劉燦,歐啟水
(福建醫(yī)科大學附屬第一醫(yī)院檢驗科,福州 350005)
·綜述·
HBV基因突變及其臨床意義研究進展
劉燦,歐啟水
(福建醫(yī)科大學附屬第一醫(yī)院檢驗科,福州 350005)
HBV以準種形式存在患者體內,不同基因區(qū)的準種變化具有明顯的異質性,其對疾病的診斷、治療及轉歸均有一定影響。理解HBV突變及其改變的分子及病理特征,有助于實現(xiàn)不同乙肝感染患者的分層管理,促進更精準的個體化治療。該文就HBV基因突變及其臨床意義研究進展作一綜述。
HBV;基因;突變;臨床意義
HBV為部分雙鏈環(huán)狀嗜肝DNA病毒,基因組含4個部分重疊的開放讀碼框(open reading frame,ORF),即前-S/S區(qū)、前-C/C區(qū)、P區(qū)和X區(qū)。HBV侵入機體后脫衣殼形成松弛環(huán)狀DNA(relaxed circular DNA,rcDNA),進入靶細胞核內,在DNA聚合酶作用下合成共價閉合環(huán)狀DNA(covalently closed circular DNA,cccDNA),再經過RNA聚合酶轉錄成各種大小不同的mRNA,其中前基因組RNA(pregenomic RNA,pgRNA)在HBV逆轉錄酶作用下合成完整的HBV DNA,其他mRNA則翻譯成病毒的各種蛋白質成份(見圖1)[1]。根據HBV基因組序列差異性>8%和S基因序列差異性>4%,可將HBV區(qū)分為至少10個基因型(A~J型)及若干個基因亞型,我國主要以B、C基因型感染為主[2]。然而,由于HBV逆轉錄過程缺乏嚴格的校正機制,每104~105核苷酸就會出現(xiàn)1個突變。因此,每一個患者體內的病毒構成并不均一,而是由HBV基因序列存在微小差異的多種病毒株組成,并始終處于動態(tài)變化過程中,即以準種(quasispecies)形式存在[3]。HBV準種的異質性變化包括復雜性和多樣性改變[4],不同基因型HBV的準種異質性變化對疾病的診斷、治療及轉歸均有一定的影響。本文就HBV不同基因區(qū)的突變、抗病毒療效及臨床轉歸的關系等作一綜述。
注:本圖在文獻[1]基礎上修改而成;NTCP,鈉離子/?;悄懰峁厕D運多肽;rcDNA,松弛環(huán)狀DNA;cccDNA,共價閉合環(huán)狀DNA;pgRNA,前基因組RNA。
圖1 HBV感染流程
HBV前-S/S區(qū)基因包括preS1區(qū)、preS2區(qū)和S區(qū),分別有各自的起始密碼子,但共用一個終止密碼子[5](見圖2A)。前-S/S區(qū)基因主要編碼3種包膜蛋白:大蛋白、中蛋白和主蛋白,分別又稱L、M和S蛋白。preS1因基因亞型的不同而造成編碼氨基酸長度不固定,由108至126個氨基酸構成,此區(qū)域包含與肝細胞結合受體鈉離子/?;悄懰峁厕D運多肽(Na+/taurocholate cotransporting polypeptide, NTCP)的結構域,在病毒感染進入細胞中起重要作用[6]。preS2由55個氨基酸組成,與T、B淋巴細胞免疫表位識別有關[7]。S區(qū)基因由226個氨基酸組成,包括N端區(qū)(aa1~98)、主要親水區(qū)(major hydrophilic region,MHR,aa99~169)和C端區(qū)(aa170~226),負責編碼HBsAg,是病毒包膜蛋白的主要抗原區(qū)域[7]。
前-S序列是整個HBV基因組中異質性最高的區(qū)域,突變類型包括替換、缺失和插入等多種形式,見表1。相對于B基因型,preS1/preS2區(qū)突變更常發(fā)生于HBV C型感染患者[5]。S區(qū)基因突變主要集中在MHR,發(fā)生在“a”決定區(qū)(aa124~147,能誘導機體針對所有HBV亞型產生保護性應答的區(qū)域)的突變,可改變HBsAg的空間構象引起抗原性質改變,無法被抗HBs抗體中和,成為免疫逃逸突變;發(fā)生在“a”決定區(qū)以外的突變,除了發(fā)生免疫逃逸外,還常常影響肝臟疾病進展及核苷(酸)類似物(NAs)耐藥的發(fā)生,見表1。前-S/S區(qū)基因突變也會對臨床HBsAg檢測造成影響[8]。