張文學(xué) 楊成春 王少先 孫剛 劉增兵 李祖章 劉光榮
?
脲酶抑制劑與硝化抑制劑對稻田土壤氮素轉(zhuǎn)化的影響
張文學(xué)#楊成春#王少先 孫剛*劉增兵 李祖章 劉光榮
(江西省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所/國家紅壤改良工程技術(shù)研究中心/農(nóng)業(yè)部雙季稻營養(yǎng)與農(nóng)業(yè)環(huán)境觀測實驗站,南昌 330200;#并列第一作者;*通訊聯(lián)系人,E-mail: sgemail@163.com)
【目的】本研究旨在闡明脲酶抑制劑(urease inhibitor, UI)和硝化抑制劑(nitrification inhibitor, NI)對稻田土壤氮素轉(zhuǎn)化的影響,探討抑制劑提高稻谷產(chǎn)量以及氮肥利用率的機(jī)理?!痉椒ā勘驹囼炘O(shè)在我國南方紅壤稻田,共5個處理:1) 不施氮肥(CK);2) 尿素(U);3) 尿素+脲酶抑制劑(U+UI);4) 尿素+硝化抑制劑(U+NI);5) 尿素+脲酶抑制劑+硝化抑制劑(U+UI+NI);脲酶抑制劑采用N-丁基硫代磷酰三胺(NBPT),硝化抑制劑采用3,4-二甲基吡唑磷酸鹽(DMPP)。在水稻分蘗期和孕穗期測定土壤脲酶活性、硝酸還原酶活性、土壤銨態(tài)氮含量、硝態(tài)氮含量以及微生物碳、氮的含量,分析NBPT與DMPP對水稻兩個主要生育期土壤氮素供應(yīng)的影響,比較各處理的產(chǎn)量以及氮肥利用率,通過逐步回歸分析研究以上各指標(biāo)對產(chǎn)量的影響,探明脲酶抑制劑NBPT與硝化抑制劑DMPP在稻田的增效機(jī)理?!窘Y(jié)果】1) 與單施尿素相比,添加NBPT以及NBPT與DMPP配施均顯著提高稻谷產(chǎn)量與地上部氮素回收率,兩個處理分別增產(chǎn)6.56%與8.24%,氮素回收率提高幅度為19.4%與23.7%。2)與單施尿素相比,添加NBPT以及NBPT與DMPP配施,顯著降低水稻分蘗期的土壤脲酶活性和銨態(tài)氮含量,顯著提高孕穗期的銨態(tài)氮含量,而對此時期的脲酶活性無顯著影響,所有處理對兩個時期的硝態(tài)氮含量、硝酸還原酶活性、微生物量碳、氮含量均無顯著影響;因此,NBPT對于抑制脲酶活性以及提高銨態(tài)氮含量的作用主要在孕穗期之前,而單施DMPP沒有顯著效應(yīng)。3)從各項土壤指標(biāo)與水稻產(chǎn)量相關(guān)性的逐步回歸分析結(jié)果來看,水稻分蘗期與孕穗期稻田土壤中銨態(tài)氮含量對水稻產(chǎn)量影響顯著,而且孕穗期的影響大于分蘗期,其余指標(biāo)則對產(chǎn)量無顯著影響。【結(jié)論】脲酶抑制劑NBPT以及NBPT與硝化抑制劑DMPP配施顯著提高孕穗期土壤中的銨態(tài)氮含量,顯著提高稻谷產(chǎn)量以及地上部氮素回收率,證明了生產(chǎn)上氮肥后移的重要意義。
脲酶抑制劑;硝化抑制劑;稻田;產(chǎn)量;氮素回收率
通過提高氮肥利用率來減小氮素?fù)p失對環(huán)境壓力是近年來農(nóng)業(yè)生產(chǎn)上的一個重要研究方向,也有學(xué)者提出了一些有效可行的技術(shù),如改善管理措施、采取平衡施肥或計算機(jī)支持系統(tǒng)指導(dǎo)施肥[1]、改善土壤結(jié)構(gòu)、發(fā)展新型肥料等[2]。而針對我國糧食供求矛盾尚未得到完全解決、地多人少、農(nóng)業(yè)現(xiàn)代化不夠發(fā)達(dá)、農(nóng)村勞動力趨于減少的現(xiàn)狀,要在有限的土地上提高糧食單產(chǎn),保障糧食安全,發(fā)展一次性緩/控釋氮肥是比較合理和易于推廣的措施。
