馬麗娜,王警梁,宗望遠,黃小毛,馮 軍
?
手提式挖坑機開合螺母式自動進給機構的設計與試驗
馬麗娜,王警梁,宗望遠※,黃小毛,馮 軍
(華中農業(yè)大學工學院,武漢 430070)
挖坑機鉆頭進給量是影響其扭矩和工作效率的重要因素,研究挖坑機進給量與其動態(tài)力學參數(shù)之間的變化規(guī)律對開發(fā)挖坑機具有重要意義。該文首先根據開合螺母的工作原理,利用解析法分析了開合螺母機構的運動特性,確定出了其動銷軌道角為105°,進而設計出了一種開合螺母式自動進給機構的手提式挖坑機,不僅實現(xiàn)了挖坑作業(yè)的自動化,又能迅速完成回程運動。然后基于挖坑機升土理論,分析了挖坑機鉆頭進給量與其升土效果之間的影響關系,并通過試驗進行了驗證,從而為挖坑機進給量的設計提供了參考。研究表明,開合螺母螺距為5 mm時,挖坑機扭矩及其波動幅度均較小、工作效率最高。
機械化;設計;土壤;挖坑機;開合螺母;自動進給;鉆頭進給量;扭矩
挖坑機是一種用途廣泛、結構簡單、操作方便的挖坑整地機械,主要有懸掛式、手提式、牽引式和自走式四類。而在山地、丘陵、溝壑等復雜地形工況下普遍采用手提式挖坑機進行果樹栽植、橡膠定植、小樹移植和挖追肥穴等的作業(yè)[1]。
目前,國內外學者普遍采用試驗研究了挖坑機動態(tài)力學參數(shù)對其扭矩、功率和工作效率的影響規(guī)律[2-6],分析了挖坑機鉆頭、支撐機構、主軸等結構的動力學特性和振動特性[7-14],對其結構進行了優(yōu)化。為適應特殊環(huán)境作業(yè)工況的要求,并達到提高工作效率和降低勞動強度[15-16]的目的,設計了以液壓為動力[17-18]或具備新型進給機構[19-24]以及仿生鉆頭[25]等結構的自動化及智能化的新型挖坑機,甚至設計出了挖坑機器人[26],但其普遍造價高、使用周期短,而且受到工作條件限制[27]。對于挖坑機鉆頭進給量的控制,多采用液壓或手動等方式實現(xiàn)[28-30],尚未明確機械式挖坑機進給量的設計方法。此外,現(xiàn)有手提式挖坑機多無支架,不僅坑穴的垂直度得不到保障,大大增加了挖坑機鉆頭扭矩,嚴重制約著結構的可靠性和穩(wěn)定性,而且增大了挖坑作業(yè)過程中的不安全因素。
因此,本文基于挖坑升土理論,確定了挖坑機的進給量,并結合開合螺母機構的工作原理,設計出了一種開合螺母式自動進給機構的手提式挖坑機。
1.1 開合螺母式自動進給機構螺距的設計
根據挖坑機升土理論[31]可知,影響鉆頭順利升土的主要因素有2個,即鉆頭轉速和鉆頭進給量。鉆頭進給量一定時,鉆頭實際轉速超過臨界轉速時土壤向上流動,挖坑機順利升土。鉆頭轉速一定時,鉆頭進給量則是影響鉆頭升土效果和挖坑效率的關鍵因素。手提式挖坑機自動進給機構采用絲杠螺母傳動的進給方式,該自動進給機構的螺距即決定了挖坑機的進給量。
挖坑機鉆頭工作時,當土壤垂直運動速度大于土壤堵塞臨界速度時鉆頭能夠正常工作,而不發(fā)生堵塞現(xiàn)象。
土壤垂直運動速度[1]為
式中v為土壤垂直運動速度,m/s;0為鉆頭半徑,m;為鉆頭轉速,rad/s;為土壤速度損失系數(shù);為鉆頭升角,(°);2為土壤之間摩擦系數(shù);為鉆頭半徑處的質點速度與水平面的夾角,(°);與為系數(shù);1為土鋼摩擦角,一般取20°;為重力加速度,9.8 m/s2。
鉆頭進給速度[31]v為
避免鉆頭堵塞臨界條件為
式中為鉆頭進給量,mm/r;為土壤彭松系數(shù),取1.6。
本文中選用的鉆頭半徑為0.15 m,鉆頭升角為20°。根據文獻[1],土鋼摩擦角和土壤內摩擦角分別取20°和44°。由式(1)~式(3),可得出土壤垂直速度和堵塞臨界速度分別隨鉆頭進給量變化曲線,如圖1所示。
