許 建,賈 凱,朱君芳,胡 梅,王 娜,高 杰
?
適宜的氮硫配施提高基質(zhì)栽培大蒜鱗莖品質(zhì)
許 建1,2,賈 凱1,朱君芳1,胡 梅1,王 娜1,高 杰1※
(1. 新疆農(nóng)業(yè)大學(xué)林學(xué)與園藝學(xué)院,烏魯木齊 830052; 2. 新疆農(nóng)業(yè)職業(yè)技術(shù)學(xué)院園林科技分院,昌吉 831100)
試驗(yàn)采用蛭石-珍珠巖盆栽方式,研究了不同濃度氮(5、10、20 mmol/L,記作N1、N2、N3)、硫(2、4、8 mmol/L,記作S1、S2、S3)配施條件對(duì)大蒜鱗莖品質(zhì)的影響,并采用隸屬函數(shù)法對(duì)大蒜品質(zhì)進(jìn)行綜合評(píng)價(jià),分析鱗莖品質(zhì)與氮硫互作水平的響應(yīng)關(guān)系。試驗(yàn)結(jié)果表明,氮素、硫素對(duì)大蒜主要營養(yǎng)成分含量影響不盡相同,氮硫配施能夠不同程度提高大蒜鱗莖中可溶性蛋白、VC、大蒜多糖、游離氨基酸的含量,且氮、硫單一因素對(duì)大蒜鱗莖品質(zhì)影響遠(yuǎn)低于元素間交互作用。但在氮素適宜水平下(10~20 mmol/L),硫素水平對(duì)大蒜鱗莖中大蒜辣素含量有顯著影響,提高硫濃度能夠顯著增加大蒜辣素含量,而在硫素濃度過高時(shí)(8 mmol/L)則明顯抑制該物質(zhì)合成。隸屬函數(shù)法綜合評(píng)價(jià)以N3S2處理組大蒜鱗莖品質(zhì)最優(yōu),隸屬函數(shù)值為0.81,對(duì)照組(CK)最差。綜合分析可見,無機(jī)基質(zhì)栽培條件下氮硫配施顯著影響大蒜鱗莖品質(zhì),氮素濃度20 mmol/L(N3)、硫素濃度4 mmol/L(S2)時(shí)最利于大蒜鱗莖品質(zhì)的提升,為大蒜無機(jī)基質(zhì)栽培最佳氮、硫配施水平,且兩元素配施存在明顯的互作效應(yīng)。該結(jié)論為大蒜栽培氮、硫元素合理配施提供試驗(yàn)指導(dǎo)。
氮;硫;品質(zhì)調(diào)控;大蒜;隸屬函數(shù)
氮是植物所需的第二大量必須元素,是組成蛋白質(zhì)、核酸、葉綠素等的必需元素[1-2]。硫也是生物體的必需元素,對(duì)植物蛋白質(zhì)合成、葉綠體構(gòu)成和功能維持、輔酶,以及小分子物質(zhì)合成、生長(zhǎng)、抗逆調(diào)節(jié)等方面均有重要作用[3-5],約占植物干質(zhì)量的0.1%,是含硫氨基酸(半胱氨酸、甲硫氨酸等)和次級(jí)代謝物(十字花科的芥子油苷和蔥屬植物的風(fēng)味前體物質(zhì)S-烴基半胱氨酸亞砜)的組成成分[6]。蒜氨酸(alliin)類物質(zhì)(cysteine sulphoxide,CSOs)是蔥屬植物特征辛辣氣味的前體合成物質(zhì),是一類性質(zhì)穩(wěn)定、無味的非蛋白含硫氨基酸[7]。硫和氮元素在 CSOs 合成過程中具有重要的調(diào)控作用[8]。
植物生長(zhǎng)過程中各種營養(yǎng)元素間的交互-協(xié)同作用是植物營養(yǎng)與生理研究的重點(diǎn)內(nèi)容,但多集中在小麥、玉米、大豆等大宗作物上[9-14]。大蒜需硫量較大,氮、硫養(yǎng)分及交互作用對(duì)其生長(zhǎng)與栽培品質(zhì)均有重要的影響??嘴`君等分別研究了氮硫互作對(duì)大蔥品質(zhì)、主要元素吸收分配特性以及硫同化關(guān)鍵酶活性的影響,結(jié)果表明:N、S水平及其互作效應(yīng)對(duì)大蔥N、P、K、S積累分配有顯著影響[15];低氮或者高氮條件下均抑制硫同化酶活性,而硫水平的提高則顯著抑制ATP硫酸化酶(ATP sulfurylase,ATPS)和O-乙酰絲氨酸水解酶(O-acetylserine (thiol)lyase,OASS)活性[16]。國內(nèi)針對(duì)氮硫互作與大蒜鱗莖品質(zhì)關(guān)系的研究較少,本文采用無機(jī)基質(zhì)栽培形式,分析大蒜鱗莖品質(zhì)對(duì)不同濃度氮、硫2種元素互作水平的響應(yīng)情況,并采用隸屬函數(shù)法綜合評(píng)價(jià)大蒜鱗莖品質(zhì),以期為大蒜栽培中氮、硫元素合理施配提供技術(shù)參考。