許多研究表明,含有脲酶抑制劑、硝化抑制劑的穩(wěn)定性肥料可以有效地提高稻田的氮肥利用率與稻谷產(chǎn)量[3-6]。脲酶抑制劑可以抑制脲酶活性而減緩尿素的水解速度以及氨的釋放速率,進(jìn)而減少氨揮發(fā)與硝化反應(yīng)導(dǎo)致的氮素?fù)p失。稻田應(yīng)用結(jié)果表明,脲酶抑制劑可以有效地提高作物產(chǎn)量[7-10]以及氮肥利用率[8,11]。硝化抑制劑可以減少來自土壤有機(jī)質(zhì)以及無機(jī)肥料的銨態(tài)氮的硝化反應(yīng),延長NH4+在土壤中的存留時間,進(jìn)而降低硝態(tài)氮的濃度以及淋失、反硝化等途徑導(dǎo)致的氮素?fù)p失[7,12,13]。另外,運(yùn)用硝化抑制劑提高農(nóng)業(yè)與園藝作物產(chǎn)量[5,14],并顯著減少植物中的硝酸鹽含量,提高蔬菜與飼料作物的品質(zhì)[15]。硝化抑制劑和脲酶抑制劑配合施用效果更好,如,氫醌(Hydroquinone,HQ)與雙氰胺(Dicyandiamide,DCD)一起施用可以促進(jìn)作物生長,減少N素?fù)p失[16,17];N-丁基硫代磷酰三胺[N-(n-butyl)thiophosphoric triamide, NBPT]與DCD配施可以顯著減少氨揮發(fā)、N2O排放的氮素?fù)p失[18],可以改善由于氧化亞氮排放、硝態(tài)氮淋失進(jìn)入地下水等對環(huán)境的污染[2]。但關(guān)于脲酶抑制劑、硝化抑制劑及其二者配施對我國稻田氮素轉(zhuǎn)化影響的研究較少,我們就尿素添加脲酶抑制劑NBPT以及硝化抑制劑3,4-二甲基吡唑磷酸鹽(3,4-Dimethyl-1H- pyrazole phosphate, DMPP)對我國南方紅壤稻田的無機(jī)氮轉(zhuǎn)化、與氮轉(zhuǎn)化相關(guān)酶活性、微生物量碳、氮含量以及氮素回收率等的影響,探討抑制劑的增效機(jī)理,為稻田減少氮素?fù)p失、提高氮肥利用率提供科學(xué)依據(jù),為稻田施肥提供技術(shù)指導(dǎo)。
1.1 試驗地點
試驗于2012年4月至7月在江西省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所南昌試驗基地 (28o21'12"N, 115o54'25"E)進(jìn)行。該區(qū)屬于亞熱帶濕潤氣候,海拔高度20 m,平均氣溫17.8 ℃, ≥10℃的積溫為5432.20℃,無霜期長達(dá)240~307 d,年降水量1662 mm,降水季節(jié)分配不均,全年降水50%以上集中在4-6月。供試土壤為第四紀(jì)紅黏土發(fā)育的潮砂泥田,土壤質(zhì)地為壤土。播種前土壤有機(jī)質(zhì)含量20.12 g/kg,全氮含量2.06 g/kg, 硝態(tài)氮和銨態(tài)氮含量分別為1.8 mg/kg和16.2 mg/kg,有效磷2.6 mg/kg,速效鉀94.55 mg/kg,pH 4.97,土壤容重為1.19 g/cm3。
1.2 試驗設(shè)計
水稻供試品種為株兩優(yōu)30。脲酶抑制劑為N-丁基硫代磷酰三胺(NBPT),硝化抑制劑為3,4-二甲基吡唑磷酸鹽(DMPP)。氮肥為尿素(含N 46%),磷肥為鈣鎂磷肥(含P2O512%),鉀肥為氯化鉀(含K2O 60%)。
試驗共設(shè)5個處理:1) 不施氮肥(CK);2) 尿素(U);3) 尿素+脲酶抑制劑(U+UI);4) 尿素+硝化抑制劑(U+NI);5) 尿素+脲酶抑制劑+硝化抑制劑(U+UI+NI)。設(shè)3次重復(fù),各小區(qū)隨機(jī)區(qū)組排列,每個小區(qū)面積30 m2(5 m × 6 m),各小區(qū)以50 cm的分隔行隔開,且保持小區(qū)間的田埂高出地面40 cm,并用塑料薄膜包裹田埂以防止串水串肥,實現(xiàn)各小區(qū)單灌單排的管理目的。試驗中氮(N)、磷(P2O5)、鉀(K2O)的用量分別為135 kg/hm2、75 kg/hm2和150 kg/hm2,抑制劑與尿素混勻施入,抑制劑用量為尿素的1%。氮肥和磷肥作基肥于移栽前一次性施入;鉀肥分3次施入,40%作基肥,30%作分蘗肥,30%作孕穗肥。于2012年3月10日播種,4月23日移栽,7月20日收獲(當(dāng)?shù)貫殡p季稻種植模式,本研究以早稻為研究對象),水稻種植密度以及各項栽培管理措施同當(dāng)?shù)剞r(nóng)民的常規(guī)管理保持一致。
在水稻分蘗期、孕穗期分別采集各小區(qū)耕層土壤樣品,測定脲酶與硝酸還原酶活性、銨態(tài)氮與硝態(tài)氮含量、微生物量碳、氮含量;用于測定酶活性、銨態(tài)氮與硝態(tài)氮的土樣若不能立即測定需保存于-20℃,用于測定微生物量碳、氮的土樣則保存于4℃;成熟期測定各小區(qū)產(chǎn)量以及植株氮含量。