由圖1可知,土壤垂直速度和堵塞臨界速度隨進給量變化曲線相交于點(5.3,0.048)。當進給量小于5.3 mm/r時,土壤垂直運動速度大于鉆頭堵塞臨界速度,挖坑機能夠正常升運土壤。當進給量大于5.3 mm/r時,土壤垂直速度小于鉆頭堵塞臨界速度,挖坑機鉆頭發(fā)生堵塞。當鉆頭進給量滿足順利升土條件時,進給量越大,挖坑效率越高。結合螺母絲杠螺距在國標中的規(guī)定,開合螺母螺紋規(guī)格選為Tr24×5,即直徑為24 mm,螺距為5 mm的梯形螺紋。為匹配挖坑機鉆頭旋向和動力輸出軸的轉向,自動進給機構螺紋旋向設計為右旋。
1.2 開合螺母結構設計
采用螺紋傳動能夠實現(xiàn)挖坑機鉆頭自動進給運動,但若采用閉合螺母與絲杠配合形式,需要動力輸出軸反轉才能完成鉆頭的回程運動。但挖坑機動力源是汽油機,其動力輸出軸不能反轉,故采用閉合螺母與絲杠配合的進給運動形式無法用于實際的挖坑作業(yè)。因此,本文采用開合螺母式自動進給機構,當螺母閉合時,挖坑機鉆頭完成進給運動;挖坑作業(yè)完成后,打開開合螺母,手動提起鉆頭至初始位置,完成回程運動。該方案既實現(xiàn)了挖坑作業(yè)的自動化,又能迅速完成回程運動。
本文借鑒汽車輪胎平衡機快速鎖緊螺母機構進行開合螺母結構設計,如圖2a所示。半螺母上有2個銷釘孔,分別裝有定銷和動銷。定銷和基座固聯(lián),半螺母可繞定銷轉動。螺母撥片上有2種類型的4個軌道呈對稱分布,定銷在圓軌道內滑動,動銷在直軌道內滑動。螺母撥片繞定銷轉動時帶動動銷在直軌道內滑動,從而控制螺母開閉。螺母撥片和基座之間設置有彈簧,保證螺母一直處于閉合狀態(tài)。開合螺母中心點記為點,其中任意一個定銷位置記為點,動銷所在滑道末端位置記為點,動銷在滑道內的位置記為點,螺母開合運動簡圖如圖2b所示。
a. 開合螺母結構示意圖a. Half nuts structure diagramb. 螺母開合運動簡化示意圖b. Schematic diagram of nuts opening and closing movement
c. 螺母開合運動分析圖
c. Analysis of nuts opening and closing motion
1.螺母撥片 2.定銷 3.半螺母 4.動銷 5.基座
1.Nut picks 2.Fixed pin 3.Half nut 4.Movable pin 5.Base
注:為桿的擺動角,(°);為桿的擺動角,(°);為動銷軌道角,(°);1為點與點之間的長度,m;2為點與點之間的長度,m;3為點與點之間的長度,m;4為點與點之間的長度,m;1為桿與水平線的夾角,(°);2為桿與水平線的夾角,(°);3為桿與水平線的夾角,(°)。
Note:is the swing angle of rod, (°);is the swing angle of rod, (°);is the orbit angle of movable pin, (°);1is the distance between pointand point, m;2is the distance between pointand point, (m);3is the distance between pointand point, m;4is the distance between pointand point, m;1is the angle between rodand horizontal level, (°);2is the angle between rodand horizontal level, (°);3is the angle between rodand horizontal level, (°).
