王維坤,王安邦,金朝慶,楊裕生
?
高性能鋰硫電池正極材料研究進(jìn)展及構(gòu)建策略
王維坤,王安邦,金朝慶,楊裕生
(防化研究院,北京100191)
鋰硫電池體系理論上存在高容量和高能量密度特點(diǎn),但正極材料本身的絕緣性和放電中間產(chǎn)物溶解的特性使鋰硫電池的理論容量難以充分發(fā)揮,循環(huán)性能也有待進(jìn)一步提升。通過正極材料的改性來解決上述問題是鋰硫電池研究的主要途徑。本文將正極材料分為碳/硫復(fù)合材料、聚合物/硫復(fù)合材料、納米金屬化合物/硫復(fù)合材料3類,結(jié)合限硫機(jī)制進(jìn)行了簡要綜述,列舉了其中代表性的工作,評述了各類材料的優(yōu)缺點(diǎn),提出了實(shí)用化鋰硫電池正極材料性能的評價(jià)應(yīng)考慮極片載硫量、含硫量及電解液用量等條件,闡述了高性能正極材料的構(gòu)建策略,指出電解液量過高是目前制約鋰硫電池比能量進(jìn)一步提升的關(guān)鍵因素,應(yīng)當(dāng)引起足夠重視,最后展望了鋰硫電池的發(fā)展方向。
鋰硫電池;復(fù)合正極材料;納米碳材料;聚合物;納米金屬化合物
新能源汽車和移動電子設(shè)備的飛速發(fā)展迫切需要開發(fā)更高能量密度的電池。在新的儲能體系中,以金屬鋰為負(fù)極、單質(zhì)硫?yàn)檎龢O的鋰硫電池的理論比能量可達(dá)到2600 W·h/kg,遠(yuǎn)高于現(xiàn)階段所使用的商業(yè)化二次電池。此外,單質(zhì)硫廉價(jià)、環(huán)境友好的特性又使該體系極具商業(yè)價(jià)值。因此,鋰硫電池被公認(rèn)為是下一代最具發(fā)展?jié)摿Φ母弑饶芰慷坞姵伢w系[1-4]。
與普通鋰離子電池中鋰離子在電極材料中脫嵌的機(jī)理不同,鋰硫電池的放電過程是不同價(jià)態(tài)多硫離子(,=1~8)轉(zhuǎn)化的多步電極反應(yīng)過程。當(dāng)硫正極放電時(shí),八元環(huán)形式的硫得到電子形成Li2S8,對應(yīng)2.3 V的第一個放電平臺;Li2S8進(jìn)一步被還原,形成Li2S6、Li2S4等高階多硫化物,對應(yīng)2.3~2.05 V放電容量;其中,多硫化鋰Li2S(=4~8)會溶解到鋰硫電池的有機(jī)電解液中,并在電解液中發(fā)生遷移。隨著放電深度的進(jìn)行,高階多硫化鋰會被還原成低階多硫化鋰Li2S(=1~3),對應(yīng)2.05 V附近的第二個放電平臺。放電產(chǎn)物L(fēng)i2S2、Li2S不溶于電解液,沉積在導(dǎo)電骨架上。除了上述電化學(xué)反應(yīng)過程外,還同時(shí)存在不同價(jià)態(tài)多硫離子之間的化學(xué)歧化反應(yīng)過程,使得鋰硫電池的電極過程呈現(xiàn)非常復(fù)雜的狀態(tài)[5-8]。
受電極材料本身性質(zhì)的影響,鋰硫電池技術(shù)發(fā)展面臨巨大的挑戰(zhàn):① 單質(zhì)硫及其放電產(chǎn)物的電子、離子導(dǎo)電性差,使其難以達(dá)到理論容量,且可逆性也受到影響;② 硫和硫化鋰的密度分別為 2.03 g/cm3和1.66 g/cm3,在充放電過程中有高達(dá)80%的體積膨脹/收縮,導(dǎo)致活性物質(zhì)與導(dǎo)電骨架的脫離,從而造成容量的衰減[9];③ 單質(zhì)硫還原生成Li2S的過程是一個多步反應(yīng)過程,其中間產(chǎn)物多硫化鋰易溶于有機(jī)電解液,導(dǎo)致一部分的活性物質(zhì)流失,并造成正極結(jié)構(gòu)和外形發(fā)生極大的變化,活性物質(zhì)經(jīng)多次循環(huán)后與導(dǎo)電劑脫離,最終導(dǎo)致循環(huán)穩(wěn)定性下降;④ 金屬鋰負(fù)極表面不穩(wěn)定,在充電時(shí)易與擴(kuò)散至負(fù)極的多硫化鋰發(fā)生自放電反應(yīng),自放電的產(chǎn)物再遷移回正極又重新被氧化,如此循環(huán)往復(fù)(稱為“穿梭效應(yīng)”),致使電池的庫侖效率降低;⑤ 鋰的不均勻沉積導(dǎo)致負(fù)極產(chǎn)生枝晶、易粉化,給電池帶來安全性隱患;⑥ 硫的放電中間產(chǎn)物溶解機(jī)制需要大量的電解液參與其中,同時(shí)負(fù)極鋰的粉化也會引起電解液的消耗,需要額外量的電解液進(jìn)行補(bǔ)償,使得鋰硫電池體系中電解液用量很大,約占電池總重的50%,大大降低了鋰硫電池的實(shí)際比能量[10]。可見,正極材料的絕緣性、放電中間產(chǎn)物的溶解性以及金屬鋰負(fù)極的不穩(wěn)定性是影響鋰硫電池性能的根源。
縱觀近年來發(fā)表的關(guān)于鋰硫電池的研究論文,約70%是關(guān)于正極材料的工作。硫本身特性上的缺陷是鋰硫電池主要問題的“始作俑者”,因而通過正極材料的改性研究來解決鋰硫電池的上述問題是提高電池性能的主要途徑。本文將正極材料分為碳/硫復(fù)合材料、納米金屬化合物/硫復(fù)合材料、聚合物/硫復(fù)合材料3大類,結(jié)合限硫機(jī)制進(jìn)行簡要綜述。文中還介紹了本文作者對鋰硫電池正極材料性能評價(jià)問題及構(gòu)建策略的認(rèn)識,最后展望了正極材料的發(fā)展方向。
1.1 碳/硫復(fù)合材料
為了克服單質(zhì)硫及其放電終產(chǎn)物L(fēng)i2S的絕緣性帶來的問題,抑制多硫化鋰的擴(kuò)散,緩沖活性物質(zhì)在充放電過程中的體積變化對電極結(jié)構(gòu)的破壞,需要將硫與導(dǎo)電基體材料相復(fù)合,在這類材料中,碳材料因其具有輕質(zhì)、導(dǎo)電性良好、比表面積大、孔結(jié)構(gòu)可調(diào)等特征而成為硫最理想的載體[11-14]。對于正極材料的改性工作絕大多數(shù)集中在碳硫復(fù)合材料的制備研究上。