亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        繁與簡是一念間的事
        ——一道試題的解法探究與反思收獲

        2017-04-24 02:17:15束仁武郵編611731周純舫郵編230001
        關(guān)鍵詞:動點(diǎn)道題郵編

        束仁武 (郵編:611731) 周純舫 (郵編:230001)

        安徽省合肥市廬江第四中學(xué) 安徽省合肥市廬江第二中學(xué)

        繁與簡是一念間的事
        ——一道試題的解法探究與反思收獲

        束仁武 (郵編:611731) 周純舫 (郵編:230001)

        安徽省合肥市廬江第四中學(xué) 安徽省合肥市廬江第二中學(xué)

        問題是數(shù)學(xué)的心臟.在教學(xué)課余時,同學(xué)們總找一些感興趣的問題跟我們交流.面對這種情況,我們雖然深知要有“一桶水”,但在沒有參考答案的情況下,要一眼就能尋找到最優(yōu)化的解題方案,我們還需不斷研修.

        我們對學(xué)生提問的問題時,不能“避難就易”,會的就解答,不會的就找借口,三兩次下去,同學(xué)們就會對教師的解題水平產(chǎn)生懷疑,影響教師在學(xué)生心目中的可信度.所以,在同學(xué)們提出問題時,我們力求迅速指明解題思路,及時給出滿意解答,但由于時間倉促,老師有時候也會犯傻.這正如羅增儒教授指出:解題笨拙與解題智慧相對,有時真是用了多余的知識,走了多余的思維回路,人為地拉長了解題的長度,表現(xiàn)為解題笨拙.當(dāng)出現(xiàn)解題笨拙時,要通過反思,找回解題智慧.我們列舉一個發(fā)生在身邊的案例,進(jìn)行剖析,體會“簡繁之間只是一念之差”.

        1 問題及解法探究

        我們在上《幾何證明選講》專題后,就遇到這樣的一幕:同學(xué)A興沖沖拿著一道平面幾何題來問我們.

        圖1

        題目 如圖1,在正方形ABCD中,AB=4,E、F是邊AD上兩動點(diǎn),AE=DF=a,連接CF交BD于G,連接AG交AE于H,求DH長度的最小值是多少?

        乍看這題,點(diǎn)E、F在AD上運(yùn)動,連接CF交BD可以確定動點(diǎn)G,連接AG交AE可以確定動點(diǎn)H.要求DH的最小值?可以依據(jù)解析思想把幾何問題轉(zhuǎn)化為代數(shù)問題.求出H點(diǎn)的軌跡方程,弄清H點(diǎn)的軌跡,從而確定何時DH最小,并求出最小值.

        圖2

        圖3

        于是,我們就采取建立直角坐標(biāo)系,通過建立直線方程來解決.

        (2) 當(dāng)E不與A和D重合時,設(shè):

        聯(lián)立①,②方程:

        所以G的坐標(biāo)為

        解題后我們繼續(xù)思考:求DH的最小值,終歸是求最值問題,所以我自然的聯(lián)想到函數(shù)的基本性質(zhì)——最值.求DH的最小值,不就是要建立變量DH與變量AE(或AF=a)的函數(shù)關(guān)系式,再通過確定的函數(shù)關(guān)系式,求出函數(shù)最小值.從而我們得到以下兩種解答過程.

        通過以上三種方法,我們發(fā)現(xiàn)第三種方法比前面兩種方法更繁瑣,這種定量分析的解析法的確繁贅,難以置信.于是,我們就思考,有沒有更簡便的方法呢?難道這道題變量a的變化對線段DH的變化沒有更直觀的幾何解釋嗎?我們能否用幾何的方法來作定性考查呢?

        圖4

        解法4 如圖4,在正方形ABCD中,BD為對角線,

        根據(jù)對稱性可知:∠2=∠3,

        在△ABE和△DCF中,AB=CD,∠BAE=∠CDF,AE=DF,∴Rt△ABE≌Rt△DCF,∠1=∠2,∠3=∠1.