圖2 開合螺母機構運動分析圖
Fig.2 Movement analysis chart of half nut mechanism
利用解析法對半螺母的開合運動進行運動分析,建立如圖2c所示的直角坐標系。各桿件組成了一個封閉的矢量多邊形,即。在此封閉矢量多邊形中,各矢量和等于0,即滿足
式中1為點至點的方向向量;2為點至點的方向向量;3為點至點的方向向量;4為點至點的方向向量。
將封閉矢量方程(4)改寫并表示為復數(shù)矢量形式為
式中1為點與點之間的長度,m;2為點與點之間的長度,m;3為點與點之間的長度,m;4為點與點之間的長度,m;1為桿與水平線的夾角,(°);2為桿與水平線的夾角,(°);3為桿與水平線的夾角,(°)。
式中為動銷軌道角,(°)。
由幾何關系知1=3=4,消去未知量2后,將1從0°取到60°,間隔5°,動銷軌道角從90°取到120°,間隔5°,代入式(7)得3。由各桿件的桿長關系和初始位置角度(1=60°,3=120°),可知桿轉動角為=60°?1,桿轉動角為=120°?3。列出不同和組合下的值,如表1所示。
表1 動銷軌道角和桿AE轉動角對桿BF轉動角的影響
表1中桿轉動角的變化趨勢為:在動銷軌道角不變時桿轉動角隨桿轉動角增大而增大,在桿轉動角不變時桿3轉動角隨動銷軌道角增大而增大。從工作效率看,相同的桿轉動角對應的桿轉動角越大螺母開合的效率就越高。從結構尺寸看,桿轉動角越大開合螺母機構整體尺寸越大。即,桿轉動角越大,螺母開合的效率就越高,但桿轉動角變大時開合螺母機構的整體尺寸就會變大。綜合考慮開合螺母的工作效率和結構尺寸,取動銷軌道角為105°。
1.3 手提式挖坑機整體結構設計
該手提式挖坑機結構如圖3所示,主要由機架、汽油機、帶輪、開合螺母、支撐架、絲杠、導軌和鉆頭等組成。汽油機動力在其輸出軸處分為兩部分:一部分傳遞給鉆頭,帶動鉆頭轉動;另一部分經帶輪傳遞到開合螺母,開合螺母與絲杠形成螺旋副,帶動鉆頭實現(xiàn)進給運動。在挖坑作業(yè)完成后,停止汽油機工作,通過螺母撥片打開開合螺母,將支撐架連同汽油機及鉆頭提起到初始位置,然后閉合開合螺母以備下次作業(yè)。
本文采用北京新宇航世紀科技有限公司JN338-100A型扭矩儀實時測量挖坑機作業(yè)過程中鉆頭轉速和扭矩。
2.1 試驗裝置
試驗裝置如圖4a所示,汽油機動力輸出軸通過聯(lián)軸器與扭矩儀的一端相連,扭矩儀的另一端通過聯(lián)軸器與鉆頭聯(lián)接軸相連[32-33]。圖4b為試驗現(xiàn)場。
2.2 試驗方法
試驗時間為2016年5月6日至8日,選擇華中農業(yè)大學現(xiàn)代農業(yè)科技試驗基地平整地塊作為試驗區(qū)域,試驗過程中空氣濕度基本一致,試驗前首先測定試驗區(qū)域的土壤堅實度。在試驗區(qū)域均布取4個測試點,分別測量每個測試點在不同深度處的土壤堅實度,測量結果見表2。由表2可知,土壤堅實度在土層深度變化時基本保持不變,排除了土壤堅實度變化對挖坑機作業(yè)中鉆頭消耗功率的影響。
為分析不同進給量對挖坑作業(yè)過程中鉆頭扭矩變化的影響,選用Tr24×3、Tr24×5和Tr24×8 3種不同螺距的自動進給機構進行挖坑作業(yè)對比試驗。試驗過程中保證挖坑機鉆頭勻速工作。
表2 各測點土壤堅實度
2.3 試驗數(shù)據處理與分析
扭矩儀數(shù)據采集卡采集到的數(shù)據為各測點對應的鉆頭轉速、鉆頭扭矩,進而計算出各測點對應的鉆頭位移。而后將各組數(shù)據按時長為1 s分段,計算出扭矩標準差,各組數(shù)據見圖5、圖6和圖7。
a. 測點1
a. Test point 1
b. 測點2
b. Test point 2
c. 測點3
c. Test point 3
a. 測點1
a. Test point 1
b. 測點2