其中多孔碳,如微孔碳[15-17]、中孔碳[18-20]、分級孔碳[21-24]等,具有良好的導(dǎo)電性能和較高的比表面積,對多硫離子有較強(qiáng)的吸附能力;而空心碳材料如空心碳球[25-27]、空心碳纖維[28-29]等則將硫的反應(yīng)限制在了材料的內(nèi)腔,其較大的孔容為硫的放電產(chǎn)物體積膨脹提供了足夠的空間,并提高了極片中活性硫的含量;碳納米管具有獨(dú)特的管狀結(jié)構(gòu)、大的長徑比及優(yōu)異的長程導(dǎo)電性,同時(shí)其較薄的管壁也為硫的電化學(xué)反應(yīng)提供了良好的電子和離子傳輸能力[30-37];石墨烯作為一種具有特殊二維納米結(jié)構(gòu)的導(dǎo)電碳材料,具有高的電導(dǎo)率和柔性的平面結(jié)構(gòu),可有效包覆硫顆粒形成導(dǎo)電網(wǎng)絡(luò)結(jié)構(gòu),緩沖硫的體積變化并提高硫的電化學(xué)活性[38-42]。綜合上述幾種碳的優(yōu)勢而設(shè)計(jì)的3D立體復(fù)合碳結(jié)構(gòu)作為硫的載體能夠構(gòu)建豐富的電化學(xué)反應(yīng)界面,在性能上顯示出優(yōu)勢,如石墨烯-多孔碳[43]、碳納米管-介孔碳[44]、石墨烯-納米纖維[45]等,典型代表是張強(qiáng)課題組[46-47]制備的S/graphene/CNT@ porouse carbon復(fù)合材料,如圖1所示,由于形成了“點(diǎn)-線-面”相結(jié)合的三維導(dǎo)電網(wǎng)絡(luò),避免了碳納米管的團(tuán)聚和石墨烯的堆疊問題,促進(jìn)電子在材料內(nèi)的快速傳導(dǎo),材料表現(xiàn)出優(yōu)異的倍率性能和循環(huán)穩(wěn) 定性[47]。
盡管以上導(dǎo)電碳材料與硫復(fù)合后在一定程度上改善了鋰硫電池的性能,但是碳材料直接和硫復(fù)合,一方面依靠其物理吸附的固硫能力有限;另一方面碳的疏水性使其難以和極性較強(qiáng)的正極放電產(chǎn)物硫化鋰形成較好的界面,不利于硫化鋰的沉積,影響了碳硫復(fù)合正極材料性能的高效發(fā)揮[48]。通過N、O、S、P、B等雜原子摻雜發(fā)展的化學(xué)改性碳,除了本身的物理吸附能力外,還具有一定的化學(xué)吸附能力,與高極性的多硫化物或者硫化鋰的結(jié)合力增強(qiáng),緩解了多硫化物的溶解、遷移和穿梭,減少了活性材料的流失,同時(shí)提供了利于硫化鋰沉積的界面[49]。能譜分析結(jié)合第一性原理計(jì)算表明,不同雜原子對應(yīng)不同的固硫機(jī)制。N原子主要是以吡啶型、吡咯型存在于碳材料上,這兩種類型的氮摻雜更容易與多硫化物形成化學(xué)鍵SLi…N;O原子則是以羰基、醚鍵和羥基等形式摻雜,O的孤對電子易與多硫化鋰中的Li+成鍵而固硫[1,49]。氧化石墨烯GO[50-51]、N-摻雜介孔碳[52]、N-摻雜石墨烯[53]、石墨化氮化碳g-C3N4[54]、N、S雙摻雜石墨烯[55]和納米碳纖維[56]等均顯示出對多硫離子良好的化學(xué)吸附能力,從而獲得穩(wěn)定的循環(huán)性能。其中不乏超長循環(huán)的數(shù)據(jù),如張躍鋼團(tuán)隊(duì)[51]報(bào)道的以CTAB修飾的氧化石墨烯-硫復(fù)合材料,在放電倍率高達(dá)6C、充電倍率為3C時(shí),循環(huán)達(dá)到1500周,且每周的衰減率僅為0.039%;該團(tuán)隊(duì)[53]制備的氮化石墨烯-硫復(fù)合材料S@NG在2C充放電倍率下循環(huán)2000周,每周的容量衰減率僅為0.028%。S@NG正極材料制備以及含氮功能基團(tuán)吸附多硫化鋰示意圖見圖2。
除了上述在碳材料上引入雜原子提供極性位點(diǎn)吸附多硫離子外,最近,研究者又發(fā)展了解決多硫離子穿梭效應(yīng)的新途徑。晏成林團(tuán)隊(duì)[58]以巰基化的還原氧化石墨烯為載體,通過硫與巰基化合物的反應(yīng),將硫鍵合到載體上,見圖3。在電化學(xué)反應(yīng)過程中只產(chǎn)生短鏈硫化鋰(Li2S3,Li2S2,Li2S)而無長鏈硫化鋰,因而杜絕了穿梭效應(yīng)的發(fā)生,得到了非常穩(wěn)定的循環(huán)性能。該材料在不加LiNO3的電解液中循環(huán)450次,容量保持率高達(dá)87%,庫侖效率高達(dá)99.5%。此工作將研究思路由原來的簡單吸附多硫離子拓展到通過引入某些特殊功能分子改變活性物的電化學(xué)反應(yīng)路徑來抑制穿梭效應(yīng),開辟了穩(wěn)定硫正極的新路徑。
1.2 納米金屬化合物/硫復(fù)合材料
為了進(jìn)一步增加材料對多硫離子的化學(xué)吸附能力,納米金屬化合物被引入硫正極材料中。近年來,通過納米金屬氧化物[59-60]、金屬硫化物[61-64]、金屬氮化物[65]、金屬碳化物[66]及有機(jī)金屬框架化合物[67]與多硫化鋰之間的極性相互作用或路易斯酸堿作用,將多硫離子限制在電極表面的化學(xué)固硫機(jī)制,成為新的研究熱點(diǎn)。某些過渡金屬化合物如Ti4O7[59,68]、Ti2C4[66]和 Co9S8[63]還能提供良好的電子導(dǎo)電性。許多課題組對金屬化合物的固硫機(jī)制進(jìn)行了深入研究,其中崔屹課題組和NAZAR課題組的工作更具有代表性。崔屹課題組[69]觀測到多硫化物優(yōu)先沉積在錫摻雜的氧化銦(ITO)表面而不是碳表面,為過渡金屬氧化物對多硫離子的化學(xué)吸附提供了直接的證據(jù)(圖4);揭示了某些絕緣性金屬氧化物催化Li2S電化學(xué)轉(zhuǎn)化的機(jī)理[59]:首先將多硫化鋰吸附在表面,之后靠其良好的表面擴(kuò)散能力使多硫離子的表面吸附和擴(kuò)散達(dá)到平衡,構(gòu)建了有利于Li2S的高效沉積的界面,在隨后的充電過程中,進(jìn)一步催化Li2S的分解和重新氧化生成多硫化鋰直至單質(zhì)硫;還提出金屬硫化物作為硫載體的幾個重要原則[62]:良好的電子導(dǎo)電性、對多硫化鋰的強(qiáng)吸附能力、促進(jìn)鋰離子傳輸性能、能夠控制Li2S的沉積、加速表面媒介的氧化還原過程及催化功能。NAZAR課題組[70-71]進(jìn)行了極性結(jié)構(gòu)與多硫化鋰之間結(jié)合能大小的排序,如圖5所示,大小順序?yàn)榻饘儆袡C(jī)框架化合物>金屬氧(硫)化物>N、O、S等雜原子摻雜碳>含N、O、S等元素的聚合物[1];還對某些金屬氧化物的固硫作用提出了不同的機(jī)制:通過硫代硫酸鹽的化學(xué)轉(zhuǎn)化固定多硫離子。在δ-MnO2納米片上,表面的Mn4+首先氧化生成,長鏈隨后插入中的S—S,形成(O3S——SO3)2–,以此方式將多硫離子固定在電極表面,并為Li2S的沉積提供更好的界面。此種作用與過渡金屬氧化物的氧化還原電位相關(guān),過高或過低都無效,只有對Li/Li+在2.40 V和3.05 V 區(qū)間范圍內(nèi)的MnO2和VO2有此作用[71]。這些開創(chuàng)性工作拓展了人們對于硫正極電化學(xué)反應(yīng)過程的認(rèn)知,并為載硫正極材料的設(shè)計(jì)提供了理論基礎(chǔ)。