1.1 試驗(yàn)設(shè)計(jì)
試驗(yàn)用大蒜品種為新疆吉木薩爾縣所產(chǎn)白皮蒜,大蒜經(jīng)地窖保藏越冬后,于2015年4月18日播種。栽培采用蛭石-珍珠巖栽培,配制比例6:4,蛭石粒度大小為0.3~0.5 cm,栽培前基質(zhì)先經(jīng)蒸餾水充分淋洗。選用塑料栽培盆,盆高20 cm,直徑15 cm,蛭石裝載高度為盆高4/5。為減小母蒜對(duì)試驗(yàn)結(jié)果的影響,該試驗(yàn)選取的鱗芽質(zhì)量為4.0~5.0 g,每盆栽2株大蒜,置于塑料防雨棚下澆灌營養(yǎng)液培養(yǎng)。
營養(yǎng)液成分采用Hoagland營養(yǎng)配方,在大量元素、微量元素一致的基礎(chǔ)上,設(shè)置3個(gè)氮素水平、3個(gè)硫素水平,氮素水平分別為5、10、20 mmol/L(記作N1、N2、N3);硫素水平分別為2、4、8 mmol/L(記作S1、S2、S3)。采用二因素三水平完全隨機(jī)區(qū)組設(shè)計(jì),共9個(gè)處理組加;另設(shè)置空白對(duì)照組(CK),僅施用共同基礎(chǔ)元素,但不施用氮、硫元素。每組分別處理30盆(60株)。
栽培期間,幼苗期每7 d澆灌1次營養(yǎng)液,至花莖伸長(zhǎng)期后每5 d澆灌1次營養(yǎng)液。每澆灌3次營養(yǎng)液用蒸餾水清洗1次,清除積累的鹽分。至10月6日大蒜葉片萎蔫,鱗莖完全成熟后采收。采收后的大蒜在陰涼處通風(fēng)晾干后,測(cè)定各鱗莖的品質(zhì)指標(biāo)。
1.2 測(cè)定項(xiàng)目與方法
可溶性蛋白采用考馬斯亮藍(lán)法測(cè)定;VC采用亞鐵離子-紅菲羅啉分光光度法;游離氨基酸含量采用茚三酮顯色法,以上參照曹建康方法[17];大蒜多糖含量采用蒽酮-硫酸法,參照梁麗軍方法[18];大蒜辣素含量測(cè)定采用丙酮酸差量法,參照朱君芳方法[19]。
1.3 數(shù)據(jù)處理與分析
采用DPS7.05軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,做圖采用SigmaPlot12.5繪制。
大蒜鱗莖綜合品質(zhì)評(píng)價(jià)采用模糊評(píng)價(jià)隸屬函數(shù)法。先使用極值標(biāo)準(zhǔn)化法對(duì)測(cè)定的各指標(biāo)原始數(shù)據(jù)進(jìn)行無量綱化處理,使其值為0~1之間的標(biāo)準(zhǔn)化數(shù)據(jù)。極值標(biāo)準(zhǔn)化處理利用計(jì)算公式
()=(?min)/(max?min) (1)
式中為每個(gè)特征值;min為最小特征值;max為特征最大值。
原始數(shù)據(jù)標(biāo)準(zhǔn)化處理后,將原始數(shù)據(jù)轉(zhuǎn)化為模糊轉(zhuǎn)換矩陣,再將其與各組分的權(quán)重矩陣結(jié)合運(yùn)算,得到最終的隸屬函數(shù)評(píng)價(jià)結(jié)果。即
R=Y×S (2)
式中R為第處理組品質(zhì)指標(biāo)的隸屬函數(shù)評(píng)價(jià)值;Y為第處理組的第個(gè)評(píng)價(jià)指標(biāo)數(shù)值標(biāo)準(zhǔn)化結(jié)果;S為第個(gè)評(píng)價(jià)指標(biāo)的權(quán)重值。
2.1 大蒜鱗莖品質(zhì)對(duì)氮硫互作的響應(yīng)情況
大蒜鱗莖品質(zhì)指標(biāo)間相關(guān)系數(shù)分析結(jié)果(表1)表明,可溶性蛋白含量與VC、游離氨基酸、大蒜多糖、大蒜辣素含量均為正相關(guān)關(guān)系,且與VC含量相關(guān)系數(shù)高達(dá)0.95,呈極顯著相關(guān)性(<0.01)。
表1 大蒜品質(zhì)指標(biāo)間相關(guān)系數(shù)
注:*、**分別表示在0.05和0.01水平上差異顯著,下同。
Note: *, ** indicate significant difference at 0.05 and 0.01 level, respectively, the same as below.