如產生的HBsAg無法被商品化試劑檢出,容易出現(xiàn)HBsAg/抗HBs抗體雙陽性的結果,甚至造成隱匿性肝炎(occult hepatitis B virus infection,OBI)的發(fā)生[9]。另一方面,不同的檢測系統(tǒng)對突變株的檢測能力不一[10]。Servant-Delmas等[11]比較了13種商品化試劑檢測HBsAg的結果,發(fā)現(xiàn)對不同類型突變株不同試劑檢測結果間存在差異,其總體檢出率從62.9%~97.9%不等。因此,當臨床對HBsAg檢測結果持有疑議時,應盡可能采用另一種方法進行復檢。
S區(qū)基因與HBV逆轉錄酶區(qū)基因重疊,有研究利用二代測序平臺(next generation sequencing,NGS)如超深焦磷酸測序(ultra-deep pyrosequencing, UDPS)等在NAs治療患者中發(fā)現(xiàn)了一些新的低比例(0.13%~0.17%)突變位點,如sW156stop、sW163stop、sW165stop和sW191stop等[12-13],會導致HBsAg合成缺陷。然而,這些低比例突變的確定臨床意義目前尚不明了。
注:A,前-S/S區(qū)基因結構; B,前-C/C區(qū)基因結構及編碼產物; C,HBV P區(qū)基因結構;D,HBV X區(qū)基因結構;nt,核苷酸;rt,逆轉錄酶;aa,氨基酸;MHR區(qū),主要親水區(qū);NRD負向調控原件。
圖2 HBV各基因區(qū)結構
注:*,終止密碼;突變堿基前未加“nt”均代表氨基酸位點(全文同)。
HBV前-C/C區(qū)基因依據各自的起始密碼子,在基本核心啟動子(basal core promoter,BCP)引導下,轉錄成preC mRNA和pgRNA,前者翻譯成前核心蛋白和核心蛋白,進而剪切成HBeAg和HBcAg[5](圖2B)。文獻報道HBV前-C/C區(qū)基因的異質性常發(fā)生在BCP和前-C區(qū),見表2。BCP和前-C區(qū)突變會促進HBeAg血清學轉換,因此早期檢出BCP和前-C區(qū)突變可以預測HBeAg的血清學轉換[24]。與HBeAg陽性患者相比,HBeAg陰性患者更易發(fā)生前-C區(qū)突變,而且這些突變并不引起DNA拷貝數的變化,但與肝臟疾病進展密切相關[25]。有研究顯示,BCP/前-C區(qū)突變可能對抗病毒藥物具有更高的敏感性[26-27],但如果BCP/前-C突變聯(lián)合前-S1/S2缺失,往往會導致更嚴重的肝臟疾病如暴發(fā)性肝炎和HCC的發(fā)生[28]。而且,BCP/前-C區(qū)突變與基因型相關,好發(fā)于HBV基因型B和D感染的患者[29]。
表2 常見BCP、前-C/C區(qū)突變及臨床影響
最近有研究利用高靈敏UDPS技術,分析BCP、前-C/C區(qū)基因的異質性,發(fā)現(xiàn)在基線水平即存有少量G1896A、G1899A和前-C區(qū)起始密碼子突變,并隨疾病進展不斷變化[26];Bayliss等[32]利用NGS檢測HBeAg陽性患者發(fā)現(xiàn),基線水平存在少量可檢測的BCP/前-C突變,會顯著降低NAs治療后HBsAg的清除率。
P區(qū)是最長的HBV基因區(qū),包含4個功能結構域:末端蛋白(terminal protain,TP)、間隔區(qū)(spacer region, Spc)、逆轉錄酶(RT)區(qū)和RNA酶H區(qū)(RNH),其中RT區(qū)又可分為7個結構域(圖2C)。P區(qū)編碼DNA聚合酶,參與HBV DNA的合成及pgRNA的逆轉錄。TP位于P區(qū)N端,作為DNA負鏈合成的初始引物;Spc區(qū)作為聚合酶功能非必要的補充,更能耐受突變,由于間隔區(qū)與前-S區(qū)部分交叉,因此該區(qū)域變異亦會引起相應的HBsAg氨基酸位點的改變;RT區(qū)具備DNA聚合酶活性和逆轉錄活性,其催化中心位于nt736~747(即YMDD區(qū)),該區(qū)在所有基因型中高度保守,在HBV復制中發(fā)揮著重要作用;RNA酶H區(qū)位于P區(qū)C端,參與RNA的衣殼包裝和負鏈DNA的合成[34]。
