用機(jī)制,為糖尿病腎病的治療提供理論基礎(chǔ)。
1.1主要試劑和儀器 黃芪多糖(純度為70%,另有少量黃芪皂苷、氨基酸及黃銅等)購自西安沃森生物科技有限公司;人腎小管上皮細(xì)胞HK-2細(xì)胞購自中國科學(xué)院細(xì)胞庫;胎牛血清、RPMI1640培養(yǎng)基均購自美國Gibco公司;DCFH-DA、高糖均購自美國Sigma;兔抗E-cadherin、α-SMA單克隆抗體,兔抗STAT1、STAT3多克隆抗體,鼠抗p-STAT1、p-STAT3單克隆抗體均購于美國 Abcam公司;CCK-8試劑盒、BCA試劑盒、Annexin V-FITC凋亡試劑盒均購自碧云天生物技術(shù)研究所;酶標(biāo)儀購自美國Bio-Rad公司;流式細(xì)胞儀購自美國BD公司;倒置熒光顯微鏡購于日本Olympus公司;CO2細(xì)胞培養(yǎng)箱購自美國SIM公司。
1.2方法
1.2.1細(xì)胞培養(yǎng) 人腎小管上皮細(xì)胞HK-2細(xì)胞在37℃、5%CO2的培養(yǎng)箱中用含有10%胎牛血清和低糖RPMI1640培養(yǎng)基培養(yǎng),細(xì)胞生長融合度至80%時(shí),用0.25%的胰酶消化細(xì)胞,細(xì)胞收縮變圓后加入完全培養(yǎng)基終止消化,傳代。傳代后的細(xì)胞在37℃、5%CO2的培養(yǎng)箱中培養(yǎng)24 h后全數(shù)換液1次,以消除死亡的細(xì)胞,以后每2 d換液1次。取對(duì)數(shù)生長期的細(xì)胞用于實(shí)驗(yàn)研究。
1.2.2實(shí)驗(yàn)分組 將試驗(yàn)分為三組,低糖組(細(xì)胞中加入5.5 mmol/L的葡萄糖);高糖組(細(xì)胞中加入30 mmol/L 的葡萄糖);黃芪多糖+高糖組(細(xì)胞中加入200 mg/L的黃芪多糖和30 mmol/L的葡萄糖)。
1.2.3細(xì)胞增殖檢測(cè) HK-2細(xì)胞以3×104個(gè)/ml的濃度每孔加入200 μl接種至96孔細(xì)胞培養(yǎng)板中,觀察到細(xì)胞貼壁后棄掉上清,按照1.2.2分組加入各組細(xì)胞,每組設(shè)置6個(gè)復(fù)孔,37℃、5%CO2的條件培養(yǎng)48 h,每孔細(xì)胞中加入CCK-8試劑10 μl,37℃繼續(xù)孵育4 h后,酶標(biāo)儀測(cè)定各組在490 nm波長處的吸光度OD。計(jì)算細(xì)胞增殖率。
1.2.4細(xì)胞凋亡檢測(cè) 以2×105個(gè)/ml濃度將HK-2細(xì)胞接種于6孔細(xì)胞培養(yǎng)板中,培養(yǎng)24 h后,按照1.2.2分組加入各組細(xì)胞,37℃、5%CO2條件下培養(yǎng)48 h后,胰蛋白酶消化細(xì)胞,離心后收集細(xì)胞,按照細(xì)胞凋亡試劑盒的操作說明檢測(cè)各組細(xì)胞的凋亡情況。
1.2.5活性氧簇(Reactive oxygen species,ROS)相對(duì)含量測(cè)定 取按照上述分組培養(yǎng)48 h的三組細(xì)胞,加入2′,7′-二氯二氫熒光素黃二乙酸酯(DCFH-DA)探針,孵育30 min后取細(xì)胞沉淀,PBS懸浮細(xì)胞,525 nm的發(fā)射波長和488 nm的激發(fā)波長檢測(cè)刺激后的熒光強(qiáng)度。每次計(jì)數(shù)1×104個(gè)細(xì)胞,以DCFH-DA(DCF)的平均熒光強(qiáng)度表示ROS的生成量。實(shí)驗(yàn)結(jié)果以實(shí)驗(yàn)組熒光強(qiáng)度均值與對(duì)照組熒光強(qiáng)度均值的比值表示。