研究者除了利用納米金屬化合物表面的極性位點(diǎn)對多硫化鋰產(chǎn)生化學(xué)吸附外,還通過結(jié)構(gòu)設(shè)計(jì)來物理限制硫的擴(kuò)散,穩(wěn)定電極結(jié)構(gòu)。如崔屹課題組[72]“蛋殼”結(jié)構(gòu)的TiO2納米空心球-硫復(fù)合材料的獨(dú)特設(shè)計(jì),如圖6所示,TiO2“蛋殼”起到限域反應(yīng)的作用,其空腔又為硫的體積膨脹提供了足夠的空間,因而獲得了優(yōu)異的性能:在0.5C倍率下,首周放電容量達(dá)到1030 mA·h/g,1000次循環(huán)容量每周的衰減率僅為0.033%。MnO2殼層包覆硫[73]及V2O5空心球與硫的復(fù)合材料[71]也因物理和化學(xué)固硫雙重作用而表現(xiàn)出良好的電化學(xué)性能。
1.3 聚合物/硫復(fù)合材料
聚合物尤其是導(dǎo)電聚合物具有一定的導(dǎo)電性、良好的成膜性、柔韌性、官能團(tuán)豐富等優(yōu)點(diǎn),能夠在一定程度上提高單質(zhì)硫的電化學(xué)活性、緩解由于硫電極在充放電過程中體積變化所產(chǎn)生的結(jié)構(gòu)應(yīng)力,并通過特殊官能團(tuán)和多硫離子的相互作用起到固硫的作用。除此之外,聚合物的聚合過程一般是在低于100 ℃下完成,可以對硫進(jìn)行原位修飾而不破壞其結(jié)構(gòu),可操作性強(qiáng),因此聚合物也可作為硫的載體[74-75]。聚合物與硫的復(fù)合主要有兩種形式:一種是形成“聚合物包硫”的核殼結(jié)構(gòu),如PTh/S[76]、PPY/S[77-78]、PVK/S[79]、PVP/S[80]、PANi/S[77,81]、PEDOT/S[77]等復(fù)合材料,主要是依靠聚合物殼層的物理限硫作用穩(wěn)定正極,顯示出較好的電化學(xué)性能,如圖7所示。其中導(dǎo)電聚合物包覆空心納米硫(如PANi/S、PEDOT/S、PPY/S)的結(jié)構(gòu)設(shè)計(jì),有效地解決了硫在充放電過程中體積變化引起的結(jié)構(gòu)破壞問題,獲得了優(yōu)異的循環(huán)性能。PEDOT/S中的O、S原子與多硫化鋰之間能夠形成較強(qiáng)的相互作用,因而固硫效果更好,循環(huán)性能更優(yōu)[77]。另一種是“硫包聚合物”的核殼結(jié)構(gòu),如將硫以熔融或化學(xué)沉積的方式復(fù)合到導(dǎo)電聚合物基體表面,這類導(dǎo)電聚合物主要包括PPY納米線、納米管等形成的網(wǎng)絡(luò)結(jié) 構(gòu)[82-85]、PANi納米管[86]及空心PANi球[87]等,聚合物在復(fù)合材料中起到導(dǎo)電劑、分散劑、吸附劑以及緩沖體積變化的作用,并為硫的沉積提供更好的基體。然而,與碳材料相比,導(dǎo)電聚合物的導(dǎo)電子能力有限,極片制作中仍需要額外添加較多的導(dǎo)電劑,因此實(shí)際應(yīng)用中并不適合單獨(dú)與硫復(fù)合使用,而應(yīng)充分發(fā)揮其能形成網(wǎng)絡(luò)結(jié)構(gòu)及表面成膜的優(yōu)勢,與碳材料或金屬化合物以某種形式復(fù)合作為硫的 載體。
綜上所述,3類材料各有優(yōu)缺點(diǎn):碳性材料輕質(zhì)、導(dǎo)電性好,但多孔結(jié)構(gòu)的物理吸附或包限硫的能力有限,且非極性的表面不利于極性Li2S的有效沉積,為增加界面極性引入的雜原子過多又會影響材料的電子導(dǎo)電性;金屬化合物表面極性位點(diǎn)豐富,理論上對多硫化鋰具有較強(qiáng)的化學(xué)吸附作用,并可能催化Li2S的電化學(xué)可逆轉(zhuǎn)化,但由于化學(xué)吸附是單分子層吸附,吸附量有限,當(dāng)材料硫含量較高時(shí),大多數(shù)多硫離子還是容易在濃差作用下擴(kuò)散進(jìn)入電解液中,固硫作用受到影響;聚合物的成膜性好,其極性官能團(tuán)構(gòu)筑的電極界面親硫性好,易于在硫顆粒表面包覆固硫,還易于形成有彈性的三維網(wǎng)絡(luò)穩(wěn)定極片結(jié)構(gòu),但導(dǎo)電能力較弱。因此,如何揚(yáng)長避短,綜合上述3類材料的優(yōu)勢而避免其各自的劣勢是設(shè)計(jì)新型正極材料的有效途徑。實(shí)際上,已有的報(bào)道已經(jīng)顯示了這種交叉復(fù)合方式的優(yōu)勢。如WANG等[88]制備的石墨烯包覆硫復(fù)合材料,在石墨烯與硫顆粒之間增加了PEG 鏈,這個類似“彈簧”的PEG 鏈可有效解決高硫含量時(shí)放電過程中硫的體積膨脹破壞材料結(jié)構(gòu)穩(wěn)定的問題;JOHN等[89-90]通過層層組裝技術(shù)在碳硫復(fù)合材料表面包覆了鋰離子選擇透過性聚合物納米殼層,對多硫離子的擴(kuò)散起到限制作用,如圖8所示,聚合物外殼層和內(nèi)核均摻有中孔碳,既起到導(dǎo)電子的作用,又能緩沖放電產(chǎn)物體積膨脹問題,材料顯示了高載硫下良好的性能;納米過渡金屬氧化物通常與導(dǎo)電碳復(fù)合作為硫的載體,如陶新永等[59]以木棉樹纖維為碳源和模板制備了表面修飾納米金屬氧化物的碳材料,制備過程如圖9所示,再與硫復(fù)合,制得兼具物理吸附、化學(xué)吸附及催化功能的S/MO/C復(fù)合材料;樓雄文等[91]將納米MnO2填充進(jìn)中空納米碳纖維中,作為硫的載體,制備了MnO2@HCF/S復(fù)合材料,綜合了納米過渡金屬氧化物和中空碳的優(yōu)勢,使材料表現(xiàn)出良好的穩(wěn)定性。
2.1 正極材料的性能評價(jià)問題