1.3 測定方法與計算
1.3.1 土壤中脲酶與硝酸還原酶活性的測定
脲酶活性采用NH4+釋放量法測定[19],硝酸還原酶活性通過測定NO2--N產(chǎn)生量的方法[20]計算。
1.3.2 土壤中銨態(tài)氮與硝態(tài)氮含量的測定
土壤中的銨態(tài)氮與硝態(tài)氮含量用1 mol/L的KCl溶液浸提,采用全自動間斷化學(xué)分析儀(Smartchem TM200 discrete chemistry analyzer) Smartchem 200 儀器測定。
CK-不施氮肥; U-尿素; U+UI-尿素+脲酶抑制劑; U+NI-尿素+硝化抑制劑; U+UI+NI-尿素+脲酶抑制劑+硝化抑制劑。柱上標(biāo)相同小寫字母者表示差異未達(dá)5%顯著水平。下圖同。
Fig. 1. Effects of urease inhibitor and nitrification inhibitor application on grain yield of rice
1.3.3 微生物量碳、氮含量測定與計算
土壤微生物量碳、氮含量的測定采用氯仿熏蒸-K2SO4浸提法[21-24], 其含量計算如下:
C=C/C;
N=N/N;
其中,C、N分別為土壤微生物量碳、氮含量;C、N分別為熏蒸和未熏蒸樣品中有機(jī)碳、全氮含量之差;C、N為回收系數(shù),C=0.45[21,22],N=0.54[23]。
1.3.4 植株氮素含量的測定
取植株粉碎樣,用濃H2SO4-H2O2消化,用全自動間斷化學(xué)分析儀(Smartchem TM200 discrete chemistry analyzer) Smartchem 200儀器測定。
1.3.5 數(shù)據(jù)處理
所有數(shù)據(jù)采用Excel 2007、SAS 9.1軟件進(jìn)行統(tǒng)計分析,運(yùn)用Excel 2007軟件作圖。
2.1 添加脲酶抑制劑和硝化抑制劑對水稻產(chǎn)量的影響
對水稻籽粒產(chǎn)量的測定結(jié)果見圖1,處理U+UI與U+UI+NI的產(chǎn)量顯著高于處理U,而處理U+NI與處理U則無顯著差異;與處理U相比,處理U+UI與U+UI+NI分別增產(chǎn)6.56%與8.24%。這說明添加脲酶抑制劑NBPT以及脲酶抑制劑NBPT與硝化抑制劑DMPP配施對水稻增產(chǎn)效果顯著,而單獨添加硝化抑制劑效果欠佳。
2.2 添加脲酶抑制劑和硝化抑制劑對水稻地上部氮素回收率的影響
由圖2可知,處理U的氮素回收率最小,處理U+UI以及U+UI+NI與處理U的差異均達(dá)到顯著水平;與處理U相比,處理U+UI以及U+UI+NI的氮素回收率分別提高了19.4%與23.7%;這說明添加NBPT以及NBPT與DMPP配施對提高水稻地上部氮素回收率效果顯著,而單獨添加DMPP對氮素回收率無顯著影響。
2.3 土壤脲酶與硝酸還原酶活性
在水稻分蘗期與孕穗期采取土壤樣品測定土壤脲酶活性與硝酸還原酶活性。由圖3可知,在分蘗期,施氮處理的脲酶活性明顯高于不施氮處理。處理U的脲酶活性最高,達(dá)126.58 μg/(g·h),顯著高于處理U+UI與U+UI+NI,而與處理U+NI差異不顯著,這說明單施尿素,脲酶活性顯著升高,而脲酶抑制劑NBPT的加入,顯著降低了分蘗期土壤的脲酶活性,單獨添加DMPP則無明顯影響;在孕穗期,不施氮肥處理(CK)的脲酶活性依然明顯低于施氮處理,而施入氮肥的處理間脲酶活性無顯著差異,這可能由于添加NBPT在孕穗期對脲酶活性的抑制作用基本消失導(dǎo)致。
圖2添加脲酶抑制劑與硝化抑制劑對水稻地上部的氮素回收率的影響
Fig. 2. Effects of urease inhibitor and nitrification inhibitor application on recovery of applied N in above-ground parts of rice
圖3添加脲酶抑制劑與硝化抑制劑對土壤脲酶活性的影響
Fig. 3. Effects of urease inhibitor and nitrification inhibitor application on urease activities in soil.