大蒜多糖含量與可溶性蛋白、VC呈正相關(guān)關(guān)系,而與游離氨基酸、大蒜辣素含量呈負(fù)相關(guān)關(guān)系,但相關(guān)性均不顯著。游離氨基酸含量與大蒜辣素含量相關(guān)系數(shù)為0.72,呈正向顯著相關(guān)。這一結(jié)果可以驗(yàn)證,蒜氨酸(alliin)作為一種非蛋白合成氨基酸,是大蒜辣素(allicin)合成的前體物質(zhì),所以游離氨基酸與大蒜辣素含量間存在一定正相關(guān)關(guān)系。
2.1.1 可溶性蛋白
由圖1可見,不同氮硫互作水平對(duì)可溶性蛋白含量的影響差異顯著,以N3S1最低,為1.68%。在N3水平條件下,隨著硫素增加可溶性蛋白含量呈升高趨勢(shì),可見在該氮素水平下增施硫能夠促進(jìn)鱗莖中可溶性蛋白的合成。氮素在N2(10 mmol/L)條件下可溶性蛋白含量變化有所差異,呈先升高后降低趨勢(shì),且組間差異不顯著。隨著N素水平的升高,可溶性蛋白含量整體呈先上升后下降趨勢(shì);而隨著S素水平升高則呈持續(xù)上升趨勢(shì),且在S3(8 mmol/L)水平下,顯著升高。
2.1.2 抗壞血酸(VC)
由圖2可見,大蒜中VC含量整體較低,介于13.01~39.43 mg/(100 g)。不同氮硫互作處理組的鱗莖VC含量差異明顯,其中以N3S1處理組最低,N1S3處理組最高。在N1、N3水平條件下隨著硫素水平的升高,VC含量呈上升趨勢(shì);在N2條件下則呈先升高后降低趨勢(shì),以硫素水平4 mmol/L為最大值。隨著N素水平的升高,VC含量整體呈緩慢下降趨勢(shì),組間差異不顯著;而隨著S素水平升高,VC含量則呈上升趨勢(shì),組間差異顯著。由此可知,施氮對(duì)促進(jìn)抗壞血酸的形成作用較小,而硫素的施用則顯著影響VC的合成。
2.1.3 大蒜多糖
由圖3可見,大蒜鱗莖中大蒜多糖含量表現(xiàn)差異性較大,以空白對(duì)照組(CK)大蒜多糖含量最低,為30.56%;以N2S2處理組含量最高,為40.50%。在不同氮素水平下,各處理隨著硫素水平升高,大蒜多糖含量呈先升高后降低趨勢(shì),均以4 mmol/L最高。在相同硫素水平條件下,隨著氮素水平升高也呈先升高后降低趨勢(shì),各處理均以N2組含量最高。隨著N素水平的升高,大蒜多糖含量呈先緩慢上升后下降趨勢(shì);而隨著S素水平升高也呈現(xiàn)先上升后下降趨勢(shì)。過高氮素或硫素水平均能抑制大蒜多糖的形成。
2.1.4 游離氨基酸
硫是合成氨基酸的重要組成成分,參與植物體大量生理生化活動(dòng),更是蔥屬類植物合成前體風(fēng)味物質(zhì)的特征元素。如圖4所示,在氮素水平增高條件下,游離氨基酸含量整體呈增長(zhǎng)趨勢(shì),對(duì)照組大蒜鱗莖中游離氨基酸含量最低,為4.34%;各處理組游離氨基酸含量有不同程度提高。氮素在5~10 mmol/L水平條件下,隨著硫素水平升高游離氨基酸含量均呈上升趨勢(shì);當(dāng)?shù)厮竭_(dá)到20 mmol/L時(shí),呈先升高后降低趨勢(shì),在硫濃度8 mmol/L時(shí)游離氨基酸含量較4 mmol/L降低30.92%,呈顯著差異。增加氮素或硫肥均能達(dá)到增加大蒜鱗莖中游離氨基酸含量的目的,且以施用硫肥增效更顯著。
2.1.5 大蒜辣素
如圖5所示,在氮素水平較低時(shí)(5 mmol/L),硫素水平的提高對(duì)大蒜辣素含量影響不顯著,且與對(duì)照組相比也無顯著差異??梢姷偷毓┙o也使得大蒜對(duì)硫素的供應(yīng)水平失去敏感性,氮硫互作程度下降。當(dāng)?shù)厮竭_(dá)到10 mmol/L時(shí),隨著硫供應(yīng)水平提高大蒜辣素含量顯著提高,分別較對(duì)照組高13.94%、33.56%、29.15%。而高氮素水平條件下(20 mmol/L),隨著硫素水平升高,大蒜辣素含量呈先上升后下降趨勢(shì),以N3S2處理組大蒜辣素含量最高,為13.42 mg/g??梢娏蛩氐奶岣吣軌蝻@著提升大蒜辣素的合成,但在高硫條件下(8 mmol/L)則顯著抑制了大蒜辣素的合成。
2.1.6 氮硫互作對(duì)大蒜鱗莖品質(zhì)影響的方差分析
表2中所示為氮硫互作對(duì)大蒜鱗莖品質(zhì)影響的方差分析結(jié)果。由表可見,N素對(duì)大蒜主要營養(yǎng)成分含量影響不顯著,而S素僅對(duì)大蒜辣素含量影響顯著;但N×S對(duì)可溶性蛋白含量呈顯著影響,對(duì)VC、游離氨基酸、大蒜多糖、大蒜辣素含量呈極顯著影響。由此可知,氮、硫兩元素之間存在顯著的交互作用。
表2 氮硫互作對(duì)大蒜品質(zhì)影響的方差分析(F值)
注:N、S、N×S分別表示氮素、硫素、氮硫交互作用。
Note: N, S, N×S indicate nitrogen, sulfur, interaction between nitrogen and sulfur, respectively.