回顧鋰硫電池正極材料的發(fā)展歷程,早期的研究主要集中在各種碳性材料和聚合物對多硫離子的物理吸附或包限;隨著認(rèn)識的深入,發(fā)展到利用極性物質(zhì)或極性基團(tuán)對多硫離子的親和力即化學(xué)吸附來抑制多硫離子的擴(kuò)散;近年來,逐步認(rèn)識到改善硫化鋰的沉積狀態(tài)和提高其電化學(xué)可逆性的重要性,因而促進(jìn)Li2S均勻沉積和構(gòu)建可逆轉(zhuǎn)化界面的研究又成為新的關(guān)注點(diǎn);最近,硫正極的研究領(lǐng)域又有新的拓展,如引入特殊結(jié)構(gòu)分子來改變硫的電化學(xué)反應(yīng)路徑[57-58],對硫的電化學(xué)反應(yīng)過程的新解釋[92]以及引入新的技術(shù)手段更好地觀測鋰硫電池的電化學(xué)演變過程[93-94]。研究者對鋰硫電池正極的反應(yīng)過程認(rèn)識不斷加深,解決問題的手段越來越豐富,各種形式的復(fù)合材料層出不窮,好的電化學(xué)性能數(shù)據(jù)也不斷涌現(xiàn),那么鋰硫電池正極的問題解決了嗎?樂觀者認(rèn)為,鋰硫電池正極的問題已經(jīng)解決了,只需攻關(guān)負(fù)極,筆者對此的看法是,解決負(fù)極問題的確是推動鋰硫電池實(shí)用化的關(guān)鍵,但正極的問題仍然存在,如通過納米技術(shù)構(gòu)建正極材料的成本問題、可放大問題、環(huán)保問題,還有一個更基本的問題尚未解決:“到底什么材料是好的鋰硫電池正極材料?”,即鋰硫電池正極材料的評價(jià)標(biāo)準(zhǔn)到底是 什么?
材料性能的評價(jià)與測試條件密切相關(guān),而測試條件包羅萬象,包括充放電制度、極片的含硫量、單位面積載硫量、集流體的種類、電解液的種類及用量等。在鋰硫電池體系中,由于存在正極材料的放電中間產(chǎn)物溶解過程,電極活性物在充放電過程中會發(fā)生重新分布,因此極片的含硫量、單位面積載硫量及電解液用量對材料性能的影響至關(guān)重要,這是鋰硫電池的獨(dú)特之處。首先看極片含硫量、單位面積載硫量問題:增加極片的硫含量和厚度意味著多硫離子濃度梯度和空間分布發(fā)生變化,導(dǎo)致擴(kuò)散路徑和反應(yīng)動力學(xué)發(fā)生改變[95],因而在不同極片硫含量和單位面積硫載量條件下得到的材料的性能數(shù)據(jù)實(shí)際上沒有可比性。許多在低載硫、薄極片情況下得到的好結(jié)果往往在高載硫、厚極片條件下無法實(shí)現(xiàn),原因也在于此。目前,極片的含硫量、單位面積載硫量對性能的影響已經(jīng)逐漸引起人們的重視,而且也有基本的共識,如極片含硫應(yīng)大于70%,極片載硫應(yīng)大于4 mg/cm2 [96]。但在研究論文中,在此條件下的測試結(jié)果還不多見。
以10 A·h鋰硫軟包裝電池為例,采用常規(guī)的鋁塑膜、隔膜、極耳,按鋰負(fù)極過量100%設(shè)計(jì),分別將極片含硫量、極片單位面積載硫量以及電解液與硫的比例(E/S)與電池比能量進(jìn)行關(guān)聯(lián)得到曲線圖,見圖10,以直觀展示上述參數(shù)對電池比能量的影響。從圖10可得到以下信息:①提高硫的比容量是提高電池比能量的直接手段,硫的比容量每提高100 mA·h/g,電池的比能量即可提高20~30 W·h/kg;②如圖10(a)、10(b)所示,極片含硫量和極片單位面積載硫量越高,電池比能量越高。如果要設(shè) 計(jì)一個比能量為350 W·h/kg的電池,其極片含硫量和極片單位面積載硫量需要多少?由圖可知,在硫的比容量達(dá)到1100 mA·h/g、(E)/(S)=3.5的前提條件下,極片含硫量需大于70%,同時(shí)極片載硫量需大于8 mg/cm2(雙面),而現(xiàn)有的文獻(xiàn)報(bào)道數(shù)據(jù)難以達(dá)到此要求;③電解液用量對電池比能量的影響最為顯著。圖10(c)顯示,當(dāng)(E)/(S)>5時(shí),即便硫的比容量高達(dá)1400 mA·h/g,電池比容量也才能勉強(qiáng)達(dá)到350 W·h/kg,而當(dāng)(E)/(S)<2時(shí),則電池比能量可達(dá)到400 W·h/kg以上。可見,電解液用量對鋰硫電池比能量影響巨大,減少電解液用量是提升鋰硫電池比能量最具潛力的途徑。
受實(shí)驗(yàn)室條件的限制,電解液用量對鋰硫電池正極材料性能的影響還未引起足夠的重視。目前絕大多數(shù)鋰硫電池正極材料的電化學(xué)性能數(shù)據(jù)都是通過組裝扣式電池得到的??凼诫姵亟Y(jié)構(gòu)中存在“死空間”,電解液的用量難以減少,一般是硫的10倍以上,而鋰硫電池實(shí)用化要求電解液與硫的比例不能超過3.5∶1,所以考慮到電解液用量對性能的巨大影響,目前文獻(xiàn)中的數(shù)據(jù)并不能反映材料的真實(shí)性能。當(dāng)然,為了探索鋰硫電池的基本科學(xué)問題,這些工作是必要的,這些數(shù)據(jù)也是有價(jià)值的。
為了推動鋰硫電池的實(shí)用化,需要建立一個對正極材料更為客觀的評價(jià)標(biāo)準(zhǔn)。我們認(rèn)為至少有3點(diǎn)需考慮:①用軟包裝電池代替扣式電池進(jìn)行評價(jià);②極片單位面積載硫和極片物質(zhì)含硫百分比達(dá)到一定的量,如分別為4 mg/cm2、70%(質(zhì)量分?jǐn)?shù));③電解液與硫的質(zhì)量比為3~4。基于此標(biāo)準(zhǔn),對鋰硫電池正極材料的評價(jià)才會更加客觀與真實(shí)。
2.2 正極材料的構(gòu)建策略
好的正極材料如何構(gòu)建?如前文所述,正極材料的研究一般需考慮如下因素:提高電子導(dǎo)電性、抑制多硫離子的穿梭效應(yīng)、緩沖放電產(chǎn)物體積膨脹的影響、構(gòu)建Li2S均勻沉積界面、催化Li2S的電化學(xué)可逆轉(zhuǎn)化等,研究工作大多圍繞這些問題展開,也取得了很多成果,但我們認(rèn)為,有一個問題還未引起足夠重視,即正極離子通道的構(gòu)建問題。也有零星的文章對此工作有所涉獵,如石墨烯三維多孔集流體[97]、以中空碳纖維泡沫為集流體[98]及碳布為碳源制備多孔碳纖維集流體[99]的采用,獲得了高單位面積載硫下(>10 mg/cm2)的高容量及循環(huán)穩(wěn)定性。這些工作說明了離子通道構(gòu)建的重要性。而從電池實(shí)用化角度考慮,常規(guī)涂布法是更為可行的極片制備方式,如何在以常規(guī)涂布法制備的極片中構(gòu)建離子通道是鋰硫電池實(shí)用化面臨的基本問題。特別是在高載硫、高含硫的極片中,多硫離子濃度梯度大,空間分布變化大的情況下,離子通道的構(gòu)建及保持更顯其必要性。正極材料是正極的主體,在正極材料中造孔,來提供更多的鋰離子通道,并在循環(huán)過程中保證鋰離子通道的暢通,是實(shí)現(xiàn)鋰硫電池正極高性能化的有效途徑。