由圖4可知,與土壤脲酶活性相比,硝酸還原酶活性始終保持在極低水平,其活性小于3 μg/(g·d),說明稻田的硝酸還原酶活性極其微弱;同一時期內(nèi),處理間無顯著差異(>0.05),說明施用氮肥處理對稻田的硝酸還原酶活性沒有明顯影響,添加NBPT或DMPP對稻田土壤中的硝酸還原酶活性也無明顯作用。
圖4添加脲酶抑制劑與硝化抑制劑對土壤硝酸還原酶活性的影響
Fig. 4. Effects of urease inhibitor and nitrification inhibitor application on nitrate reductase activities in soil.
2.4 土壤銨態(tài)氮與硝態(tài)氮含量
分別在水稻分蘗期與孕穗期對土壤銨態(tài)氮、硝態(tài)氮含量進(jìn)行測定,結(jié)果表明,稻田土壤中的銨態(tài)氮含量明顯高于硝態(tài)氮。
由圖5可知,在水稻分蘗期,處理間的差異達(dá)到顯著水平,處理U的土壤銨態(tài)氮含量高達(dá)53.95 mg/kg,與處理U相比,處理U+UI和U+UI+NI的銨態(tài)氮含量顯著降低,分別降低15.45%和11.06%,而處理U+NI與處理U相比無顯著差異;這說明添加脲酶抑制劑NBPT顯著降低了分蘗期稻田土壤的銨態(tài)氮含量,而硝化抑制劑DMPP則無此效應(yīng)。在孕穗期,所有處理的土壤銨態(tài)氮含量較分蘗期均急劇下降,且處理間差異顯著(<0.05)。這可能是由于從分蘗期到孕穗期水稻根系快速生長,大量吸收氮肥所致;施氮處理間比較,添加脲酶抑制劑的處理U+UI與U+UI+NI的銨態(tài)氮含量明顯高于處理U與U+NI,與處理U相比,處理U+UI與U+UI+NI分別提高了銨態(tài)氮含量32.27%與40.04%,而處理U+NI與處理U之間依然沒有明顯差異。這些結(jié)果說明添加NBPT有效延緩了尿素水解,減慢了銨態(tài)氮的釋放速率,為水稻的后期生長提供更多銨態(tài)氮肥;兩種抑制劑配施的效果更佳,而單獨施用DMPP對銨態(tài)氮含量則無明顯影響。
由圖6可知,與土壤銨態(tài)氮含量相比,硝態(tài)氮含量極低,不足銨態(tài)氮含量的2%,且同一時期內(nèi)處理間的差異均不顯著(>0.05),這說明添加NBPT雖然顯著降低了分蘗期土壤中銨態(tài)氮的含量,但是對于硝態(tài)氮含量沒有顯著影響,因此,在淹水土壤中,銨態(tài)氮的含量對硝化作用影響較小。
2.5 土壤微生物量碳、氮含量
水稻分蘗期與孕穗期的土壤微生物量碳、氮含量以及微生物量碳與氮比值的結(jié)果見圖7~9。這三項土壤特性指標(biāo)在同一時期內(nèi)處理間的差異不顯著(>0.05),說明添加脲酶抑制劑、硝化抑制劑以及二者配施對微生物量碳、氮含量沒有顯著影響。對同一時期的微生物量碳、氮含量進(jìn)行相關(guān)性分析發(fā)現(xiàn),二者存在極顯著正相關(guān)(<0.01)。
圖5添加脲酶抑制劑和硝化抑制劑對土壤銨態(tài)氮含量的影響
Fig. 5. Effects of urease inhibitor and nitrification inhibitor application on NH4+-N content in soil.
圖6 添加脲酶抑制劑和硝化抑制劑對土壤硝態(tài)氮含量的影響
Fig. 6. Effects of urease inhibitor and nitrification inhibitor application on NO3--N content in soil.
圖7 添加脲酶抑制劑和硝化抑制劑對土壤微生物量碳含量的影響
Fig. 7. Effects of urease inhibitor and nitrification inhibitor application on microbial biomass carbon (MBC) content in soil
圖8 添加脲酶抑制劑和硝化抑制劑對土壤微生物量氮含量的影響
Fig. 8. Effects of urease inhibitor and nitrification inhibitor application onmicrobial biomass nitrogen (MBN) content in soil.