1.2.6Western blot檢測(cè) 取按照上述分組培養(yǎng)48 h 的三組細(xì)胞,加入適量的RAPI細(xì)胞裂解液提取細(xì)胞中的蛋白,取少量蛋白樣品BCA試劑盒對(duì)蛋白進(jìn)行定量,蛋白樣品與上樣緩沖液Buffer按照1∶5 的比例充分混勻,100℃煮沸變性10 min,每個(gè)樣品取50 μg 進(jìn)行聚丙烯酰胺凝膠電泳(SDS-PAGE)分離,90 V 低溫電轉(zhuǎn)移2 h,5%的脫脂奶粉37℃封閉2 h,加入兔抗E-cadherin、α-SMA單克隆抗體,兔抗STAT1、STAT3多克隆抗體,鼠抗p-STAT1、p-STAT3單克隆抗體,所有抗體均按照1∶400稀釋,4℃過夜,TBST洗滌(3次×10 min),加入1∶5 000稀釋的HRP標(biāo)記的羊抗鼠IgG,室溫孵育1 h,ECL顯色,顯影后采用Gel-Pro analyzer分析各個(gè)條帶的光密度,以GAPDH作為內(nèi)參蛋白,分析各個(gè)蛋白的相對(duì)表達(dá)量。
2.1黃芪多糖促進(jìn)HK-2細(xì)胞增殖 HK-2細(xì)胞分為低糖組、高糖組和黃芪多糖+高糖組,48 h后CCK-8實(shí)驗(yàn)檢測(cè)各組細(xì)胞的增殖情況,結(jié)果顯示,低糖組、高糖組和黃芪多糖+高糖組細(xì)胞存活率分別為(97.26±2.14)%、(47.27±6.21)%、(71.22±5.34)%,高糖組細(xì)胞存活率顯著低于低糖組(t=13.182,P=0.000),而黃芪多糖+高糖組細(xì)胞存活率顯著高于高糖組(t=5.065,P=0.007),見圖1。
2.2黃芪多糖抑制HK-2細(xì)胞凋亡 各組細(xì)胞的凋亡檢測(cè)結(jié)果顯示,低糖組、高糖組和黃芪多糖+高糖組細(xì)胞凋亡率分別為(1.83±0.45)%、(12.23±0.72)%、(5.77±0.61)%,高糖組細(xì)胞凋亡率顯著高于低糖組(t=21.006,P=0.000),而黃芪多糖+高糖組細(xì)胞凋亡率顯著低于高糖組(t=11.857,P=0.000),見圖2。
2.3黃芪多糖降低HK-2細(xì)胞ROS含量 HK-2細(xì)胞ROS含量檢測(cè)結(jié)果顯示,低糖組、高糖組和黃芪多糖+高糖組檢測(cè)ROS含量分別為(13.3±2.6)%、(31.6±3.1)%、(22.7±2.7)%,高糖組ROS含量顯著高于低糖組(t=7.834,P=0.001),而黃芪多糖+高糖組ROS含量顯著低于高糖組(t=3.750,P=0.020),見圖3。
2.4黃芪多糖降低HK-2細(xì)胞轉(zhuǎn)分化 Western blot檢測(cè)與HK-2細(xì)胞轉(zhuǎn)分化相關(guān)蛋白E-cadherin、α-SMA蛋白的相對(duì)表達(dá)量,結(jié)果顯示,低糖組、高糖組和黃芪多糖+高糖組E-cadherin的蛋白表達(dá)分別為(0.178±0.025)、(0.756±0.051)、(0.354±0.037),α-SMA的蛋白表達(dá)分別為(0.112±0.021)、(0.345±0.038)、(0.225±0.025),高糖組E-cadherin、α-SMA蛋白表達(dá)均顯著高于低糖組(tE-cadherin=17.626,PE-cadherin=0.000;tα-SMA=9.295,Pα-SMA=0.001),而黃芪多糖+高糖組E-cadherin、α-SMA蛋白表達(dá)顯著低于高糖組(tE-cadherin=11.051,PE-cadherin=0.000,tα-SMA=4.569,Pα-SMA=0.010),見圖4。
圖1 黃芪多糖對(duì)HK-2細(xì)胞增殖的影響Fig.1 Effect of astragalus polysaccharides on prolifer-ation of HK-2 cellsNote:Compared with the low glucose group,*.P<0.05;compared with the high glucose group,#.P<0.05.