基于上述考慮,且材料硫含量需大于85%(質(zhì)量分?jǐn)?shù))的前提下,筆者的設(shè)計(jì)策略是:①選擇合適比表面和孔結(jié)構(gòu)的導(dǎo)電碳材料,通過接枝功能基、聚合物或(和)沉積納米過渡金屬化合物改善界面親硫性,提供高活性的電化學(xué)反應(yīng)界面;②通過造孔劑的應(yīng)用,構(gòu)建具有豐富離子通道的材料微結(jié)構(gòu),解決放電產(chǎn)物的體積膨脹問題,保證離子擴(kuò)散的通暢;③通過硫復(fù)合方式的選擇及改進(jìn),實(shí)現(xiàn)硫的均勻分散及材料微結(jié)構(gòu)的穩(wěn)定;④外殼層利用聚合物的包覆作用和過渡金屬氧化物的化學(xué)親和力限制多硫離子的擴(kuò)散。筆者團(tuán)隊(duì)早期制備了網(wǎng)絡(luò)核殼結(jié)構(gòu)正極材料,它有3層結(jié)構(gòu),中心核(內(nèi)核)是納米碳顆粒,其上利用碳材料的類稠環(huán)芳烴的反應(yīng)能力,將官能團(tuán)引入到碳粒上[100-101],或者直接引入聚合 物[102-103],聚合物在碳粒表面伸展、交聯(lián),形成網(wǎng)絡(luò)結(jié)構(gòu),為復(fù)合硫提供良好的基體,再將單質(zhì)硫復(fù)合到網(wǎng)絡(luò)結(jié)構(gòu)中,同時(shí)引入造孔劑,構(gòu)成具有豐富離子通道的網(wǎng)絡(luò)雙核殼結(jié)構(gòu)復(fù)合材料的第二層(外核),復(fù)合過程同時(shí)也是造孔過程;最外層(外殼)包覆層導(dǎo)電聚合物。其代表為C-PANI-S@PANI[103],該材料在載硫6 mg/cm2條件下,0.2 C充放電,容量為1100 mA·h/g,循環(huán)100周保持76%,迄今為止,仍不失為高載硫條件下的較佳數(shù)據(jù)(圖11)。最近,我們對碳內(nèi)核進(jìn)行了優(yōu)化,將過渡金屬化合物的作用引入其中,提高了界面親硫性及反應(yīng)活性。對硫的復(fù)合方式及外包覆層的成分也進(jìn)行了研究,在外包覆層中引入了過渡金屬化合物,并對殼層的結(jié)構(gòu)進(jìn)行了設(shè)計(jì),使其能夠保證鋰離子的暢通,形貌如圖12所示。得到的材料含硫量為88%(質(zhì)量分?jǐn)?shù)),振實(shí)密度為0.5 g/mL,電子電導(dǎo)為0.18 S/cm。以軟包裝電池測試,極片載硫?yàn)?.2 mg/cm2,極片含硫75%(質(zhì)量分?jǐn)?shù)),電解液與硫的質(zhì)量比為3.3∶1,在0.1C充電、0.2C放電時(shí),首放容量為1150 mA·h/g,循環(huán)65周保持80%;在0.4 C充放電時(shí),放電比容量達(dá)到1100 mA·h/g,材料表現(xiàn)出良好的循環(huán)穩(wěn)定和倍率性能。
近年來,鋰硫電池正極材料的發(fā)展取得了很大進(jìn)步。對其主要問題—多硫離子的擴(kuò)散抑制提出了更加有效的解決措施,由最初簡單的物理吸附與阻隔作用拓展到引入與多硫化鋰有化學(xué)親和作用的極性物質(zhì)和極性基團(tuán),研究也進(jìn)一步深入到界面電化學(xué)催化轉(zhuǎn)化過程,在此基礎(chǔ)上,材料的性能得到了很大提升。盡管如此,還有一些問題需要引起足夠重視,如在極片高單位面積載硫、高含硫條件下材料性能的提高,電解液用量對材料性能的影響及正極材料實(shí)用性客觀評價(jià)標(biāo)準(zhǔn)的建立問題等。
提高硫的利用率一直是鋰硫電池研究的主題,也是實(shí)現(xiàn)鋰硫電池高比能量的最直接的手段。目前通過提高材料電子導(dǎo)電性和抑制多硫離子穿梭的技術(shù)途徑可以使硫的利用率達(dá)到75%左右,但仍然還有較大的容量提升空間,需要開辟新的技術(shù)途徑。一些改變硫的電化學(xué)反應(yīng)路徑的物質(zhì)[104]及氧化還原中間體的引入技術(shù)值得關(guān)注[105]。
單質(zhì)硫正極材料放電中間產(chǎn)物的溶解需要大量電解液,負(fù)極鋰對電解液的消耗也需要補(bǔ)償,使得鋰硫電池中電解液用量達(dá)到電池總重的50%,遠(yuǎn)大于鋰離子電池的15%,成為制約鋰硫電池比能量提高的主要障礙。因此,要獲得高比能量的鋰硫電池,必須大大減少電解液用量,其重要性不亞于硫正極的構(gòu)建及鋰負(fù)極保護(hù)工作,此問題應(yīng)引起大家足夠的重視。我們認(rèn)為有4種途徑可能實(shí)現(xiàn)電解液的減量:一是采用固態(tài)或凝膠電解質(zhì)[106-109];二是采用非溶解機(jī)制的含硫正極材料[110-116];三是開發(fā)改變硫的電化學(xué)反應(yīng)路徑的新電解液體系[117-118];四是在現(xiàn)有體系中,通過對鋰表面的穩(wěn)定化處理,減少鋰負(fù)極對電解液的消耗[119-120]。這些工作目前都有不同程度的開展,尤其是非溶解機(jī)制含硫正極材料的研究已經(jīng)取得了較大進(jìn)展,后續(xù)筆者將進(jìn)行專題綜述。
[1] PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 132: 1-11.
[2] OGOKE O, WU G, WANG X L, et al. Effective strategies for stabilizing sulfur for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5: 448-469.
[3] LIU X, HUANG J Q, ZHANG Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017, doi: 10.1002/adma.201601759.