2.6 土壤特性與產(chǎn)量的相關(guān)性
將水稻兩個生育期土壤的脲酶活性、硝酸還原酶活性、銨態(tài)氮含量、硝態(tài)氮含量、微生物量碳、微生物量氮、碳氮比值7項指標(biāo)對產(chǎn)量的影響進(jìn)行逐步回歸分析(=15)。結(jié)果表明,只有銨態(tài)氮含量進(jìn)入回歸方程,說明土壤銨態(tài)氮含量對產(chǎn)量的影響顯著,而其余6項指標(biāo)對產(chǎn)量的影響不顯著;回歸方程的相關(guān)參數(shù)見表1。兩個時期的銨態(tài)氮含量對產(chǎn)量的影響均達(dá)極顯著水平(<0.01),而且,其孕穗期的影響大于分蘗期(孕穗期的變量系數(shù)較大),說明氮肥對于提高水稻產(chǎn)量的作用顯著,尤其是孕穗期的氮肥更為明顯。
表1 水稻產(chǎn)量與分蘗期和孕穗期影響因子的逐步回歸分析
回歸方程為=a+b;為產(chǎn)量,a為系數(shù),為因子,b為常數(shù)。
The values are fitted in the equation:=a+b;, Yield;a, Coefficient;, Factor;b, Constant.
圖9 添加脲酶抑制劑和硝化抑制劑對土壤微生物量碳/氮比值的影響
Fig. 9. Effects of urease inhibitor and nitrification inhibitor application onratio of microbial biomass carbon (MBC)to microbial biomass nitrogen (MBN) in soil.
普通氮肥利用率低、氮素?fù)p失嚴(yán)重[25,26]。據(jù)統(tǒng)計,我國的氮肥利用率約為20%~40%[27],水稻的氮素當(dāng)季回收率約27%[28],而緩/控釋氮肥可以提高肥料利用率、減少氮素?fù)p失,緩解環(huán)境壓力。本研究結(jié)果表明,添加脲酶抑制劑NBPT以及NBPT與硝化抑制劑DMPP配施均可以顯著提高氮肥利用率,這與前人研究結(jié)果一致。
土壤脲酶活性受到諸多因素的影響,與基質(zhì)濃度、溫度、pH、有機(jī)質(zhì)含量等因素呈正相關(guān)[29-35],在短期內(nèi)可被脲酶抑制劑所抑制。本研究發(fā)現(xiàn),施用氮肥顯著提高了水稻分蘗期和孕穗期土壤的脲酶活性;在水稻分蘗期,添加脲酶抑制劑NBPT以及NBPT與硝化抑制劑DMPP配施處理的脲酶活性顯著低于單施尿素處理,而單獨添加DMPP則無明顯影響,說明脲酶抑制劑對脲酶活性有較強(qiáng)的抑制作用,且脲酶抑制劑與硝化抑制劑配施抑制效果更佳;到孕穗期,可能由于脲酶抑制劑降解失去抑制作用(NBPT施入土壤后2周左右可降解為N、P、S等元素[13]),此時尿素完全水解,脲酶活性逐漸恢復(fù)平穩(wěn),在不同處理間無顯著差異。
本研究中,硝酸還原酶活性在分蘗期與孕穗期終維持在極低水平,且不同處理間沒有顯著差異,這可能由于本研究中稻田長期淹水的特殊環(huán)境所致。
脲酶抑制劑可以延緩尿素水解為銨態(tài)氮,而硝化抑制劑可以阻斷銨態(tài)氮的硝化作用,二者配施可以使土壤中保持更高的銨態(tài)氮,供作物吸收[36]。稻田施用脲酶抑制劑使稻谷顯著增產(chǎn)[36]。也有報道表明,雖然添加脲酶抑制劑減少氮素?fù)p失,但增產(chǎn)效果不是很理想[37,38]。Freney等報道[39],添加脲酶抑制劑、硝化抑制劑、脲酶抑制劑與硝化抑制劑配施均可以提高氮素回收率。本研究發(fā)現(xiàn),尿素輔以1%的脲酶抑制劑NBPT或者1%的NBPT與1%的硝化抑制劑DMPP混合用均可以顯著降低水稻分蘗期土壤中的銨態(tài)氮含量、脲酶活性,顯著提高孕穗期的銨態(tài)氮含量以及最終的稻谷產(chǎn)量與地上部的氮素回收率。
有報道指出,與不施肥處理相比,長期施用化肥會增加土壤微生物量碳、氮含量[32,40],而短期的化肥處理對土壤微生物量碳氮沒有明顯影響[41]。本研究發(fā)現(xiàn),在水稻的分蘗期與孕穗期微生物量碳、氮在處理間均無顯著差異,說明施用化肥以及添加脲酶抑制劑NBPT與硝化抑制劑DMPP對微生物生物量無顯著影響。對各時期微生物量碳、氮的相關(guān)性分析表明,二者存在極顯著正相關(guān),這與Mandal[42]的報道一致。
1)在稻田添加脲酶抑制劑NBPT或NBPT與硝化抑制劑DMPP配施對提高稻谷產(chǎn)量以及氮素回收率效果顯著。
2)在稻田添加脲酶抑制劑以及脲酶抑制劑與硝化抑制劑配施均能顯著降低水稻分蘗期土壤中的脲酶活性與銨態(tài)氮含量,提高孕穗期的銨態(tài)氮含量,而對其余指標(biāo)在分蘗期和孕穗期均無顯著影響。
3)對土壤特性的七項指標(biāo)與產(chǎn)量的關(guān)系進(jìn)行逐步回歸分析發(fā)現(xiàn),對水稻產(chǎn)量影響最大的是銨態(tài)氮含量;分蘗期和孕穗期的銨態(tài)氮含量對產(chǎn)量的影響均顯著,且孕穗期的影響大于分蘗期。因此,生產(chǎn)上采用氮肥分次施入,且提高孕穗期氮肥的比例(氮素后移)對提高產(chǎn)量至關(guān)重要。
4)添加脲酶抑制劑(或脲酶抑制劑與硝化抑制劑配施)可延緩尿素水解,顯著提高水稻孕穗期土壤中的銨態(tài)氮含量,這可能是其增產(chǎn)顯著的主要原因。
[1] 彭少兵,黃見良,鐘旭華,楊建昌,王光火,鄒應(yīng)斌,張福鎖,朱慶森. 提高中國稻田氮肥利用率的研究策略.中國農(nóng)業(yè)科學(xué), 2002, 35(9): 1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C,Wang H G, Zou Y B, Zhang F S, Zhu Q S. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China., 2002, 35(9): 1095-1103.(in Chinese with English abstract)
[2] Trenkel M E. Slow-and controlled-release and stabilized fertilizers//An Option for Enhancing Nutrient Efficiency in Agriculture. 2nd edn. Paris,France: International Fertilizer Industry Association, 2010.