圖2 黃芪多糖對(duì)HK-2細(xì)胞凋亡的影響Fig.2 Effect of astragalus polysaccharides on apoptosis of HK-2 cellsNote:A.Flow cytometry results;B.Apoptosis rate of each group.Compared with the low glucose group,*.P<0.05;compared with the high glucose group,#.P<0.05.
2.5黃芪多糖對(duì)JAK/STAT信號(hào)通路的影響 Western blot檢測(cè)JAK/STAT信號(hào)通路STAT1、p-STAT1、STAT3、p-STAT3的蛋白表達(dá),結(jié)果顯示低糖組、高糖組和黃芪多糖+高糖組STAT1的蛋白表達(dá)分別為(0.511±0.048)、(0.518±0.049)、(0.514±0.051),p-STAT1的蛋白表達(dá)分別為(0.062±0.010)、(0.154±0.016)、(0.106±0.012),STAT3的蛋白表達(dá)分別為(0.622±0.061)、(0.629±0.060)、(0.624±0.060),p-STAT3的蛋白表達(dá)分別為(0.051±0.009)、(0.192±0.023)、(0.124±0.021),高糖組p-STAT1、p-STAT3的蛋白表達(dá)均顯著高于低糖組(tp-STAT1=8.446,Pp-STAT1=0.001;tp-STAT3=9.888,Pp-STAT3=0.001),而黃芪多糖+高糖組p-STAT1、p-STAT3的蛋白表達(dá)顯著低于高糖組(tp-STAT1=4.157,Pp-STAT1=0.014;tp-STAT3=3.782,Pp-STAT3=0.019),STAT1和STAT3在三組間差異無統(tǒng)計(jì)學(xué)意義(P>0.05),見圖5。
圖3 黃芪多糖對(duì)HK-2細(xì)胞ROS含量的影響Fig.3 Effect of astragalus polysaccharides on ROS content in HK-2 cellsNote:Compared with the low glucose group,*.P<0.05;compared with the high glucose group,#.P<0.05.
圖4 黃芪多糖對(duì)HK-2細(xì)胞轉(zhuǎn)分化的影響Fig.4 Effect of astragalus polysaccharides on transdifferentiation of HK-2 cellsNote:A.Western blot test result diagram;B.The relative expression of protein.Compared with the low glucose group,*.P<0.05;compared with the high glucose group,#.P<0.05.
圖5 黃芪多糖對(duì)JAK/STAT信號(hào)通路的影響Fig.5 Effect of astragalus polysaccharides on JAK/STAT signaling pathwayNote:A.Western blot test result diagram;B.The relative expression of protein.Compared with the low glucose group,*.P<0.05;compared with the high glucose group,#.P<0.05.