b. Test point 2
c. 測點3
c. Test point 3
由圖5、圖6和圖7可知,在鉆頭速度恒定的前提下,3種試驗條件挖坑作業(yè)過程中,鉆頭扭矩均隨時間增加呈上升趨勢。
對比分析圖5、圖6和圖7可知:1)螺距為8 mm各測點鉆頭扭矩均比螺距為3和5 mm大,且波動幅度大。螺距為8 mm時,鉆頭對應的進給量8大于5.3 mm/r,土壤垂直運動速度小于鉆頭堵塞臨界速度,挖坑機鉆頭發(fā)生堵塞,所以扭矩增加且波動幅度增大;2)螺距為3和5 mm時,對應的進給量分別為3和5 mm/r,均小于5.3 mm/r,土壤垂直速度大于鉆頭堵塞臨界速度,挖坑機能夠正常升運土壤,因此二者各測點鉆頭扭矩和波動幅度均相對較小。但是當鉆頭進給量滿足順利升土條件時,進給量越大,挖坑效率越高,因此開合螺母螺距為5 mm時,不僅可以滿足正常升運土壤,而且工作效率最高。
a. 測點1
a. Test point 1
b. 測點2
b. Test point 2
c. 測點3
c. Test point 3
此外,挖坑作業(yè)時,閉合開合螺母,開合螺母與絲杠形成螺旋副,帶動鉆頭實現(xiàn)進給運動;挖坑作業(yè)完成后,手動打開開合螺母,通過提起開合螺母,能夠將鉆頭順利提升至初始位置,從而完成鉆頭的回程運動,以備進行下一個挖坑作業(yè)。整個試驗過程中,開合螺母機構工作性能均可靠。
1)設計了一種手提式挖坑機開合螺母式自動進給機構,不僅實現(xiàn)了挖坑作業(yè)的自動化,而且能迅速完成回程運動。該手提式挖坑機設計有支撐結構,不僅能夠保證挖坑的垂直度,而且增強了安全性和可靠性。
2)運用經典挖坑理論,明確了挖坑機鉆頭進給量對其升土效果的影響關系,并通過試驗進行了驗證,為挖坑機進給量的設計提供了參考。研究表明,開合螺母螺距為5 mm時,挖坑機扭矩及其波動幅度均較小、工作效率最高。
3)采用解析法分析了開合螺母機構的運動特性,確定出了其動銷軌道角為105°。
[1] 于建國,屈錦衛(wèi). 國內外挖坑機的研究現(xiàn)狀及發(fā)展趨勢[J]. 農機化研究,2006(12):38-41.
Yu Jianguo, Qu Jinwei. Research situation and development trend of earth auger in home and abroad[J]. Journal of Agricultural Mechanization Research, 2006(12): 38-41. (in Chinese with English abstract)
[2] 王乃康,劉會敏,茅也冰. 作業(yè)參數(shù)對挖坑機動態(tài)力學參數(shù)影響的試驗研究(I):挖坑機動態(tài)力學參數(shù)的測試與研究[J]. 北京林業(yè)大學學報,2002,24(5/6):195-199.
Wang Naikang, Liu Huimin, Mao Yebing. Effects of working parameters on dynamic mechanical parameters for digging machine(I): Test and study of dynamic mechanical parameters for digging machine[J]. Journal of Beijing Forestry University, 2002, 24(5/6): 195-199. (in Chinese with English abstract)
[3] 郭貴生,高夢祥,郭康權,等. 基于MATLAB挖坑機螺旋鉆頭參數(shù)的研究[J]. 西北農林科技大學學報:自然科學版,2003,31(3):179-182.