[3] Marchesan E, Grohs M, Walter M, SilvaLS, Formentini T C. Agronomic performance of rice to the use of urease inhibitor in two cropping systems., 2013, 44(3): 594-603.
[4] Fageria N K, Carvalho M C S. Comparison of conventional and polymer coated urea as nitrogen sources for lowland rice production., 2014, 37(8): 1358-1371.
[5] Hu Y, Schraml M, von Tucher S, Li F, Schmidhalter U. Influence of nitrification inhibitors on yields of arable crops: A meta-analysis of recent studies in Germany., 2014, 8: 1735-6814.
[6] Sanz-Cobena A, Abalos D, Meijide A, Sanchez-Martin L, Vallejo A.Soil moisture determines the effectiveness of two urease inhibitors to decrease N2O emission., 2016, 21(7): 1131-1144
[7] Grant C A, Jia S, Brown K R, Bailey L D, Jia, SVolatile losses of NH3fromsurface-applied urea and urea ammonium nitrate with and without the urease inhibitors NBPT or ammonium thiosulphate., 1996, 76(3): 417-419.
[8] Malhi S, Oliver E, Mayerle G, Kruger G, Gill K S. Improving effectiveness of seedrow-placed urea with urease inhibitor and polymer coating for durum wheat and canola., 2003, 34(11-12): 1709-1727.
[9] Chaiwanakupt P, Freney J R, Keerthisinghe D G, Phongpan S, Blakeley R L. Use of urease, algal inhibitors, and nitrification inhibitors to reduce nitrogen loss and increase the grain yield of flooded rice (L.)., 1996, 22(1): 89-95.
[10] Freney J R, Keerthisinghe D G, Phongpan S, ChaiwanakuptPHarrington K J. Effect of urease, nitrification and algal inhibitors on ammonia loss and grain yield of flooded rice in Thailand., 1995 (40): 225-233.
[11] Abdallahi M M, N'Dayegamiye A. Effects of two incorporations of green manures on soil physical and biological properties and on wheat (L.) yields and N uptake., 2000, 80(1): 81-89.
[12] Di H J, Cameron K C.Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures., 2005, 109(3): 202-212.
[13] Watson C J, Miller H, Poland P,Kilpatrick D J, Allen M D B, Garrett M K, Christianson C B. Soil properties and the ability of the urease inhibitorN-(-butyl) thiophosphoric triamide (BTPT) to reduce ammonia volatilizationfrom surface-applied urea., 1994, 26(9): 1165-1171.
[14] Pasda G, H?hndel R, Zerulla W. The new nitrification inhibitor DMPP (ENTEC)—Effects on yield and quality of agricultural and horticultural crops. Plant Nutrition: Food security and sustainability of agro-ecosystems through basic and applied research, 2002: 758-759.
[15] Montemurro F, Capotorti G, Lacertosa G, Palazzo D. Effects of urease and nitrification inhibitors application on urea fate in soil and nitrate accumulation in lettuce., 1998, 21(2): 245-252.
[16] Hou J, Dong Y, Fan Z. Effects of Coated Urea amended with biological inhibitors on physiological characteristics, yield and quality of peanut., 2014, 45(7): 896-911.