        而∠BAH+∠3=90°,∠BAH+∠1=90°,則BE⊥AG,由此可知:不論E、F兩動點(diǎn)在AD上如何運(yùn)動,∠AHB=90°的值不變.

        圖5

        根據(jù)三角形的三邊關(guān)系,OH+DH>OD,當(dāng)O、D、H三點(diǎn)共線時,DH的長度最小.

        2 反思收獲

        下面,我們再深入反思這道題的價值,還是收獲頗豐.

        反思收獲1 如果點(diǎn)E、F兩點(diǎn)在AD所在的直線上運(yùn)動,其它條件不變,那么點(diǎn)H形成的軌跡是什么?既然有最小值,那么點(diǎn)D到H之間的距離有沒有最大值呢?最大距離是多少?

        剖析 當(dāng)E、F繼續(xù)在AD所在的直線上運(yùn)動,我們借助幾何畫板演示,發(fā)現(xiàn)H點(diǎn)的軌跡還會變成一個以AB為直徑的半圓(如圖5).

        反思收獲2 我們從答案來看,這個數(shù)值是巧合呢?還是另有緣由?如果將DH的長度與正方形邊長AD相比是什么呢?

        在直角三角形△OAD中,∠A=90°,且AD=2AO,就可以構(gòu)造黃金分割點(diǎn).這不真是我們探究發(fā)現(xiàn)又一種作黃金分割的方法嗎?雖然方法還雛嫩,但不能不說是一種好想法.

        反思收獲3 如果把正方形改為正五邊形呢,其它條件不變,是否有類似的結(jié)論呢?如果我們把正方形改為正六邊形呢?其它條件不變,是否有類似的結(jié)論呢?……,如果我們把正方形改為正n邊形呢?其它條件不變,是否有類似的結(jié)論呢?

        圖6

        回答是肯定.對于正五邊形來說,如圖6,已知正五邊形ABCDE,AF是其中一條對稱軸,點(diǎn)M、N為邊AB上兩動點(diǎn),且AN=BM,連接EN交AF于G點(diǎn),連接BG交CM于H,則∠BHC為定值.其定值為;點(diǎn)H的軌跡在以BC為劣弧所含的圓周角為72°的圓弧上.

        圖7

        如圖7,已知正六邊形ABCDEF,點(diǎn)M、N為邊AB上兩動點(diǎn),且AN=BM,連接FN交AD于G點(diǎn),連接BG交CM于H,則∠BHC為定值,其定值為=60°;點(diǎn)H的軌跡在以BC為劣弧所含的圓周角為60°的弧上.

        一般地,有類似性質(zhì),這里不再贅述.

        反思收獲4 這題探究到此,我們進(jìn)一步發(fā)現(xiàn),它可以派生出安徽省2016年數(shù)學(xué)中考題第10題:

        圖8

        如圖8,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是ABC內(nèi)部的一個動點(diǎn),且滿足∠PAB=∠PBC,則線段CP長的最小值為( )

        答案是B.

        理由如下:∵∠PAB=∠PBC,AB⊥BC,

        ∴∠ABP+∠PBC=90°,

        ∴∠PAB+∠ABP=90°,∴∠APB=90°,

        ∴點(diǎn)P在以AB為直徑的⊙O上.

        故當(dāng)OP=2時,CP最小值為3.

        3 自我成長

        3.1 解題笨拙與智慧

        對于以上四種解題方法分析可見,開始時,我們在學(xué)習(xí)《平面幾何選講》時,學(xué)生冷不丁地提出問題,我們根據(jù)學(xué)生當(dāng)前的知識存儲,聯(lián)想到用解析法建立方程求交點(diǎn),解決動點(diǎn)距離問題.其實,這是在選擇解題方法上的盲從,沒有進(jìn)行深入考慮,沒有進(jìn)行“解題智慧”的挖掘,而是被題目中提供的表面現(xiàn)象所迷惑,誤以為建立函數(shù)關(guān)系來求最小值,比較簡單,其實增加了“解題長度”,運(yùn)用了多余的知識,所以,走到“解題笨拙”的一面.為了避免少走彎路,減少解題中長度,繞開解題笨拙,還是要在審題時多思考,化繁為簡,才會應(yīng)運(yùn)而生地出現(xiàn)“絕處逢生”的美巧想法,解題后的幾點(diǎn)反思,真是點(diǎn)滴心血筑成的.