2.2 隸屬函數(shù)法綜合評(píng)價(jià)大蒜鱗莖品質(zhì)對(duì)氮硫互作的響應(yīng)
2.2.1 隸屬函數(shù)模糊轉(zhuǎn)換矩陣的確立
根據(jù)隸屬函數(shù)模型建立方法,對(duì)大蒜品質(zhì)指標(biāo)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,評(píng)價(jià)要素參照計(jì)算公式(1)得到如下轉(zhuǎn)換矩陣,詳見表3。
2.2.2 權(quán)重系數(shù)及品質(zhì)綜合評(píng)價(jià)
使用隸屬函數(shù)評(píng)價(jià)作物綜合品質(zhì)的方法很多,如模糊統(tǒng)計(jì)法、專家打分法等[20]。大蒜辣素與多糖成分是大蒜中重要品質(zhì)評(píng)價(jià)指標(biāo),鑒于各品質(zhì)因子的貢獻(xiàn)權(quán)重差異較大,所以根據(jù)統(tǒng)計(jì)專家打分與相關(guān)文獻(xiàn)制定了各評(píng)價(jià)指標(biāo)的權(quán)重[21-22],見表4。
表3 大蒜品質(zhì)隸屬函數(shù)
表4 各評(píng)價(jià)指標(biāo)的權(quán)重系數(shù)
采用隸屬函數(shù)法對(duì)氮硫互作條件下的大蒜品質(zhì)進(jìn)行綜合評(píng)價(jià),結(jié)果見表5。隸屬函數(shù)值越大,排名越高,表示品質(zhì)越好。由供試的10組大蒜鱗莖品質(zhì)綜合評(píng)價(jià)結(jié)果可知,N3S2組排名第一,隸屬函數(shù)值為0.81;其次是N3S1和N2S2,排名第二。以空白對(duì)照組(CK)隸屬函數(shù)值最低,為0.10,排名第10,綜合品質(zhì)最差。
表5 大蒜品質(zhì)綜合評(píng)價(jià)結(jié)果
氮與硫是植物體必須的2種元素,對(duì)植物生長(zhǎng)發(fā)育與生理生化有著重要作用,而二者對(duì)作物品質(zhì)的影響不盡相同。劉中良等[23]研究水培條件下施硫水平對(duì)大蒜鱗莖品質(zhì)的影響,認(rèn)為在2.25 mmol/L硫處理?xiàng)l件下大蒜鱗莖中大蒜辣素、大蒜多糖、游離氨基酸含量均最高。研究認(rèn)為施氮能夠顯著降低蕪菁肉質(zhì)根中VC和大蒜多糖的含量,可能是因?yàn)榈适┯迷黾恿巳~片數(shù)量和葉面積進(jìn)而影響冠層的光密度,影響植株光合作用的結(jié)果[24]。
趙玉霞等[25]認(rèn)為在高施氮量與中等施硫量條件下,冬小麥產(chǎn)量可以超過平均產(chǎn)量,進(jìn)而達(dá)到增產(chǎn)的目的。吳萍萍等[26]研究氮硫互作對(duì)生姜生長(zhǎng)的影響認(rèn)為,在適宜的氮素施肥范圍內(nèi),產(chǎn)量隨施氮量增加呈增加趨勢(shì);在相同施氮量下,增加硫肥的施用可以提高生姜干物質(zhì)量和產(chǎn)量。張翔等[27]研究了氮硫肥對(duì)大蒜產(chǎn)量和品質(zhì)的影響,研究結(jié)果認(rèn)為氮-硫配施能夠顯著增加大蒜產(chǎn)量,且氮、硫之間存在顯著的交互作用。
氮素供給增加條件下能夠提高植株對(duì)氮的吸收,促進(jìn)硝酸鹽的積累;在此情況下增施硫能夠調(diào)節(jié)N/S比例,促進(jìn)蛋白質(zhì)、氨基酸等物質(zhì)的合成。Koprivova等[28]認(rèn)為氮-硫同化途徑存在密切交互作用,試驗(yàn)證實(shí)在營養(yǎng)液中增加NH4+能夠提高合成蛋白質(zhì)的氨基酸合成量,且氮素營養(yǎng)在轉(zhuǎn)錄水平上調(diào)控硫酸鹽還原,乙酰絲氨酸(O-acetylserine)在硫酸鹽和硝酸鹽同化過程中起到協(xié)調(diào)作用??嘴`君等[29]研究氮硫互作對(duì)大蔥品質(zhì)的影響認(rèn)為,氮硫互作對(duì)大蔥品質(zhì)存在顯著的互作效應(yīng),隨著氮、硫供應(yīng)水平的提高,大蔥中硫化物的含量顯著增加,N素濃度16 mmol/L、S素濃度3.35 mmol/L最有利于大蔥品質(zhì)提升。Bolem等[30]研究了氮硫互作對(duì)洋蔥與大蒜中蒜氨酸含量的影響,認(rèn)為硫濃度的升高能夠促進(jìn)植物葉片和鱗莖中蒜氨酸的合成量,而氮素對(duì)其影響較小。本研究結(jié)果表明,在低N條件下S素的供應(yīng)量對(duì)大蒜辣素合成無顯著影響,但當(dāng)N濃度在10~20 mmol/L時(shí)S素配施量對(duì)大蒜辣素合成量有顯著影響。