[17] Xu X K, Boeckx P, Van Cleemput O, Kazuyuki I. Mineral nitrogen in a rhizosphere soil in standing water during rice (L.) growth: Effect of hydroquinone and dicyandiamide., 2005, 109(1): 107-117.
[18] Zaman M, Saggar S, Blennerhassett JD, Singh J.Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system., 2009, 41(6): 1270-1280.
[19] Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium., 1988, 6(1): 68-72.
[20] Abdelmagid H M, Tabatabai M A. Nitrate reductase activity of soils., 1987, 19(4): 421-427.
[21] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析法. 北京:中國農(nóng)業(yè)科技出版社,2000.
Lu R K. Analytical methods of soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000.(in Chinese)
[22] Wu J, Joergensen R G, Pommerening B, Chaussod R, Brookes P C. Measurement of soil microbial biomass C by fumigation-extraction automated procedure., 1990, 22(8): 167-169.
[23] Vance E D, Brggke P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C., 1987, 19(6): 703-707.
[24] Brookes P C, Landman A, Pruden G, Jenkinson D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil., 1985, 17(6): 837-842.
[25] 許仙菊, 馬洪波, 寧運(yùn)旺, 汪吉東,張永春. 緩釋氮肥運(yùn)籌對稻麥輪作周年作物產(chǎn)量和氮肥利用率的影響. 植物營養(yǎng)與肥料學(xué)報, 2016, 22(2): 307-316.
Xu X J, Ma H B, Ning Y W, Wang Y D, Zhang Y C. Effects of slow-released nitrogen fertilizers with different application patterns on crop yields and nitrogen fertilizer use efficiency in rice-wheat rotation system., 2016, 22(2): 307-316. (in Chinese with English abstract)
[26] 杜君, 孫克剛, 張運(yùn)紅, 和愛玲, 孫克振. 控釋尿素對水稻產(chǎn)量, 氮肥利用率及土壤硝態(tài)氮含量的影響. 中國農(nóng)學(xué)通報, 2016, 32(6): 1-5.
Du J, Sun K G, Zhang Y H, He A L, Sun K Z. Effects of controlled release urea on rice yield, nitrogen use efficiency and soil nitrate nitrogen content., 2016, 32(6): 1-5. (in Chinese)
[27] 張曉果,王丹英, 計成林, 徐春梅, 陳松, 章秀福. 水稻氮素吸收利用研究進(jìn)展. 中國稻米, 2015, 21(5): 13-19.
Zhang X G, Wang D Y, Ji C L, Xu C M, Chen S, Zhang X F. Nitrogen absorption and utilization on rice., 2015, 21(5): 13-19.
[28] 朱兆良, 金繼運(yùn). 保障我國糧食安全的肥料問題. 植物營養(yǎng)與肥料學(xué)報, 2012, 19(2): 259-273.
Zhu Z L, Jin J Y. Fertilizer use and food security in China., 2012, 19(2): 259-273. (in Chinese with English abstract)
[29] Bhattacharyya P, Chakrabarti K, Chakraborty A. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure., 2005, 60(3): 310-318.
[30] 郭天財, 宋曉, 馬冬云, 王永華, 謝迎新, 岳艷軍, 查菲娜. 施氮量對冬小麥根際土壤酶活性的影響. 應(yīng)用生態(tài)學(xué)報, 2008, 19(1): 110-114.
Guo T C, Song X, Ma D Y, Wang Y H, Xie Y X, Yue Y J, Cha F N. Effects of nitrogen application rate on soil enzyme activities in wheat rhizosphere., 2008, 19(1): 110-114. (in Chinese with English abstract)
[31] 和文祥,朱銘莪,張一平. 汞、鎘對土壤脲酶活性影響的研究:Ⅰ. 尿素濃度. 應(yīng)用生態(tài)學(xué)報, 2002, 13(2): 191-193.
He W X, Zhu M G, Zhang Y P. Effects of mercury and cadmium on the activity of urease in soils:Ⅰ. Urea concentration., 2002, 13(2): 191-193. (in Chinese with English abstract)
[32] 馬曉霞, 王蓮蓮, 黎青慧, 李花, 張樹蘭, 孫本華, 楊學(xué)云. 長期施肥對玉米生育期土壤微生物生物量碳氮及酶活性的影響. 生態(tài)學(xué)報, 2012, 32(17): 5502-5511. (in Chinese with English abstract)
MaX X, WangL L, LiQ H, Li H, ZhangS L, Sun B H, Yang X Y. Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season., 2012, 32(17): 5502-5511.
[33] Moyo CC, Kisseli DE, Cabrera M L. Temperature effects on soil urease activity., 1989, 21(7):935-938.
[34] Singh R, Nye P H. The effect of soil pH and high urea concentrations on urease activity in soil.. 1984, 35(4): 519-527.
[35] Zhong WH, Cai Z C, Zhang H. Effects of Long-term application of inorganic fertilizers on biochemical properties of a rice-planting red soil., 2007, 17 (4): 419-428.