糖尿病腎病是糖尿病常見的并發(fā)癥之一,是引起終末期腎功能衰竭的主要因素,可明顯增加患者死亡率[11]。糖尿病腎病的發(fā)生機(jī)制主要有蛋白激酶C學(xué)說、氧化應(yīng)激學(xué)說、蛋白非酶糖基學(xué)說、多元醇通路學(xué)說4種學(xué)說,氧化應(yīng)激是其中的一個(gè)研究熱點(diǎn)[12,13]。氧化應(yīng)激指機(jī)體酶的活性氮類自由基(RNS)或ROS等高活性分子過多產(chǎn)生和消除降低,引起細(xì)胞內(nèi)酶和蛋白的變性,生物膜脂質(zhì)的過氧化,DNA損害,最終引起細(xì)胞的凋亡或死亡,組織受損[14,15]。糖尿病的高糖狀態(tài)下,可產(chǎn)生大量的ROS,可通過激活一系列的信號(hào)通路引起腎功能異常和組織學(xué)的改變,最終導(dǎo)致氧化應(yīng)激狀態(tài)[16,17]。研究顯示,高糖可通過啟動(dòng)ROS引起足細(xì)胞的凋亡,從而減少足細(xì)胞在腎小球內(nèi)的數(shù)量,足細(xì)胞損傷是糖尿病腎病蛋白尿形成的一個(gè)重要因素[18]。
腎小管上皮細(xì)胞的轉(zhuǎn)分化是糖尿病腎病進(jìn)展到終末期腎病的主要病理基礎(chǔ)和共同途徑,鈣黏素(Cadherin)在不同的組織中分布,E-cadherin主要集中在著床前的上皮細(xì)胞、胚胎,廣泛參與細(xì)胞間的連接,可維持正常上皮細(xì)胞的完整,而異常表達(dá)的E-cadherin與上皮-間質(zhì)的轉(zhuǎn)化有直接聯(lián)系[19]。α-SMA是肌纖維成熟細(xì)胞表達(dá)的一個(gè)特征蛋白,近些年研究顯示,病理狀態(tài)下的腎小球壁層內(nèi)皮細(xì)胞、上皮細(xì)胞、腎小管間質(zhì)細(xì)胞、系膜細(xì)胞可轉(zhuǎn)化為肌纖維細(xì)胞而使α-SMA表達(dá),腎組織中α-SMA表達(dá)的高低可直接反應(yīng)纖維化的程度[20,21]。有研究指出,糖尿病腎病中可通過降低E-cadherin、α-SMA的表達(dá)抑制腎小管間質(zhì)的纖維化[22]。
黃芪多糖是中藥黃芪的活性成分之一,有改善糖尿病物質(zhì)代謝及腎臟組織結(jié)構(gòu)、增強(qiáng)免疫力、減低心肌鈣含量等功能[23]。研究顯示,黃芪多糖可通過降低糖尿病中轉(zhuǎn)化生長因子β1的過度表達(dá)而延緩腎小球硬化和減輕腎臟肥大,可通過對(duì)由游離脂肪酸誘導(dǎo)的小鼠足細(xì)胞的凋亡,降低糖尿病腎病的蛋白尿[24,25]。本研究檢測(cè)了黃芪多糖對(duì)糖尿病腎病腎小管上皮細(xì)胞增殖、凋亡、ROS含量及轉(zhuǎn)分化相關(guān)蛋白E-cadherin、α-SMA的蛋白表達(dá),結(jié)果顯示黃芪多糖可顯著促進(jìn)由高糖誘導(dǎo)的腎小管上皮細(xì)胞增殖的降低,抑制細(xì)胞的凋亡和降低ROS含量,下調(diào)E-cadherin、α-SMA的蛋白表達(dá)。
Janus酪氨酸蛋白激酶/信號(hào)轉(zhuǎn)導(dǎo)子和轉(zhuǎn)錄激活子(JAK/STAT)信號(hào)通路能介導(dǎo)生長因子和細(xì)胞因子信號(hào)內(nèi)的信號(hào)通路的轉(zhuǎn)導(dǎo),對(duì)細(xì)胞的病理和生理反應(yīng)發(fā)揮著重要作用,目前在腎臟疾病中的作用受到廣泛關(guān)注[26,27]?;罨腏AKs可使STATs發(fā)生磷酸化,進(jìn)而調(diào)控基因的表達(dá)。研究顯示,高糖可激活系膜細(xì)胞內(nèi)STAT1和STAT3,增強(qiáng)其磷酸化[28]。下調(diào)糖尿病腎病中p-JAK2和p-STAT3表達(dá)可改善腎功能[29,30]。本研究檢測(cè)黃芪多糖對(duì)高糖誘導(dǎo)的腎小管上皮細(xì)胞中STAT1、p-STAT1、STAT3、p-STAT3的蛋白表達(dá),結(jié)果顯示,黃芪多糖可顯著降低由高糖引起的p-STAT1、p-STAT3蛋白表達(dá)的升高,而對(duì)STAT1、STAT3的蛋白表達(dá)無影響。
綜上所述,黃芪多糖可通過下調(diào)JAK/STAT信號(hào)通路促進(jìn)高糖誘導(dǎo)的腎小管上皮細(xì)胞增殖,抑制細(xì)胞凋亡及轉(zhuǎn)分化。該研究為糖尿病腎病的治療提供了一定的理論基礎(chǔ)。
[1] Giacco F,Du X,D′Agati VD,etal.Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice[J].Diabetes,2014,63(1):291-299.