Guo Guisheng, Gao Mengxiang, Guo Kangquan, et al. Study of screw auger parameters of mounted hole digger on the basis of MATLAB[J]. Jour. of Northwest Sci-Tech Univ. of Agri. and For. : Nat. Sci. Ed., 2003, 31(3): 179-182. (in Chinese with English abstract)
[4] 高夢祥,郭貴生,郭康權. 基于MATLAB的挖坑機鉆頭轉矩分析[J]. 西北農林科技大學學報:自然科學版,2003,31(1):131-134.
Gao Mengxiang, Guo Guisheng, Guo Kangquan. Analysis of screw auger’s torque of digging pit machine by using MATLAB[J]. Jour. of Northwest Sci-Tech Univ. of Agri. and For. : Nat. Sci. Ed., 2003, 31(1): 131-134. (in Chinese with English abstract)
[5] 劉少剛. 挖坑機鉆頭轉速及進給量的優(yōu)化選擇[J]. 林業(yè)機械,1989(3):27-31.
[6] 王警梁. 自動進給挖坑機設計與參數(shù)化研究[D]. 武漢:華中農業(yè)大學,2016.
Wang Jingliang. Design and Parametric Research of Automatic Feed Hole Digger[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract)
[7] 李耀明,徐立章,陳航. 4YS-600型樹木移栽機鏟刀臂的改進設計[J]. 農業(yè)工程學報,2009,25(3):60-63.
Li Yaoming, Xu Lizhang, Chen Hang. Improved design of spade arm in 4YS-600 tree transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 60-63. (in Chinese with English abstract)
[8] 王保帥,楊永發(fā),高延杰,等. 擺桿式煙苗移栽挖穴機的設計與優(yōu)化分析[J]. 中國農機化學報,2016,37(8):23-27.
Wang Baoshuai, Yang Yongfa, Gao Yanjie, et al. Design and optimization analysis of the transplanting and digging machine for the tobacco seedling transplanting[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(8): 23-27. (in Chinese with English abstract)
[9] 楊有剛,劉迎春,呂新民. 挖坑機扭轉振動特征對的動力學分析[J]. 農業(yè)機械學報,2005,36(6):53-55.
Yang Yougang, Liu Yingxin, Lü Xinmin. Dynamic analysis of torsional vibration for a hole digger[J]. Transactions of the Chinese Society of Agricultural Machinery, 2005, 36(6): 53-55. (in Chinese with English abstract)
[10] 孟慶華. 深植挖坑機鉆頭動態(tài)過程數(shù)學描述與仿真研究[D]. 哈爾濱:東北林業(yè)大學,2007.
Meng Qinghua. Research on Simulation and Mathematical Interpretation of Dynamic Process to Earth Auger for Tree Deep Planting[D]. Harbin: Northeast Forestry University, 2007. (in Chinese with English abstract)
[11] 趙忠松. 挖坑機鉆頭有限元分析和懸掛機構運動仿真[D]. 楊凌:西北農林科技大學,2010.
Zhao Zhongsong. FEA of the Auger and the Hitch Motion Simulation of Hole Digger[D]. Yangling: Northwest A&F University, 2010. (in Chinese with English abstract)
[12] 屈錦衛(wèi). 挖坑機主軸的有限元分析及其懸掛機構的動力學仿真[D]. 哈爾濱:東北林業(yè)大學,2007.
Qu Jinwei. Finite Element Analysis of the Principal Axis of Earth Auger and Dynamic Simulation of Hanging Machine[D]. Harbin: Northeast Forestry University, 2007. (in Chinese with English abstract)
[13] Macpherson J D, Jogi P N, Kingman J E E. Application and analysis of simultaneous near bit and surface dynamics measurements[J]. SPE Drilling & Completion, 2001, 16(4): 230-238.
[14] Macpherson J D, Jogi P N, Kingman J E E. Application and analysis of simultaneous near bit and surface dynamics measurements[J]. SPE Drilling & Completion, 2001, 16(4): 230-238.
[15] Vosniak J, Lopes E D S, Fiedler N C, et al. Demanded physical effort and posture in semi mechanical hole-digging activity at forestry plantation[J]. Scientia Forestalis/ Forest Sciences, 2010(88): 589-598.
[16] Silva E P D, Minette L J, Souza A P D. Evaluation an ergonomic of the activity of semi mechanized pit for the planting of eucalyptus[J]. Scientia Forestalis/Forest Sciences, 2007(76): 77-83.