隸屬函數(shù)是對(duì)模糊概念的定量描述,能夠降低單一指標(biāo)評(píng)價(jià)對(duì)作物綜合品質(zhì)的評(píng)價(jià)“失真”;使用專家打分法確定主要品質(zhì)權(quán)重系數(shù)雖然帶有主觀色彩,但更符合實(shí)際情況。模糊數(shù)學(xué)方法已經(jīng)廣泛應(yīng)用于農(nóng)作物品質(zhì)綜合評(píng)價(jià)方面,如番茄[31]、蒜薹[32]、扁桃[33]、甘薯[34]等。本研究將大蒜辣素、大蒜多糖作為大蒜品質(zhì)評(píng)價(jià)的主要權(quán)重因子,對(duì)氮硫互作條件下10個(gè)處理組的大蒜鱗莖進(jìn)行評(píng)價(jià)認(rèn)為,在氮素20 mmol/L(N3)、硫素4 mmol/L(S2)互作水平下大蒜鱗莖品質(zhì)最優(yōu),隸屬函數(shù)值為0.81。
本文研究大蒜鱗莖營養(yǎng)品質(zhì)對(duì)氮硫互作對(duì)的響應(yīng)關(guān)系,并以大蒜營養(yǎng)品質(zhì)為評(píng)價(jià)指標(biāo),利用隸屬函數(shù)法綜合評(píng)價(jià)大蒜品質(zhì)。結(jié)果認(rèn)為,氮、硫單一元素對(duì)大蒜鱗莖品質(zhì)影響不顯著,而2元素間存在顯著的互作關(guān)系,氮硫配施能夠不同程度提高大蒜鱗莖中可溶性蛋白、VC、大蒜多糖、游離氨基酸和大蒜辣素的含量,提升大蒜鱗莖品質(zhì);無機(jī)基質(zhì)栽培條件下氮素濃度20 mmol/L(N3)、硫素濃度4 mmol/L(S2)為新疆白皮蒜最佳施肥水平,在此條件下大蒜綜合品質(zhì)的隸屬函數(shù)值為0.81,排名最高。本文僅探討無機(jī)基質(zhì)栽培條件下大蒜鱗莖品質(zhì)對(duì)氮硫互作水平的響應(yīng),針對(duì)土壤栽培而言,氮、硫施用量對(duì)大蒜生長(zhǎng)、鱗莖品質(zhì)等方面的影響尚需進(jìn)一步研究探討。
[1] Marschner P. Marschner’s Mineral Nutrition of Higher Plants[M]. Amsterdam: Elsevier Press, 2012.
[2] 吳魏,趙軍. 植物對(duì)氮素吸收利用的研究進(jìn)展[J]. 中國農(nóng)學(xué)通報(bào),2010,26(13):75-78.
Wu Wei, Zhao Jun. Advances on plants’ nitrogen assimilation and utilization[J]. Chinese Agricultural Science Bulletin, 2010, 26(13): 75-78. (in Chinese with English abstract)
[3] 李國強(qiáng),朱云集,沈?qū)W善. 植物硫素同化途徑及其調(diào)控[J]. 植物生理學(xué)通訊,2005,41(6):699-704.
Li Guoqiang, Zhu Yunji, Shen Xueshan. Plants sulphur assimilation pathways and its regulation[J]. Plant Physiology Communications, 2005, 41(6): 699-704. (in Chinese with English abstract)
[4] 吳宇,高蕾,曹民杰,等. 植物硫營養(yǎng)代謝、調(diào)控與生物學(xué)功能[J]. 植物學(xué)通報(bào),2007,24(6):735-761.
Wu Yu, Gao Lei, Cao Minjie, et al. Plant sulfur metabolism, regulation, and biological functions[J]. Chinese Bulletin of Botany, 2007, 24(6): 735-761. (in Chinese with English abstract)
[5] 謝瑞芝,董樹亭,胡昌浩. 植物硫素營養(yǎng)研究進(jìn)展[J]. 中國農(nóng)學(xué)通報(bào),2002,18(2):65-69.