        3.2 專業(yè)成長

        教師在專業(yè)成長的過程中,為什么要不斷地提高自我專業(yè)水平呢?只有通過研修,才能不斷提升自我.通過解析法、參數(shù)法和函數(shù)法求解,會發(fā)現(xiàn)直線AG、BE位置關(guān)系,確定動點(diǎn)H的所在方程,判定動點(diǎn)H是以AB為直徑的半圓軌跡,而要求DH的最短距離,就是求點(diǎn)到圓上最短距離.進(jìn)而為解法4提供強(qiáng)有力的支撐,解法4是純平面幾何的證法,通過反思聯(lián)想,把這道題與一道中考題成功對接,縮短了知識間的距離.這道題解答探究過程就是一個成功的案例.

        這種方法探究成功,進(jìn)一步說明,教師的專業(yè)成長要不斷地研修,只有站得高,才能看得遠(yuǎn).用高層次的知識居高臨下指導(dǎo)教學(xué),在指導(dǎo)教學(xué)實踐過程中,不斷儲蓄知識,積蓄能量,拓展解題思路.

        當(dāng)我們重新審視這道題的探究歷程時,卻有“眾里尋它千百度,驀然回首,那人卻在燈火闌珊去”的感覺!其實,這道題的本質(zhì)就是求點(diǎn)到圓上最短距離問題,真是繁與簡是一念間的事.

        1 羅增儒. 數(shù)學(xué)解題學(xué)引論[M].西安:陜西師范大學(xué)出版社,2001

        2017-01-18)

        猜你喜歡
        動點(diǎn)道題郵編
        解題擂臺
        誤會
        三角
        《蓮年有魚》
        人物畫報(2019年2期)2019-09-10 07:46:47
        函數(shù)中的動點(diǎn)問題解答策略
        分類討論化解動點(diǎn)型題
        動點(diǎn)軌跡方程的解法探討
        理事會員單位排名不分先后
        這道題誰會做
        “以不變應(yīng)萬變”,求動點(diǎn)的路徑長度
        亚洲av无码一区东京热久久| 老肥熟女老女人野外免费区| 亚洲福利一区二区不卡| 国产精品内射久久一级二| 亚洲一卡2卡3卡4卡5卡精品| 国产欧美日产久久| 最新福利姬在线视频国产观看 | 日韩精品成人无码专区免费| 免费无码国产v片在线观看| 国产精品亚洲综合天堂夜夜| 亚洲熟女天堂av一区二区三区| 国产av精品一区二区三| 东方aⅴ免费观看久久av| 日韩熟妇精品视频一区二区| 国产一区二区三区在线观看黄| 久久婷婷五月综合色高清| 一二三四在线视频观看社区| 亚洲一区二区三区在线观看播放| 精品人妻日韩中文字幕| 日韩欧美在线综合网另类| 亲子乱aⅴ一区二区三区下载| 国产一线视频在线观看高清| 青青草手机视频免费在线播放| 久久狠狠色噜噜狠狠狠狠97| 亚洲男人第一av网站| 中国老太老肥熟女视频| 美女被男人插得高潮的网站| 中文字幕+乱码+中文字幕一区| 成年女人A级毛片免| 偷拍熟女露出喷水在线91| 国产精品久久精品第一页| 国产精品va在线播放我和闺蜜| 毛片一级精油按摩无码| 午夜av天堂精品一区| 精品人妻伦九区久久aaa片| 久久久亚洲经典视频| 亚洲天堂av在线观看免费| 无码熟妇人妻av影音先锋| 巨大欧美黑人xxxxbbbb| 少妇激情一区二区三区久久大香香| 亚洲精品国产一二三区|