[36] Byrnes B H. The degradation of the urease inhibitor phenyl phosphorodiamidate in soil systems and the performance of N-(n-butyl) thiophosphoric triamide in flooded rice culture. Weihenstephan, Germany: Technical University of Munich, 1988.
[37] Byrnes BH,Freney JR. Recent developments on the use of urease inhibitors in the tropics., 1995(42): 251-259.
[38] Chien S H, Prochnow L I, Cantarella H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts., 2009, 102: 267-322.
[39] Freney J R. Strategies to reduce gaseous emissions of nitrogen from irrigated agriculture., 1997, 48(1-2): 155-160.
[40] Bhattacharyya P, Chakrabarti K, Chakraborty A. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure., 2005, 60(3): 310-318.
[41] 李東坡, 梁成華, 武志杰, 陳利軍, 張麗莉, 馮慧敏. 玉米苗期施用緩/控釋氮素肥料養(yǎng)分釋放特點與土壤生物活性研究. 沈陽農(nóng)業(yè)大學(xué)學(xué)報, 2006, 37(1): 48-52.
Li D P, Liang C H, Wu Z J, Chen L J, Zhang L L, Feng H M. The study about characteristics of releasing nutrition and soil biological activities at maize seedling stage for using slow/controlled release nitrogen fertilizers., 2006, 37(1): 48-52. (in Chinese with English abstract)
[42] MandalA, PatraA K, Singh D, Swarup A, Masto R E. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages., 2007, 98: 3585-3592.
Effects of Urease Inhibitor and Nitrification Inhibitor on Nitrogen Transformation in Paddy Soil
ZHANG Wenxue#, YANG Chengchun#, WANG Shaoxian, SUN Gang*, LIU Zengbing, LI Zuzhang, LIU Guangrong
(,//,,;These authors contributed equally to this work;*,:.)
【Objective】The research is aimed to reveal the effects of urease inhibitor(UI) and nitrification inhibitor(NI) on nitrogen (N) transformation, and the fertilizer-saving mechanism of inhibitor(s). 【Method】A field experiment was conducted in the middle and lower reaches of the Yangtze River area, Southern China with a randomized design and five treatments and three replicates: 1) CK (no N fertilizer), 2) U (urea only), 3) U+UI, 4) U+NI, 5) U+UI+NI. NBPT [N–(n-butyl) thiophosphoric triamide] and DMPP [3, 4-Dimethyl-1H-pyrazole phosphate] as the urease inhibitor and nitrification inhibitor wasuniformly mixed with urea (U) at a rate of 10,000 mg/kg. The total urea, as base fertilizer,wasapplied to field before the transplanting of rice seedlings.The activities of urease and nitrate reductase, the contents of NH4+-N, NO3--N and microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) in soil were analyzed in tillering and booting stages. The rice yield and N efficiency were investigated. The mechanism of increasedyield and N efficiency due to inhibitor waselucidated by the stepwise regression analysis. 【Result】1) Compared with the normal urea treatment, NBPT addition and NBPT +DMPPsignificantly improved the grain yields and the recovery of applied N in the above-ground parts by 6.56% and 8.24%,19.4% and 23.7%, respectively.2) The addition of NBPT and NBPT + DMPP in urea significantly reduced urease activity and soil NH4+-N content at the tillering stage, and increased soil NH4+-N content at the booting stage, without obvious effects on nitrate reductase activity (NRA), soil NO3--N content and microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) in both stages. There is no significant difference in urease activity between urea and urea + NBPT at the booting stage. Therefore, the urease inhibitor NBPT was effective on inhibiting the activity of urease and improving the content of NH4+-N before the booting stage. On the contrast, adding DMPP only had no obvious effects on these indexes above. 3)The stepwise regression analysis revealed that the grain yield of rice was significantly associated with NH4+-N content in soil at the tillering and booting stages, especially, the latter. However, other properties in soil have no obvious effects on the grain yield.【Conclusion】Urea combined withNBPT and combination of NBPT + DMPPslowed down the hydrolytic action of urea and dramatically improved soil NH4+-N content in the booting stage, which is the dominate factor of improving the grain yields and the recovery of applied N in the above-ground parts. The conclusion is consistent with postponing nitrogen technique in agriculture.
urease inhibitor; nitrification inhibitor; paddy field; yield; the recovery of applied N
10.16819/j.1001-7216.2017.7008
S143.1; S511.062
A
1001-7216(2017)04-0417-08
2017-01-17
國家重點研發(fā)計劃資助項目(2016YFD0200109,2016YFD0200402,2017YFD0301601);國家科技支撐計劃資助項目(2015BAD23B03-01);江西省農(nóng)業(yè)科學(xué)院創(chuàng)新基金博士啟動項目(2014ZCBS009)。
修改稿收到日期:2017-03-07。