[17] 李肖婷. 3WY-40多功能液壓微型挖坑機設計分析及研究[J]. 農業(yè)技術與裝備,2016(323):68-71.
Li Xiaoting. Design research and analysis on 3WY-40 multi-function hydraulic micro hole digger[J]. Agricultural Technology and Equipment, 2016(323): 68-71. (in Chinese with English abstract)
[18] 陸建,繆明,盧少穎,等. 車載植樹挖坑機研究設計與試驗[J]. 中國農機化學報,2014,35(6):44-47,60.
Lu Jian, Miao Ming, Lu Shaoying, et al. Design and test research of digging machine for vehicle planting[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(6): 44-47,60. (in Chinese with English abstract)
[19] Wangyuan Z, Jingliang W, Xiaomao H, et al. Development of a mobile powered hole digger for orchard tree cultivation using a slider-crank feed mechanism[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(3): 48-56.
[20] 宗望遠,王警梁. 高效輕便挖坑機:CN205017820U[P]. 2016-02-10.
[21] 渠聚鑫. 新型自走式植樹挖坑機的研究[D]. 北京:中國林業(yè)科學研究院,2009.
Qu Juxin. Research on New Self-Propelled Tree Planting Earth Auger[D]. Beijing: Chinese Academy of Forestry, 2009. (in Chinese with English abstract)
[22] 姜長笑. 可移動挖坑機:CN105165183A[P]. 2015-12-23.
[23] 趙彩華. 手提式植樹挖坑機:CN105474833A[P]. 2016-04-13.
[24] 符翔. 一種農業(yè)挖坑機械裝置:CN205284090U[P]. 2016-06-08.
[25] 呂有界,王玉興,唐艷芹,等. 仿生曲面在螺旋樁螺旋葉片上的應用研究[J]. 農業(yè)工程學報,2007,23(4):134-137.
Lu Youjie, Wang Yuxing, Tang Yanqin, et al. Application of bionic surface on blades of screw pile[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(4): 134-137. (in Chinese with English abstract)
[26] Du Danfeng, Ma Yan, Guo Xiurong, et al. Research on a forestation hole digging robot[C]//2010 International Conference on Intelligent Computation Technology and Automation, 2010: 1073-1076.
[27] 黃亞光. 挖坑機執(zhí)行機構動力學分析及參數(shù)研究[D]. 長沙:中南大學,2012.
Huang Yaguang. Dynamics Analysis and Parameters Research on Digging Machine Actuator[D]. Changsha: Central South University, 2012. (in Chinese with English abstract)
[28] Haga M, Hiroshi W, Fujishima K. Digging control system for hydraulic excavator[J]. Mechatronics, 2001, 11(6): 665-676.
[29] 吳立國,郭克君,滿大為,等. 自行式挖坑機液壓系統(tǒng)的設計與選型[J]. 林業(yè)機械與木工設備,2016,44(5):24-28.
Wu Liguo, Guo Kejun, Man Dawei, et al. Design and model selection of hydraulic systems for a self-propelled hole digger[J]. Forestry Machinery and Woodworking Equipment, 2016, 44(5): 24-28. (in Chinese with English abstract)
[30] 王有剛. 新型全液壓連續(xù)式挖坑機研究[D]. 北京:北京林業(yè)大學,2012. Wang Yougang. The Design of New Continuous Digging Machine with All-Hydraulic Drive[D]. Beijing: Beijing Forestry University, 2012. (in Chinese with English abstract)
[31] 卓鳳英. 挖坑機[M]. 北京:中國林業(yè)出版社,1989.
[32] 張居敏,賀小偉,夏俊芳,等. 高茬秸稈還田耕整機功耗檢測系統(tǒng)設計與試驗[J]. 農業(yè)工程學報,2014,30(18):38-46.
Zhang Jumin, He Xiaowei, Xia Junfang, et al. Design and field experiment of power consumption measurement system for high stubble returning and tillage machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 38- 46. (in Chinese with English abstract)
[33] 陳度,王書茂,康峰,等. 聯(lián)合收割機喂入量與收獲過程損失模型[J]. 農業(yè)工程學報,2011,27(9):18-21.