抗病毒治療藥物NAs主要通過競爭結合HBV DNA聚合酶尤其是RT區(qū),發(fā)揮強效抑制病毒復制的作用,一旦該區(qū)基因發(fā)生變異,就會導致NAs結合力下降,從而失去對突變株的抑制能力,產生耐藥[35]。因此,以往研究最多的HBV P區(qū)異質性主要集中在RT區(qū),見表3。與干擾素治療相比,A、B基因型較C、D基因型具有更好的應答效果,然而基因型差異對NAs的療效應答情況目前仍知之甚少[2]。
表3 常見RT區(qū)突變及臨床影響
注:LMV,拉米夫定;ADF,阿德福韋酯;ETV,恩替卡韋;TDF,富馬酸替諾福韋酯;LdT,替比夫定;ETV耐藥相關變異是在rtM204V/I+rtLl80M變異基礎上,再聯(lián)合其他至少一個位點的氨基酸替代變異;*,僅在體外實驗發(fā)現(xiàn),在臨床實踐中并未完全確認TDF的耐藥位點。
本課題組曾構建高靈敏RT-AS-LNA-qPCR[44]和RT-ARMS-qPCR[45]技術,分別用于HBV YIDD(rtM204I)和YVDD(rtM204V)突變株的定量檢測,初步揭示了早期檢出低比例突變DNA對NAs的療效預測價值。近來有研究利用NGS平臺顯示,NAs治療的CHB患者其HBV RT區(qū)準種異質性呈現(xiàn)多樣性及低比例變化的趨勢[5,46-48]。進一步研究發(fā)現(xiàn),選擇LAM或LdT治療4周時,應答組RT區(qū)準種復雜性和多樣性顯著低于無應答組[46],采用ETV時,完全應答組較部分應答組準種復雜性降低,而準種多樣性增加[5,48],提示不同準種異質性對藥物的動力學和藥效學變化有影響;而且高基線水平RT 2區(qū)(與S區(qū)基因重疊的B、C結構域)的準種異質性可預測病毒學應答[47]。盡管如此,這些在基線水平及NAs治療過程中出現(xiàn)的低比例耐藥突變,其確切的臨床意義仍未完全闡明。
X區(qū)是HBV最小的基因區(qū),N端含負向調控域(negative regulatory domain,NRD),具有抗凋亡基因;C端為轉錄因子結合區(qū)(transcription factor binding),含促凋亡基因[49]。其編碼產物HBx蛋白不與宿主及病毒DNA直接結合,主要通過激活或抑制轉錄因子對HBV DNA病毒轉錄、復制及宿主細胞基因起調控作用,是導致肝癌發(fā)生的關鍵分子[50]。X區(qū)基因突變主要發(fā)生在肝癌患者,有研究顯示,當存在K130M+V131I雙聯(lián)突變及V5M/L+K130M+V131I三聯(lián)突變時,HCC的風險分別提高3.75倍和5.34倍[51]。鑒于X區(qū)基因突變與HCC密切相關,有研究利用測序技術,發(fā)現(xiàn)當8個X區(qū)基因位點(包括ntG1613A,ntC1653T,ntT1753V,ntA1762T,ntG1764A,ntA1846T,ntG1896A和ntG1899A)出現(xiàn)≥6個突變位點陽性作為預測HCC的指標,其敏感性為44.0%,特異性可達99.7%[52]。
目前,單獨針對X區(qū)基因的二代測序研究較少。研究顯示與前-C區(qū)重疊的X區(qū)基因(nt 1 814~1 838)中,當存有少量(0.16%)ntT1836C突變時,會導致原有的終止密碼子TAA突變?yōu)榫幋a谷氨酰胺的密碼子CAA,從而產生的HBx蛋白的羧基末端比正常HBx多51個氨基酸,致使HBx蛋白發(fā)生潛在的功能性改變[26]。
HBV基因組具有明顯的準種異質性,有些與病毒治療反應有關,有些與免疫逃逸相關,有些可加速肝臟疾病進展,有些會引起檢測結果不一致。因此,借助于分子診斷技術的發(fā)展及臨床研究的深入,能進一步了解不同HBV基因突變的臨床意義,尤其是證實一些低比例突變的時空特性,更好地針對不同的乙肝感染個體做出精準醫(yī)療決策。
[1]Nassal M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B[J]. Gut, 2015, 64(12): 1972-1984.