Xie Ruizhi, Dong Shuting, Hu Changhao. Research advances on sulfur plant nutrient[J]. Chinese Agricultural Science Bulletin, 2002, 18(2): 65-69. (in Chinese with English abstract)
[6] 許真,嚴(yán)永哲,盧鋼,等. 蔥屬蔬菜植物風(fēng)味前體物質(zhì)的合成途徑及調(diào)節(jié)機(jī)制[J]. 細(xì)胞生物學(xué)雜志,2007,29(4):508-512.
Xu Zhen, Yeong Cheolum, Lu Gang, et al. The biosynthetic pathways of flavor precursors and its control in alliums[J].Chinese Journal of Cell Biology, 2007, 29(4): 508-512. (in Chinese with English abstract)
[7] Anil K, kaushik B, Manjusha R, et al. Evaluation of garlic ecotypes for allicin and other allylthiosulphinate[J]. Food Chemistry, 2011, 128(4): 988-996.
[8] Huchette O, Kahane R, Auger J, et al. Influence of environmental and genetic factors on the alliin content of garlic bulbs[J]. Acta Horticulture, 2005, 688: 93-99.
[9] Salvagiotti F, Julio M, Miralles D J, et al. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake[J]. Field Crops Research, 2009, 113(2): 170-177.
[10] Tatjana B, Zdenko R. Nitrogen and sulfur uptake and remobilization in canola genotypes with varied N- and S-use efficiency differ at vegetative and maturity stages[J]. Crop and Pasture Science, 2011, 62(4): 299-312.
[11] 蔡鐵,王振林,尹燕枰. 氮硫配施對(duì)小麥籽粒谷蛋白大聚合體含量及粒度分布的影響[J]. 作物學(xué)報(bào),2011,37(6):1060-1068.
Cai Tie, Wang Zhenlin, Yin Yanping. Combined effects of nitrogen and sulphur fertilization on content and size distribution of glutenin macropolymer in wheat grain[J]. Acta Agronomica Sinica, 2011, 37(6): 1060-1068. (in Chinese with English abstract)
[12] 朱云集,李國強(qiáng),郭天財(cái),等. 硫?qū)Σ煌较滦←溒烊~氮硫同化關(guān)鍵酶活性及產(chǎn)量的影響[J]. 作物學(xué)報(bào),2007,33(7):1116-1121.
Zhu Yunji, Li Guoqiang, Guo Tiancai, et al. Effects of sulfur on key enzyme activities involved in nitrogen and sulphur assimilation in flag leaves and grain yield under different nitrogen levels in winter wheat (L.) [J].Acta Agronomica Sinica, 2007, 33(7): 1116-1121. (in Chinese with English abstract)
[13] 謝瑞芝,董樹亭,胡昌浩,等軍. 氮硫互作對(duì)玉米籽粒營養(yǎng)品質(zhì)的影響[J]. 中國農(nóng)業(yè)科學(xué),2003,36(3):263-268.
Xie Ruizhi, Dong Shuting, Hu Changhao, et al. Influence of nitrogen and sulfur interaction on grain quality of maize[J].Scientia Agricultura Sinica, 2003, 36(3): 263-268. (in Chinese with English abstract)
[14] Al-Redhaiman K N, Helal M I D, Shahin R R. Effect of sulfur blended N-fertilizers and nitrogen use efficiency and quality of Lettuce yield[J]. Pakistan Journal of Biological Science, 2003, 16(6): 1408-1412.
[15] 孔靈君,徐坤,何平,等. 氮硫互作對(duì)大蔥氮、磷、鉀、硫吸收分配特性的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2014,20(1):172-178.
Kong Lingjun, Xu Kun, He Ping, et al. Influence of interaction between nitrogen and sulfur on N, P, K and S absorption and distribution of Chinese spring onion[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 172-178. (in Chinese with English abstract)
[16] 劉松忠,陳清,馮固,等. 氮硫供應(yīng)對(duì)大蔥含硫有機(jī)物及其代謝關(guān)鍵酶活性的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2010,19(6):148-152.
Liu Shuzhong, Chen Qing, Feng Gu, et al. Effects of nitrogen and sulfur supply on sulfur-containing compounds and activities of key enzymes for sulfur metabolism in Chinese spring onion[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(6): 148-152. (in Chinese with English abstract)
[17] 曹建康,姜微波,趙玉梅. 果蔬采后生理生化實(shí)驗(yàn)指導(dǎo)[M]. 北京:中國輕工業(yè)出版社,2007.
[18] 梁麗軍,曾哲靈,熊濤,等. 蒽酮-硫酸法測(cè)定大蒜多糖含量[J]. 食品科學(xué),2008,29(9):499-502.
Liang Lijun, Zeng Zheling, Xiong Tao, et al. Determination of polysaccharide in garlic seed by anthrone-sulfuric method [J].Food Science, 2008, 29(9): 499-502. (in Chinese with English abstract)
[19] 朱君芳,許建,高杰. 丙酮酸差量法測(cè)定大蒜中大蒜辣素方法的建立[J]. 食品與發(fā)酵工業(yè),2015,41(11):148-151.