[4] BUONOMENNA M G, BAE J. Lithium-sulfur batteries: Overview and advances[J]. Nanoscience& Nanotechnology-Asia, 2016, 6: 28-48.
[5] WILD M, NEILL L O, ZHANG T, et al. Lithium sulfur batteries, a mechanistic review[J]. Energy & Environmental Science, 2015, 8: 3477-3494
[6] BARCHASZ C, FLORIAN M, DUBOC C, et al. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification[J]. Alloin, Anal. Chem., 2012, 84(9): 3973-3980.
[7] NELSON J, MISRA S, YANG Y, et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries[J]. Journal of American Chemical Society, 2012, 134(14): 6337-6343.
[8] CANAS N A, WOLF S, WAGNER N, et al.X-ray diffraction studies of lithium-sulfur batteries[J]. Journal of Power Sources, 2013, 226: 313-319.
[9] YANG Y, ZHENGB G Y, CUI Y, et al. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032.
[10] FU C Y, GUO J C. Challenges and current development of sulfur cathode in lithium-sulfur battery[J]. Current Opinion in Chemical Engineering, 2016, 13: 53-62.
[11] LIANG J, SUN Z H, LI F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement[J]. Energy Storage Materials, 2016: 76-106.
[12] WANG J, NIE P, DING B, et al. Biomass derived carbon for energy storage device[J]. Journal of Materials Chemistry A, 2017, 5: 2411-2428.
[13] 張強(qiáng), 程新兵, 黃佳琦, 等. 碳質(zhì)材料在鋰硫電池中的應(yīng)用研究進(jìn)展[J]. 新型碳材料, 2014, 29(4): 242-264.
ZHANG Q, CHENG X B, HUNG J Q, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4): 242-264.
[14] REHMAN S, KHAN K, ZHAO Y F, et al. Nanostructured cathode materials for lithium-sulfur batteries: Progress, challenges and perspectives[J]. Journal of Materials Chemistry A, 2017, 5: 3014-3038.
[15] XIN S, GU L, ZHAO N H, et al. Smaller sulfur molecules promisebetter lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45) : 18510-18513.
[16] ZHANG W, QIAO D, PAN J, et al. A Li+-conductive microporous carbon-sulfur composite for Li-S batteries[J]. Electrochimica Acta, 2013, 87: 497-502.
[17] WU H B, WEI S, ZHANG L, et al. Embedding sulfur in MOF derived microporous carbon polyhedrons for lithium-sulfur batteries[J]. Chemistry-A European Journal, 2013, 19(13): 10804-10808.
[18] 王維坤, 余仲寶, 王安邦, 等. 鋰硫二次電池研究的進(jìn)展與思路[C]//14次全國電化學(xué)會議論文集, 揚(yáng)州, 2007.
WANG W K, YU Z B, WANG A B, et al. Research progress and thought in lithium-sulfur batteries[C]//The 14th National Conference of Electrochemistry, Yangzhou, 2007.
[19] JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
[20] CHEN S R, ZHAI Y P, XU G L, et al. Ordered mesoporous carbon/ sulfur nanocomposite of high performances as cathode for lithium-sulfur battery[J]. Electrochimica Acta, 2011, 56(26): 9549-9555.
[21] LIANG C, DUDNEY N J, HOWE J Y. Hierarchically structured sulfur/carbonnanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21(19) : 4724-4730.
[22] WANG D W, ZHOU G M, LI F, et al. A microporous- mesoporouscarbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries[J]. Physical Chemistry Chemical Physics, 2012, 14(24) : 8703-8710.
[23] WEI S C, ZHANG H, HUANG Y Q, et al. Pig bone derived hierarchicalporous carbon and its enhanced cycling performance of lithium-sulfur batteries[J]. Energy & Environmental Science, 2011, 4(3) : 736-740.
[24] ZHAO S R, LI C M, WANG W K, et al. A novel porous nanocompositeof sulfur /carbon obtained from fish scales for lithiumsulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(10) : 3334-3339.
[25] JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Porous hollowcarbon@ sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2011, 50(26) : 5904-5908.
[26] ZHANG C F, WU H B, YUAN C Z, et al. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2012, 51(38): 9592- 9595.
[27] ZHANG K, ZHAO Q, TAO Z L, et al. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance[J]. Nano Research, 2013, 6(1): 38-46.
[28] SUN Q, HE B, ZHAN X Q, et al. Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries[J]. Acs Nano, 2015, 9: 8504-8513.
[29] ZHENG G Y, YANG Y, CHA J J, et al. Hollow carbon nanofiberencapsulatedsulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011, 11(10) : 4462-4467.
[30] HAN S C, SONG M S, LEE H, et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries[J]. Journal of Electrochemical Society, 2003, 150: 889-893.
[31] LI Z, YUAN L, YI Z, et al. Free-standing polyelectrolyte membranes made of chitosan and alginate[J]. Nanoscale, 2014, 6: 1653-1660.
[32] DORFLER S, HAGEN M, ALTHUES H, et al. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries[J]. Chemical Communication, 2012, 48: 4097-4099.
[33] YUAN L, YUAN H, QIU X, et al. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries[J].Journal of Power Sources, 2009, 189: 1141-1146.
[34] ZHANG S M, ZHANG Q, HUANG J Q, et al. Composite cathodes containing SWCNT@S coaxial nanocables: Facile synthesis, surface modification, and enhanced performance for Li-ion storage[J]. Particle & Particle Systems Characterization, 2013, 30(2): 158-165.
[35] CHENG X B, HUANG J Q, ZHANG Q, et al. The ultra-high volumetric energy density lithium-sulfur battery[J]. Nano Energy, 2014, 4: 65-72.
[36] LI X, RAO M, CHEN D, et al. Sulfur supported by carbon nanotubes and coated with polyaniline: Preparation and performance as cathode of lithium-sulfur cell[J]. Electrochim. Acta, 2015, 166: 93-99.
[37] MOON S, JUNG Y H, JUNG W K, et al. You have full text access to this content encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries[J]. Advanced Material, 2013, 45: 6547-6553.
[38] LI N W, ZHANG M B, LU H L, et al. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating[J]. Chemical Communication, 2012, 48: 4106-4108.
[39] ZHOU G M, PEI S F, LI L, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J].Advanced Materials, 2013, 26(4): 625-631.
[40] HUANG J Q, LIU X F, ZHANG Q, et al. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from-40℃ to 60℃[J]. Nano Energy, 2013, 2: 314-321.
[41] ZHOU G M, YINL C, WANG D W, et al. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries[J]. Acs Nano, 2013, 7(6): 5367-5375.
[42] WANG H L, YANG Y, LIANG Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letter, 2011, 11(7): 2644-2647.
[43] YANG X, ZHANG L, ZHANG F, et al. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performancelithium-sulfur batteries[J]. Acs Nano, 2014, 8(5): 5208-5215.
[44] SUN Q, FANG X, WENG W, et al. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries[J]. Angewandte Chemie, 2015, 127: 10685- 10690.
[45] LU S, CHENG Y, WU X, et al. Significantly improved longcycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers[J]. Nano Letters, 2013, 13(6): 2485-2489.
[46] ZHAO M Q, LIU X F, ZHANG Q, et al. Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li-S batteries[J]. Acs Nano, 2012, 6(12) : 10759-10769.