[2]Lin CL, Kao JH. Hepatitis B virus genotypes and variants[J]. Cold Spring Harb Perspect Med, 2015, 5(5): a021436.
[3]Locarnini S, Zoulim F. Molecular genetics of HBV infection[J]. Antivir Ther, 2010, 15(Suppl 3): 3-14.
[4]傅亞, 歐啟水. 乙型肝炎病毒準種的研究進展[J]. 中華檢驗醫(yī)學雜志, 2016, 39(8):1-4.
[5]Gao S, Duan ZP, Coffin CS. Clinical relevance of hepatitis B virus variants[J]. World J Hepatol, 2015, 7(8): 1086-1096.
[6]Yan H, Zhong G, Xu G,etal. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. Elife, 2012,1: e00049.
[7]Pollicino T, Cacciola I, Saffioti F,etal. Hepatitis B virus PreS/S gene variants: pathobiology and clinical implications[J]. J Hepatol, 2014, 61(2): 408-417.
[8]傅曉春, 劉燦, 歐啟水. 慢性乙型肝炎患者HBsAg和抗HBs共存的發(fā)生機制及其臨床意義[J]. 臨床檢驗雜志, 2016, 34(8): 566-570.
[9]Raimondo G, Pollicino T, Romanò L,etal. A 2010 update on occult hepatitis B infection[J]. Pathol Biol(Paris), 2010, 58(4): 254-257.
[10]Osiowy C, Kowalec K, Giles E. Discordant diagnostic results due to a hepatitis B virus T123A HBsAg mutant[J]. Diagn Microbiol Infect Dis, 2016, 85(3): 328-333.
[11]Servant-Delmas A, Mercier-Darty M, Ly TD,etal. Variable capacity of 13 hepatitis B virus surface antigen assays for the detection of HBsAg mutants in blood samples[J]. J Clin Virol, 2012, 53(4): 338-345.
[12]Rodriguez-Frías F, Tabernero D, Quer J,etal. Ultra-deep pyrosequencing detects conserved genomic sites and quantifies linkage of drug-resistant amino acid changes in the hepatitis B virus genome[J]. PLoS One, 2012, 7(5): e37874.
[13]Solmone M, Vincenti D, Prosperi MC,etal. Use of massively parallel ultradeep pyrosequencing to characterize the genetic diversity of hepatitis B virus in drug-resistant and drug-naive patients and to detect minor variants in reverse transcriptase and hepatitis B S antigen[J]. J Virol, 2009, 83(4): 1718-1726.
[14]Olinger CM, Weber B, Otegbayo JA,etal. Hepatitis B virus genotype E surface antigen detection with different immunoassays and diagnostic impact of mutations in the preS/S gene[J]. Med Microbiol Immunol, 2007, 196(4): 247-252.
[15]Datta S, Ghosh A, Dasgupta D,etal. Novel point and combo-mutations in the genome of hepatitis B virus-genotype D:characterization and impact on liver disease progression to hepatocellular carcinoma[J]. PLoS One, 2014, 9(10): e110012.
[16]Kim H, Lee SA, Kim DW,etal. Naturally occurring mutations in large surface genes related to occult infection of hepatitis B virus genotype C[J]. PLoS One, 2013, 8(1): e54486.
[17]Liu W, Hu T, Wang X,etal. Coexistence of hepatitis B surface antigen and anti-HBs in Chinese chronic hepatitis B virus patients relating to genotype C and mutations in the S and P gene reverse transcriptase region [J]. Arch Virol, 2012, 157(4): 627-634.
[18]Abdelnabi Z, Saleh N, Baraghithi S,etal. Subgenotypes and mutations in the s and polymerase genes of hepatitis B virus carriers in the West Bank, palestine[J]. PLoS One, 2014, 9(12): e113821.
[19]Araujo NM, Vianna CO, Moraes MT,etal. Expression of Hepatitis B virus surface antigen(HBsAg) from genotypes A, D and F and influence of amino acid variations related or not to genotypes on HBsAg detection[J]. Braz J Infect Dis, 2009, 13(4): 266-271.