Zhu Junfang, Xu Jian, Gao Jie. The establishment of determination of allicin in garlic by pyruvic acid dispersion[J]. Food and Fermentation Industry, 2015, 41(11): 148-151. (in Chinese with English abstract)
[20] 馬千里,田英姿,英犁,等. 利用隸屬函數(shù)模型評(píng)價(jià)新疆紅棗的品質(zhì)[J]. 現(xiàn)代食品科技,2014,30(1):211-216.
Ma Qianli, Tian Yingzi, Ying Li, et al. Evaluation of the quality of Xinjiang dry red date with membership function model[J]. Modern Food Science and Technology, 2014, 30(1): 211-216. (in Chinese with English abstract)
[21] 黃雪松,李穎思,石思迷. 大蒜多糖功能性質(zhì)的研究[J].現(xiàn)代食品科技,2009,25(6):588-591.
Huang Xuesong, Li Yingsi, Shi Simi. Study of functions and properties of garlic polysaccharide[J]. Modern Food Science and Technology, 2009, 25(6): 588-591. (in Chinese with English abstract)
[22] 李新霞,林守峰,陳堅(jiān). 大蒜辣素(二烯丙基硫代亞磺酸酯)性質(zhì)及相關(guān)研究進(jìn)展[J]. 天然產(chǎn)物與開發(fā),2012,24(1):132-135.
Li Xinxia, Lin Shoufeng, Chen Jian. Research advances on properties of allicin (diallyl-thiosulfinate) and its relevant study[J]. Natural Product Research and Development, 2012, 24(1): 132-135. (in Chinese with English abstract)
[23] 劉中良,劉世琦,張自坤,等. 硫?qū)υO(shè)施水培大蒜光合特
性和鱗莖品質(zhì)的影響[J]. 園藝學(xué)報(bào),2010,37(4):581-588.
Liu Zhongliang, Liu Shiqi, Zhang Zikun, et al. Effects of sulfur content in nutrient solution on photosynthetic characteristics and quality of garlic[J]. Acta Horticulturae Sinica, 2010, 37(4): 581-588. (in Chinese with English abstract)
[24] 高相宇,李淑敏,張宏彥,等. 氮硫供應(yīng)水平對(duì)不同品種蕪菁生長(zhǎng)和營養(yǎng)品質(zhì)指標(biāo)的影響[J]. 北方園藝,2008(6):15-18.
Gao Xiangyu, Li Shumin, Zhang Hongyan, et al. Effect of nitrogen and sulfur application on growth and nutrition quality indices in Turnip (L.)[J]. Journal of North Horticulture, 2008(6): 15-18. (in Chinese with English abstract)
[25] 趙玉霞,李娜,周芳,等. 氮硫配施對(duì)冬小麥籽粒灌漿特性及產(chǎn)量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2014,25(5):1366-1672.
Zhao Yuxia, Li Na, Zhou Fang, et al. Effects of N and S applications on grain filling characteristic and yield of winter wheat[J]. Chinese Journal of Applied Ecology, 2014, 25(5): 1366-1672. (in Chinese with English abstract)
[26] 吳萍萍,王家嘉,李錄久. 氮硫配施對(duì)生姜生長(zhǎng)與氮素吸收的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2015,21(1):251-258.
Wu Pingping, Wang Jiajia, Li Jiulu. Effects of nitrogen application combined with sulfur on the growth and nitrogen uptake of ginger[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 251-258. (in Chinese with English abstract)
[27] 張翔,朱洪勛,孫春河. 氮硫單施及配施對(duì)大蒜的效應(yīng)研究[J]. 土壤肥料,1997(5):25-27.
[28] Koprivova A, Suter M, Opden C R, et al. Regulation of sulfate assimilation by nitrogen in[J]. Physiologia Plantarum, 2000, 122(3): 737-746.
[29] 孔靈君,徐坤,王磊,等. 氮硫互作對(duì)越冬大蔥生長(zhǎng)及品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2013,19(5):1272-1278.
Kong Lingjun, Xu Kun, Wang Lei, et al. Influence of nitrogen and sulfur interaction on growth and quality of Chinese spring onion[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1272-1278. (in Chinese with English abstract)
[30] Bloem E, Silvia H, Ewald S. Influence of nitrogen and sulfur fertilization on the alliin content of onions and garlic[J]. Journal of Plant Nutrition, 2004, 27(10): 1827-1839.
[31] 吳雪,王坤元,牛曉麗,等. 番茄綜合營養(yǎng)品質(zhì)指標(biāo)構(gòu)建及其對(duì)水肥供應(yīng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(4):119-128.
Wu Xue, Wang Kunyuan, Niu Xiaoli, et al. Construction of comprehensive nutritional quality index for tomato and its response to water and fertilizer supply[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 119-128. (in Chinese with English abstract)
[32] 程智慧,杜慧芳,孟煥文,等. 大蒜不同品種蒜薹營養(yǎng)品質(zhì)與分析[J]. 園藝學(xué)報(bào),1996,23(4):398-400.