Chen Du, Wang Shumao, Kang Feng, et al. Mathematical model of feeding rate and processing loss for combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(9): 18-21. (in Chinese with English abstract)
Design and experiment of automatic feed mechanism with half nuts structure of portable digging machine
Ma Li’na, Wang Jingliang, Zong Wangyuan※, Huang Xiaomao, Feng Jun
(430070,)
Digging machine is a kind of digging and tillage machine. Because its structure is simple and it can be operated conveniently, it is widely used as a hole digger. There are mainly 4 types of digging machines, i.e. suspension type, portable type, traction type and self-propelled type. On the mountains, hills, ravines and other complex terrain conditions, portable type of digging machine is popularly used to dig a hole so as to plant or transplant trees. Hence, this paper designed a new portable digging machine with a half-nut mechanism to keep the feed rate stable and decrease the torque of the drilling bit as far as possible when drilling the hole. In addition, the support structure was also designed for the digging machine for the sake of guaranteeing the verticality of the hole and ensuring the reliability and stability of the digging machine, as well as making the structure more secure. The feed rate of the digging machine was an important factor, which affected the torque and work efficiency of the drilling bit greatly. Research on the effect of the feed rate on the dynamic mechanical parameters of digging machine was of great significance for developing a new model of digging machine. However, the power of the digging machine was gasoline engine, so the power output shaft could not reversely rotate, and it could not be used for actual digging. Thus there was a great need to design a new structure that could solve the gasoline engine’s problem of rotating only in one direction. Accordingly, the half-nut mechanism was designed. According to the working principle of the half-nut, the motion characteristics of half-nut mechanism were analyzed by using the analytic method. The straight track angle of half-nut picks was decided as 105°, and thus a portable digging machine with half-nut mechanism was designed. The new designed digging machine could not only realize the digging operation automatically, but also complete the return movement rapidly. Then based on the working principle of digging machine, the relationship between the feed rate and the effect of lifting soil was studied. In order to verify the result, the experiment of testing the torque and rotational speed during the process of drilling a hole was conducted by using the torque measuring device JN338-100A made by Beijing Xinyuhang Century Science and Technology Co., Ltd. to collect the data afterward. Therefore it successfully provided a theoretical basis for the determination of feed rate of a new type of digging machine. It showed that when the pitch of half nut was taken as 3 or 5 mm, the torque and its fluctuation both were small. However when the pitch of half nut was taken as 8 mm, for it did not satisfy the working principle of digging machine, the torque and its fluctuation varied greatly, and the digging machine could not lift soil smoothly. In order to improve the work efficiency, the pitch of half nut was taken as 5 mm for this new designed digging mechanism finally. This paper provides a theoretical basis for the design of automatic feed mechanism of a new portable digging machine.
mechanization; design; soils; digging machine; half nuts; feed automatically; feed rate; torque
10.11975/j.issn.1002-6819.2017.04.004
S776.26+2
A
1002-6819(2017)-04-0025-07
2016-06-06
2017-02-05
公益性行業(yè)(農業(yè))科研專項經費(201203047)
馬麗娜,女,講師,山東萊蕪人,主要從事農業(yè)裝備數(shù)字化設計技術研究。武漢 華中農業(yè)大學工學院,430070。Email:sunnylina@163.com
宗望遠,男,河南周口人,教授,博士生導師,主要從事現(xiàn)代農業(yè)裝備設計與測控技術研究。武漢 華中農業(yè)大學工學院,430070。 Email:zongwangyuan@mail.hzau.edu.cn
馬麗娜,王警梁,宗望遠,黃小毛,馮 軍. 手提式挖坑機開合螺母式自動進給機構的設計與試驗[J]. 農業(yè)工程學報,2017,33(4):25-31. doi:10.11975/j.issn.1002-6819.2017.04.004 http://www.tcsae.org
Ma Li’na, Wang Jingliang, Zong Wangyuan, Huang Xiaomao, Feng Jun. Design and experiment of automatic feed mechanism with half nuts structure of portable digging machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 25-31. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.004 http://www.tcsae.org