[20]Salpini R, Colagrossi L, Bellocchi MC,etal. Hepatitis B surface antigen genetic elements critical for immune escape correlate with hepatitis B virus reactivation upon immunosuppression [J]. Hepatology, 2015, 61(3): 823-833.
[21]Pollicino T, Raffa G, Costantino L,etal. Molecular and functional analysis of occult hepatitis B virus isolates from patients with hepatocellular carcinoma[J]. Hepatology, 2007, 45(2): 277-285.
[22]Torresi J, Earnest-Silveira L, Deliyannis G,etal. Reduced antigenicity of the hepatitis B virus HBsAg protein arising as a consequence of sequence changes in the overlapping polymerase gene that are selected by lamivudine therapy[J]. Virology, 2002, 293(2): 305-313.
[23]Mirabelli C, Surdo M, Van Hemert F,etal. Specific mutations in the C-terminus domain of HBV surface antigen significantly correlate with low level of serum HBV-DNA in patients with chronic HBV infection[J]. J Infect, 2015, 70(3): 288-298.
[24]Chu CJ, Hussain M, Lok AS. Hepatitis B virus genotype B is associated with earlier HBeAg seroconversion compared with hepatitis B virus genotype C[J]. Gastroenterology, 2002, 122(7): 1756-1762.
[25]Wang XL, Ren JP, Wang XQ,etal. Mutations in pre-core and basic core promoter regions of hepatitis B virus in chronic hepatitis B patients[J]. World J Gastroenterol, 2016, 22(11): 3268-3274.
[26]Homs M, Buti M, Quer J,etal. Ultradeep pyrosequencing analysis of the hepatitis B virus preCore region and main catalytic motif of the viral polymerase in the same viral genome[J]. Nucleic Acids Res, 2011, 39(19): 8457-8471.
[27]Homs M, Buti M, Tabernero D,etal. Quasispecies dynamics in main core epitopes of hepatitis B virus by ultra-deep-pyrosequencing[J]. World J Gastroenterol, 2012, 18(42): 6096-6105.
[28]Yin J, Xie J, Liu S,etal. Association between the various mutations in viral core promoter region to different stages of hepatitis B, ranging of asymptomatic carrier state to hepatocellular carcinoma[J]. Am J Gastroenterol, 2011, 106(1): 81-92.
[29]Rodriguez-Frias F, Buti M, Tabernero D,etal. Quasispecies structure, cornerstone of hepatitis B virus infection: mass sequencing approach[J]. World J Gastroenterol, 2013, 19(41): 6995-7023.
[30]Liao Y, Hu X, Chen J,etal. Precore mutation of hepatitis B virus may contribute to hepatocellular carcinoma risk: evidence from an updated meta-analysis[J]. PLoS One, 2012, 7(6): e38394.
[31]Tu WH, Lv Y, Zhang YM,etal. Precore/basal core promoter mutants quantification throughout phases of hepatitis B virus infection by Simpleprobe[J]. World J Gastroenterol, 2015, 21(21): 6639-6648.
[32]Bayliss J, Yuen L, Rosenberg G,etal. Deep sequencing shows that HBV basal core promoter and precore variants reduce the likelihood of HBsAg loss following tenofovir disoproxil fumarate therapy in HBeAg-positive chronic hepatitis B[J]. Gut, 2016, pii: gutjnl-2015-309300.
[33]Homs M, Jardi R, Buti M,etal. HBV core region variability: effect of antiviral treatments on main epitopic regions[J]. Antivir Ther, 2011, 16(1): 37-49.
[34]Ko C, Shin YC, Park WJ,etal. Residues Arg703, Asp777, and Arg781 of the RNase H domain of hepatitis B virus polymerase are critical for viral DNA synthesis[J]. J Virol, 2014, 88(1): 154-163.
[35]Sharon A, Chu CK .Understanding the molecular basis of HBV drug resistance by molecular modeling[J]. Antiviral Res, 2008, 80(3): 339-353.
[36]Chen J, Yan L, Zhu FC,etal. Amino acid polymorphism in the reverse transcriptase region of hepatitis B virus and the relationship with nucleos(t)ide analogues treatment for preventing mother-to-infant transmission[J]. J Med Virol, 2014, 86(8): 1288-1295.