Chen Zhihui, Du Huifang, Meng Huanwen, et al. Analysis and assessment of scape nutritive quality of garlic germplasm[J]. Acta Horticulturae Sinica, 1996, 23(4): 398-400. (in Chinese with English abstract)
[33] 殷繼英,張強(qiáng),田佳,等. .新疆地區(qū)扁桃堅(jiān)果品質(zhì)分析[J].經(jīng)濟(jì)林研究,2015,33(4):58-65.
Yin Jiying, Zhang Qiang, Tian Jia, et al. Analysis of nut qualities of almond varieties in Xinjiang[J].Economic Forestry Researches, 2015, 33(4): 58-65. (in Chinese with English abstract)
[34] 唐忠厚,魏猛,陳曉光,等. 不同肉色甘薯塊根主要營養(yǎng)品質(zhì)特征與綜合評(píng)價(jià)[J]. 中國農(nóng)業(yè)科學(xué),2014,47(9):1705-1714.
Tang Zhonghou, Wei Meng, Chen Xiaoguang, et al. Characters and comprehensive evaluation of nutrient quality of sweetpotato storage root with different flesh colors [J]. Scientia Agricultura Sinica, 2014, 47(9): 1705-1714.(in Chinese with English abstract)
Combined application of nitrogen and sulfur improving quality of substrate culture garlic bulbs
Xu Jian1,2, Jia Kai1, Zhu Junfang1, Hu Mei1, Wang Na1, Gao Jie1※
(1.,,830052,;2.831100,)
Garlic (L.) was among the earliest cultivated crops, has been planted all over the world. Allicin and garlic polysaccharide are important active ingredients in garlic, which have been popular in medicine, health and functional food. The S fertilization has already been shown to have a strong influence on the formation of S containing secondary metabolites in crops. Along with nitrogen metabolism in the metabolic process of sulfur, so there is synergistic effect between sulfur and nitrogen. The aim of this study was to analyze the response relationship between the garlic quality and the nitrogen and sulfur interaction, and to evaluate the comprehensive quality of garlic bulbs by the method of membership function, a pot experiment was conducted by using three levels N and S applied in factorial combinations of 5, 10, 20 mmol/L and 2, 4, 8 mmol/L in vermiculite and pearlite culture. The results indicated that the main inclusion reacted differently in response to N and S levels. N or S single factor had no significant effect on content of soluble protein, VC, garlic polysaccharide, free amino acid, while S had significant effect on allicin. The influence of N, S single factor on garlic quality was far lower than that of the interaction of N and S. The quality of garlic bulbs was raised to different extents by nitrogen and sulfur fertilization, and the interaction of nitrogen and sulfur had a significant effect on the quality formation of garlic. When N concentration was 10-20 mmol/L, sulfur concentration had significant effect on allicin content of garlic bulbs. The content of allicin was increased significantly as the increase of S levels under 4.0 mmol/L, but decreased when the sulfur content reached at 8.0 mmol/L, which showed that high content of sulfur element could inhibit the synthesis of allicin. Content of garlic polysaccharide was promoted by increasing nitrogen or sulfur fertilization. However, it would be inhibited when the nitrogen content exceeded to 10.0 mmol/L or the sulfur content reached at 8.0 mmol/L. Content of polysaccharide was the highest of 40.50% with the N 4.0 mmlol/L and S 10 mmol/L. Garlic quality of treatment with N 20.0 mmol/L and S 4.0 mmol/L was optimal, and the membership function value was 0.81, while the control group was the lowest. The results of comprehensive analysis showed that nitrogen and sulfur fertilization significantly influenced quality of garlic bulbs, N 20.0 mmol/Land S 4.0 mmol/L was optimal to improve garlic quality, and there was a significant interaction between nitrogen and sulfur element. The study would be helpful in providing practical theory guidance for fertilization on garlic.
nitrogen; sulfur; quality control; garlic; membership function
10.11975/j.issn.1002-6819.2017.04.028
S147.34
A
1002-6819(2017)-04-0203-06
2016-06-14
2017-01-25
新疆研究生科研創(chuàng)新項(xiàng)目(XJGRI2014075);新疆維吾爾自治區(qū)園藝學(xué)重點(diǎn)學(xué)科基金項(xiàng)目
許建,男,江蘇銅山人,助理研究員,博士,研究方向?yàn)槭卟嗽耘嗉吧?。烏魯木齊 新疆農(nóng)業(yè)大學(xué)林學(xué)與園藝學(xué)院,830052。Email:xujay1982@163.com
高杰,男,教授,天津人,博士生導(dǎo)師,研究方向?yàn)槭卟朔N質(zhì)資源與育種。烏魯木齊 新疆農(nóng)業(yè)大學(xué)林學(xué)與園藝學(xué)院,830052。Email:13999803260@163.com
許 建,賈 凱,朱君芳,胡 梅,王 娜,高 杰. 適宜的氮硫配施提高基質(zhì)栽培大蒜鱗莖品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):203-208. doi:10.11975/j.issn.1002-6819.2017.04.028 http://www.tcsae.org
Xu Jian, Jia Kai, Zhu Junfang, Hu Mei, Wang Na, Gao Jie. Combined application of nitrogen and sulfur improving quality of substrate culture garlic bulbs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 203-208. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.028 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2017年4期