[47] PENG H J, HUANG J Q, ZHAO M Q, et al. Nanoarchitectured grapheme/CNT@ porous carbon with extraordinary electricalcon ductivity and interconnected micro /mesopores for lithiumsulfur batteries[J]. Advanced Functional Materials, 2014, 24 (19) : 2772-2781.
[48]李宛飛, 劉美男, 王健, 等. 化學(xué)改性碳在鋰硫電池中的研究進(jìn)展[J]. 物理化學(xué)學(xué)報(bào), 2017, 33(1): 165-182
LI W F, LIU M N, WANG J, et al. Progress of lithium/sulfur batteries based on chemically modified carbon[J]. Acta Physica- Chimica Sinica, 2017, 33(1): 165 -182.
[49] ZHANG S S. Heteroatom-doped carbons: Synthesis, chemistry and application in lithium/sulphurbattery[J]. Inorganic Chemistry Frontiers, 2015, 2(12): 1059-1069.
[50] JI L, RAO M, ZHENG H, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2011, 133(46): 18522-18525.
[51] SONG M K, ZHANG Y G, CAIMS J E. A long-life, high-rate lithium/sulfur cell: A multifaceted approach to enhancing cell performance[J]. Nano Letters, 2013, 13(12): 5891-5899.
[52] SONG J, XU T, GORDIN M, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Advanced. Functional Material, 2014, 24: 1243-1250.
[53] QIU Y C, LI W F, ZHAO W, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters, 2014, 14(8): 4821-4827.
[54] PANG Q, NAZAR L F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. Acs Nano, 2016, 10(4): 4111-4118.
[55] WANG J, CHENG S, LI W F, et al. Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathodemulti-ion modulation[J]. Journal of Power Sources, 2016, 321: 193-200.
[56] PANG Q, TANG J, HUANG H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries[J]. Advanced Materials, 2015, 27: 6021-6028.
[57] HUA W, ZHI Y, NIE H, et al. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries[J]. Acs Nano, 2017, 11(2): 2209-2218.
[58] XU N, QIAN T, LIU X, et al. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates[J]. Nano Letters, 2016, 17(1): 538-543.
[59] TAO X, WANG J, LIU C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016, 7: doi: 10.1002/adma.201601759.
[60] PANG Q, KENDUN D, CUISINIER M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphurbatteries[J]. Nature Communications, 2014, 5: 4759-4768.
[61] SH E, WEI Z, HO Y, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nature Communications, 2014, 5: doi:10.1038/ncomms6017.
[62] GUANG M Z, HONG Z T, YANG J, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proceedings of the National Academy of Sciences, 2017, 5: 840-845.
[63] PANG Q, KUN D, NAZAR L F. A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries[J]. Material Horizons, 2016, 3(2): 130-136.
[64] YUAN Z, PENG H J, TING Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilichosts[J]. Nano Letters, 2016, 16(1): 519-527.
[65] CUI Z, ZU C, ZHOU W, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(32): 6926-6931.
[66] LIANG X, GARSUCH A, NAZAR L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2015, 54(13): 3907-3911.
[67] REZAN D C, MORCRET T E, MATHI E U, et al. Cathode composites for Li-S batteries via the use of oxygenated porous architectures[J]. Journal of American Chemical Society, 2011, 133(40): 16154-16160.
[68] TAO X, WANG J, YING Z, et al. Strong sulfur binding with conducting magnéli-phase TiO2n–1nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014, 14(9): 5288-5294.
[69] YAO H, ZHENG G, HSU P, et al. Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface[J]. Nature Communications, 2014, 5: 3943-3952.
[70] LIANG X, HART C, PANG Q, et al. A highly efficient polysulphide mediator for lithium-sulphurbatteries[J]. Nature Communications, 2015, 6: 5682-5690.
[71] LIANG X, KWOK C Y, MARZANO F L, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “goldilocks” principle[J]. Advanced Energy Materials, 2015, 6: doi: 10.1002/aenm.201501636.
[72] SHE Z W, LI W, CHA J J, et al.Sulphur-TiO2yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4: 1331-1337.
[73] WANG X, LI G, ZHANG Y, et al. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries[J]. Energy& Environmental Science, 2016, 9(8): 2533-2538.
[74] 陳人杰, 趙騰, 李麗, 等. 高比能鋰硫電池正極材料[J]. 中國科學(xué): 化學(xué), 2014, 44(8): 1298-1312.
CHEN R, ZHAO T, LI L, et al. Cathode materials for high-specific-energy Li-S batteries[J]. Scientia Sinica(Chimica), 2014, 44 (8): 1298-1312.
[75] WANG F, WU X W, LI C Y, et al. Nanostructured positive electrode materials for post-lithium ion batteries[J]. Energy&Environmental Science, 2016, 9: 3570-3611.
[76] WU F, CHEN J, CHEN R, et al. Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2011, 115: 6057-6063.
[77] LI W, ZHANG Q, ZHENG G, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance[J]. Nano Letters, 2013, 13: 5534-5540.
[78] DONG Z, ZHANG J, ZHAO X Y, et al. Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li-S batteries[J]. Rsc Advances, 2013, 3(47): 24914-24917.
[79] HUANG L, CHENG J L, LI X D, et al.Sulfur quantum dots wrapped by conductive polymer shell with internal void spaces for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(7): 4049-4057.
[80] LI W, ZHENG G, YANG Y, et al. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach[J]. Proceeding of the National Academy of Sciences, 2013, 110: 7148-7153.
[81] ZHOU W D, YU Y C, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2013, 135(44): 16736-16743.
[82] SUN M M, ZHANG S C, AJIANG T, et al. Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries[J]. Electrochemistry Communications, 2008, 10: 1819-1822.
[83] ZHANG Y G, BAKENOV Z, ZHAO Y, et al. One-step synthesis of branched sulfur/polypyrrolenanocomposite cathode for lithium rechargeable batteries[J]. Journal of Power Sources, 2012, 208: 1-8.
[84] LIANG X, WEN Z Y, LIU Y, et al. Preparation and characterization of sulfur-polypyrrole composites with controlled morphology as high capacity cathode for lithium batteries[J]. Solid State Ionics, 2011, 192: 347-350.
[85] LIANG X, LIU Y, WEN Z Y, et al. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries[J]. Journal of Power Sources, 2011, 196: 6951-6955.
[86] XIAO L, CAO Y, XIAO J, et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Advanced Materials, 2012, 24: 1176-1181.
[87] WEI P, FAN M Q, CHEN H C, et al. Enhanced cycle performance of hollow polyaniline sphere/sulfur composite in comparison with pure sulfur for lithium-sulfur batteries[J]. Renewable Energy, 2016, 86: 148-153.
[88] WANG H L, YANG Y, LIANG Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7): 2644-2647.
[89] CLAUDIU B, JOHN M, ADRIAN L. A layer-by-layer supramolecular structure for a sulfur cathode[J]. Energy & Environmental Science, 2016, 9: 992-998.
[90] NAOKI O, CLAUDIU B, UCUI H, et al. The design of nanostructured sulfur cathodes using layer by layer assembly[J]. Energy&Environmental Science, 2016, 9: 1668-1673.