[37]Cento V, Van Hemert F, Neumann-Fraune M,etal. Anti-HBV treatment induces novel reverse transcriptase mutations with reflective effect on HBV S antigen[J]. J Infect, 2013, 67(4): 303-312.
[38]Bartholomeusz A, Locarnini SA. Antiviral drug resistance: clinical consequences and molecular aspects[J]. Semin Liver Dis, 2006, 26(2): 162-170.
[39]Sarin SK, Kumar M, Lau GK,etal. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update[J]. Hepatol Int, 2016, 10(1): 1-98.
[40]Qin B, Budeus B, Cao L,etal. The amino acid substitutions rtP177G and rtF249A in the reverse transcriptase domain of hepatitis B virus polymerase reduce the susceptibility to tenofovir[J]. Antiviral Res, 2013, 97(2): 93-100.
[41]Amini-Bavil-Olyaee S, Herbers U, Sheldon J,etal. The rtA194T polymerase mutation impacts viral replication and susceptibility to tenofovir in hepatitis B e antigen-positive and hepatitis B e antigen-negative hepatitis B virus strains[J]. Hepatology, 2009, 49(4): 1158-1165.
[42]Amini-Bavil-Olyaee S, Herbers U, Mohebbi SR,etal. Prevalence, viral replication efficiency and antiviral drug susceptibility of rtQ215 polymerase mutations within the hepatitis B virus genome[J]. J Hepatol, 2009, 51(4): 647-654.
[43]Karatayli E, Karatayli SC, Cinar K,etal. Molecular characterization of a novel entecavir mutation pattern isolated from a multi-drug refractory patient with chronic hepatitis B infection[J]. J Clin Virol, 2012, 53(2): 130-134.
[44]Zeng Y, Li D, Wang W,etal. Establishment of real time allele specific locked nucleic acid quantitative PCR for detection of HBV YIDD(ATT) mutation and evaluation of its application[J]. PLoS One, 2014, 9(2): e90029.
[45]Zeng Y, Yang B, Wu Y,etal. Clinical significance of periodic detection of hepatitis B virus YVDD mutation by ultrasensitive real-time amplification refractory mutation system quantitative PCR during lamivudine treatment in patients with chronic hepatitis B[J]. J Med Microbiol, 2015, 64(Pt 3): 237-242.
[46]Peveling-Oberhag J, Herrmann E, Kronenberger B,etal. Dynamics of hepatitis B virus quasispecies heterogeneity and virologic response in patients receiving low-to-moderate genetic barrier nucleoside analogs[J]. J Viral Hepat, 2013, 20(4): 234-239.
[47]Han Y, Gong L, Sheng J,etal. Prediction of virological response by pretreatment hepatitis B virus reverse transcriptase quasispecies heterogeneity: the advantage of using next-generation sequencing[J]. Clin Microbiol Infect, 2015, 21(8): 797.e1-797. e8.
[48]Liu F, Chen L, Yu DM,etal. Evolutionary patterns of hepatitis B virus quasispecies under different selective pressures: correlation with antiviral efficacy[J]. Gut, 2011, 60(9): 1269-1277.
[49]Slagle BL, Andrisani OM, Bouchard MJ,etal. Technical standards for hepatitis B virus X protein(HBx) research[J]. Hepatology, 2015, 61(4): 1416-1424.
[50]Ming Geng, Xuan Xin, Li-Quan Bi,etal. Molecular mechanism of hepatitis B virus X protein function in hepatocarcinogenesis[J]. World J Gastroenterol, 2015, 21(38): 10732-10738.
[51]Lee JH, Han KH, Lee JM,etal. Impact of hepatitis B virus(HBV) x gene mutations on hepatocellular carcinoma development in chronic HBV infection[J]. Clin Vaccine Immunol, 2011, 18(6): 914-921.
[52]Jang JW, Chun JY, Park YM,etal. Mutational complex genotype of the hepatitis B virus X /precore regions as a novel predictive marker for hepatocellular carcinoma[J]. Cancer Sci, 2012, 103(2): 296-304.
(本文編輯:周萬青,劉群)
10.13602/j.cnki.jcls.2017.07.11
國家自然科學基金(81572067,81672101);福建省自然科學基金(2015J01385)。
劉燦,1979 年生,男,博士研究生,主要事乙型肝炎病毒診斷與療效監(jiān)測研究。
歐啟水,主任技師,教授,博士研究生導師,E-mail:ouqishui@163.com。
R446.6
A
2016-12-20)