[2] Fried LF,Emanuele N,Zhang JH,etal.Combined angiotensin inhibition for the treatment of diabetic nephropathy[J].New Eng J Med,2013,369(20):1892-1903.
[3] Kitada K,Nakano D,Ohsaki H,etal.Hyperglycemia causes cellular senescence via a SGLT2-and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy[J].J Diabetes Complicat,2014,28(5):604-611.
[4] De Nicola L,Gabbai FB,Liberti ME,etal.Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy:targeting the renal tubule in diabetes[J].American J Kidney Diseases,2014,64(1):16-24.
[5] Guo K,Lu J,Huang Y,etal.Protective role of PGC-1 in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling[J].PLoS One,2015,10(4):e0125176.
[6] Fu J,Wang Z,Huang L,etal.Review of the botanical characteristics,phytochemistry,and pharmacology of Astragalus membranaceus (Huangqi)[J].Phytotherapy Res,2014,28(9):1275-1283.
[7] Li Z,Zhang L,He W,etal.Astragalus membranaceus inhibits peritoneal fibrosis via monocyte chemoattractant protein (MCP)-1 and the transfor ming growth factor-β1 (TGF-β1) pathway in rats submitted to peritoneal dialysis[J].Intern J Mole Sci,2014,15(7):12959-12971.
[8] Kai Z,Michela P,Antonio P,etal.Biological active ingredients of traditional Chinese herb Astragalus membranaceus on treatment of diabetes:a systematic review[J]. Mini Rev Med Chem,2015,15(4):315-329.
[9] Shahzad M,Shabbir A,Wojcikowski K,etal.The antioxidant effects of Radix Astragali (Astragalus membranaceus and related species) in protecting tissues from injury and disease[J].Curr Drug Targets,2016,17(12):1331-1340.
[10] Lui SL,Zhu D,Cheng SW,etal.Effects of Astragalus membranaceus-based Chinese Medicine formulae on residual renal function in patients on peritoneal dialysis[J].Peritoneal Dialysis International,2015,35(5):595-597.
[11] 余益本,吳移謀,文格波.吡格列酮干預(yù)下糖尿病大鼠腎組織 TLR4 和 PPARγ 的相關(guān)性研究[J].中國免疫學(xué)雜志,2014,30(3):383-387.
Yu YB,Wu YM,Wen GB.Study of correlation between TLR4 and PPARγ in rats with diabetic nephropathy by pioglitazone interfered[J].Chin J Immunol,2014,30(3):383-387.
[12] Mori J,Patel VB,Ramprasath T,etal.Angiotensin 1-7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress,inflammation,and lipotoxicity[J].Am J Physiology-Renal Physiol,2014,306(8):F812-F821.
[13] Zheng J,Inoguchi T,Sasaki S,etal.Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress[J].Am J Physiol Regul Integr Comp Physiol,2013,304(2):R110-R120.