[91] LI Z, ZHANG J T, LOU X W. Hollow carbon nanofibers filled with MnO2nanosheets as efficient sulfur hosts for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2015, 53: 12886-12890.
[92] YU B C, JUNG J W, PARK K, et al. A new approach for recycling waste rubber products in Li-S batteries[J]. Energy & Environmental Science, 2017, 10: 86-90.
[93] KAVCIC M, BUCAR K, PETRIC M, et al. Operando resonant inelastic X-ray scattering: An appropriate tool to characterize sulfur in Li-S batteries[J]. The Journal of Physical Chemistry, 2016, 120(43): 24568-24576
[94] WUJCIK K H, WANG D R, PASCAL T A, et al.X-ray absorption spectroscopystudies of dischargereactions in a thick cathode of a lithium sulfur battery[J]. Journal of the Electrochemical Society, 2017, 164 (2): A18-A27.
[95] XIAO J. Understanding the lithium sulfur battery system at relevant scales[J]. Advanced Energy Materials, 2015, 5: doi: 10.1002/ aenm.201501102.
[96] HAGEN M, HANSELMANN D, AHLBERCHT K, et al. Lithium- sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells[J]. Advanced Energy Materials, 2015, 5(16): doi: 10.1002/aenm.201401986.
[97] ZHOUG G, LIA L, MA C Q, et al. A grapheme foam electrode with high sulfur loading for flexible and highenergy Li-S batteries[J]. Nano Energy, 2014, 11: 356-365.
[98] FANG R P, ZHAO S Y, HOU P X, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials, 2016, 28: 3374-3382.
[99] MIAO L X, WANG W K,YUAN K G, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth-sulfur material[J]. Chemical Communications, 2017, 5: 3014-3038.
[100] ZHANG C Y, WANG W K, WANG A B, et al. Effect of carbon core grafting on the properties of carbon-sulfur composite for lithium/sulfur battery[J]. Journal of the Electrochemical Society, 2015,162 (6): 1067-1071.
[101] ZENG F L, YUAN K G, WANG A B, et al. Enhanced Li-S batteries using cation-functionalized pigment nanocarbon in the core-shell structure composite cathode[J]. Journal of Materials Chemistry A, 2017: 1-9.
[102] MIAO L X, WANG W K, WANG A B, et al. A high sulfur content composite with core-shell structure as cathode material for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1: 11659-11664.
[103] WANG M J, WANG W K, WANG A B, et al. A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries[J]. Chemical Communication, 2013, 49: 10263-10265.
[104] HUA W, YANG Z, NIE H, et al. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries[J]. Acs Nano, 2017, 11(2): 2209-2218.
[105] CHOI W, IM D, PARK M S, et al. Keggin-type polyoxometalates as bidirectional redox mediatorsfor rechargeable batteries, electrochemistry[J]. Research Gate, 2016, 84(11): 882-886.
[106] NAGATA H, CHIKUSA Y. An all-solid-state lithiumesulfur battery using two solid electrolytes having different functions[J]. Journal of Power Sources, 2016, 329: 268-272.
[107] LIU K, LIN Y, JAN D. et al. Study of sucrose based room temperature solid polymer electrolyte for lithium sulfur battery[J]. Journal of the Electrochemical Society, 2017,164 (2): 447-452.
[108] MA Q, QI X, TONG B, et al. Novel Li[(CF3SO2) (-C4F9SO2) N]-based polymer electrolytes for solidstate lithium batteries with superior electrochemical performance[J]. Acs Applied Materials & Interfaces, 2016, 8(43): 29705-29712.
[109] NAGATA H, CHIKUSA Y. All-solid-state lithium-sulfur battery with high energy and power densities at the cell level[J]. Energy Technology, 2016, 4: 484-489.
[110] WANG J, YANG J, XIE J, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Material, 2002, 14: 963-965.
[111] ZHANG B, QIN X, LI G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3: 1531-1537.
[112] LIU Y G, WANG W K, WANG A B, et al. Effect of vapor pressure on performance of sulfurized polyacrylonitrile cathodes for Li/S batteries[J]. Rsc Advances, 2016, 6: 106625-106630.
[113] TAKEUCHI T, KOJIMA T, KAGEYAMA H, et al. High capacity sulfurized alcohol composite positive electrode, materials applicable for lithium sulfur batteries[J]. Journal of the Electrochemical Society, 2017,164 (1): 6288-6293.
[114] ZHANG S S. Sulfurized carbon: A class of cathode materials for high performance of lithium/sulfur batteries[J]. Frontiers in Energy Research, 2013, 1: 9.
[115] FREY M, ZENN R K, WARNEKE S,et al. Easy accessible, textile fiber-based sulfurized, poly(acrylonitrile) as Li/S cathode material-correlating electrochemical performance with morphology and structure[J]. Acs Energy Letters, 2017, 2: 595-604.
[116] DUAN B, WANG W K, WANG A B, et al. Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1: 13261-13267.
[117] CHEN S, GAO Y, YU Z, et al. High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte[J]. Nano Energy, 2017, 31: 418-423.
[118] CUISINIER M, CABELGUEN P E, ADAMS B D, et al. Unique behaviour of nonsolvents for polysulphidesin lithium-sulphur batteries[J]. Energy & Environmental Science, 2014, 7: 2697-2705.
[119] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600445.
[120] CHEN X, HOU T Z, LI B, et al. Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode[J]. Energy Storage Materials, http://dx.doi.org/ 10.1016/j.ensm.2017.01.003.
Development and strategy for cathode materials of advanced lithium sulfur batteries
,,,
(Institute of Chemical Defense, Beijing 100191, China)
Lithium-sulfur battery system possesses high capacity and high energy density in theory, but which cannot be realized fully due to the insulating nature of the cathode material itself and the dissolution of its intermediate products. The cycle performances of lithium-sulfur battery are also deteriorated owing to these disadvantages. Modification of the cathode material is the major approach to address the issues described above. Here, combining the polysulfides limiting mechanism, we give a brief review of recent progress on the cathode materials of lithium-sulfur battery, which are classified into three kinds, including nano-carbon/sulfur composites, polymer/sulfur composites and nano-metal compound/sulfur composites, list the representative work, and review the advantages/disadvantages of various cathode materials. From the practical point of view, we suggest that the evaluating to the performances of the cathode materials should be related with some special conditions, such as the sulfur loading, sulfur content of cathode, and the electrolyte amount in battery. Furthermore, we explain the design strategy for high performance cathode materials. It is pointed out that the high electrolyte amount is the key factor which restricts the further enhancement of the specific energy of lithium sulfur battery. At last, the development trend of lithium sulfur battery is prospected.
lithium sulfur battery; cathode composites; nano-cabon materials; polymer; nano-metal compounds
10.12028/j.issn.2095-4239.2017.0017
TM 911;O 646;TQ 125.1
A
2095-4239(2017)03-331-14
2017-03-05;
2017-04-10。
國家重點(diǎn)研發(fā)計(jì)劃“新能源汽車”專項(xiàng)(2016YFB0100200)。
王維坤(1974—),女,副研究員,主要研究方向?yàn)殇嚵螂姵?,E-mail:wangweikun2002@163.com;
王安邦,高級工程師,主要研究方向?yàn)槟茉床牧?,E-mail:wab_wang2000@aliyun.com。