[14] Shimazu T,Hirschey MD,Newman J,etal.Suppression of oxidative stress by β-hydroxybutyrate,an endogenous histone deacetylase inhibitor[J].Science,2013,339(6116):211-214.
[15] Schieber M,Chandel NS.ROS function in redox signaling and oxidative stress[J].Curr Biol,2014,24(10):R453-R462.
[16] Rochette L,Zeller M,Cottin Y,etal.Diabetes,oxidative stress and therapeutic strategies[J].Biochim Biophys Acta,2014,1840(9):2709-2729.
[17] Matsuda M,Shimomura I.Increased oxidative stress in obesity:implications for metabolic syndrome,diabetes,hypertension,dyslipidemia,atherosclerosis,and cancer[J].Obesity Res Clin Practice,2013,7(5):e330-e341.
[18] Vavrinec P,Henning RH,Landheer SW,etal.Vildagliptin restores renal myogenic function and attenuates renal sclerosis independently of effects on blood glucose or proteinuria in Zucker Diabetic Fatty rat[J].Curr Vascular Pharmacol,2014,12(6):836-844.
[19] Labernadie A,Kato T,Brugués A,etal.A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion[J].Nat Cell Biol,2017,19(3):224-237.
[20] Chung Y,Fu E,Chin YT,etal.Role of Shh and TGF in cyclosporine-enhanced expression of collagen and α-SMA by gingival fibroblast[J].J Clin Periodontol,2015,42(1):29-36.
[21] Zhao L,Zhao J,Wang X,etal.Serum response factor induces endothelial-mesenchymal transition in glomerular endothelial cells to aggravate proteinuria in diabetic nephropathy[J].Physiological Genomics,2016,48(10):711-718.
[22] Wang JY,Gao YB,Zhang N,etal.miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy[J].Mol Cell Endocrinol,2014,392(1):163-172.
[23] Chen W,Lai Y,Wang L,etal.Astragalus polysaccharides repress myocardial lipotoxicity in a PPARalpha-dependent manner in vitro and in vivo in mice[J].J Diabetes Complications,2015,29(2):164-175.
[24] Liu X,Zhou H,Cai L,etal.NADPH oxidase-dependent formation of reactive oxygen species contributes to transforming growth factor β1-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells,and the role of astragalus intervention[J].Chin J Integrative Med,2014,20(9):667-674.
[25] Yeh TS,Chuang HL,Huang WC,etal.Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice[J].Molecules,2014,19(3):2793-2807.
[26] Villarino AV,Kanno Y,Ferdinand JR,etal.Mechanisms of Jak/STAT signaling in immunity and disease[J].J Immunol,2015,194(1):21-27.
[27] 于洋洋,梁明輝.丹皮酚對(duì)肝癌細(xì)胞增殖凋亡及 JAK-STAT 信號(hào)通路的影響[J].中國老年學(xué)雜志,2017,37(7):1591-1593.
Yu YY,Liang MH.Effect of Paeonol on proliferation and apoptosis of hepatoma cells and JAK-STAT signaling pathway[J].Chin J Gerontol,2017,37(7):1591-1593.
[28] Sheu ML,Shen CC,Jheng JR,etal.Activation of PI3K in response to high glucose leads to regulation of SOCS-3 and STAT1/3 signals and induction of glomerular mesangial extracellular matrix formation[J].Oncotarget,2017,8(10):16925-16938.
[29] Luo LN,Xie DQ,Zhang XG,etal.Osthole decreases renal ischemia-reperfusion injury by suppressing JAK2/STAT3 signaling activation[J].Exp Therapeutic Med,2016,12(4):2009-2014.
[30] Lv J,Wang X,Liu SY,etal.Protective effect of Fenofibrate in renal ischemia reperfusion injury:involved in suppressing kinase 2 (JAK2)/transcription 3 (STAT3)/p53 signaling activation[J].Pathol Biol,2015,63(6):236-242.