陳 昊,周 鵬,徐晶晶,周 珺,國 風(fēng)
蘇州大學(xué)附屬第一醫(yī)院中心實(shí)驗(yàn)室,江蘇 蘇州 215007
miR-17-92基因簇增強(qiáng)前列腺癌DU145細(xì)胞的遷移、侵襲能力及對順鉑的耐藥性
陳 昊,周 鵬,徐晶晶,周 珺,國 風(fēng)
蘇州大學(xué)附屬第一醫(yī)院中心實(shí)驗(yàn)室,江蘇 蘇州 215007
背景與目的:miR-17-92基因簇與多種疾病的發(fā)生密切相關(guān),其在肺癌、肝癌、胃癌和前列腺癌等多種腫瘤細(xì)胞中均高表達(dá)。本研究利用慢病毒包裝系統(tǒng)建立穩(wěn)定高表達(dá)miR-17-92基因簇的DU145細(xì)胞株,探討miR-17-92基因簇對前列腺癌DU145細(xì)胞的遷移、侵襲能力及對順鉑耐藥性的影響。方法:構(gòu)建高表達(dá)miR-17-92基因簇的表達(dá)載體,轉(zhuǎn)染DU145細(xì)胞株,同時(shí)轉(zhuǎn)染空載體作為對照,并用實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(real-time fl uorescent quantitative polymerase chain reaction,RTFQ-PCR)進(jìn)行鑒定。用xCELLigence系統(tǒng)監(jiān)測細(xì)胞的遷移、侵襲能力及順鉑處理后的生長情況;通過劃痕實(shí)驗(yàn)觀察細(xì)胞的遷移情況;采用蛋白[質(zhì)]印跡法(Western blot)、凝膠酶譜實(shí)驗(yàn)和RTFQ-PCR檢測相關(guān)蛋白質(zhì)和基因的表達(dá)以探討miR-17-92增強(qiáng)DU145細(xì)胞的遷移、侵襲能力及對順鉑耐藥性的相關(guān)機(jī)制。結(jié)果:DU145-miR-17-92細(xì)胞遷移速率和侵襲能力高于DU145-control細(xì)胞(P<0.01)。DU145-miR-17-92細(xì)胞中整合素β1的蛋白質(zhì)表達(dá)水平和基質(zhì)金屬蛋白酶-9(matrix metalloprotein-9,MMP-9)的活性顯著高于DU145-control細(xì)胞。順鉑處理后,DU145-miR-17-92細(xì)胞的生長速度自12 h起快于DU145-control細(xì)胞并呈順鉑耐藥性(P<0.01)。細(xì)胞外調(diào)節(jié)蛋白激酶1/2(extracellular regulated protein kinases,ERK1/2)在DU145-miR-17-92細(xì)胞中呈現(xiàn)持續(xù)高水平磷酸化,順鉑處理后,其磷酸化水平無明顯變化。DU145-miR-17-92細(xì)胞中切除修復(fù)互補(bǔ)交叉基因1(excision repair cross complementing1,ERCC1)的mRNA和蛋白質(zhì)表達(dá)水平顯著高于DU145-control細(xì)胞。結(jié)論:高表達(dá)miR-17-92增強(qiáng)了DU145細(xì)胞的遷移、侵襲能力,其機(jī)制與整合素β1的表達(dá)上調(diào)及MMP-9活性增強(qiáng)有關(guān)。此外,高表達(dá)miR-17-92增強(qiáng)了DU145細(xì)胞對順鉑的耐藥性,該過程與ERK1/2的磷酸化水平增加和ERCC1的表達(dá)水平上調(diào)相關(guān)。
miR-17-92;前列腺腫瘤;DU145;侵襲;遷移;順鉑
miRNA是一類由大約22個(gè)核苷酸組成的非編碼RNA,它們通過與其目標(biāo)mRNA結(jié)合,調(diào)控mRNA的表達(dá),參與細(xì)胞的分化、凋亡及腫瘤形成[1]。miR-17-92基因簇是第1個(gè)被發(fā)現(xiàn)的與腫瘤形成有關(guān)的miRNA基因簇,在一系列人類腫瘤如淋巴瘤、白血病和實(shí)體瘤中均存在miR-17-92的過表達(dá)[2]。近年來,有研究證實(shí),前列腺癌組織和細(xì)胞株當(dāng)中也存在miRNA的異常表達(dá)[3-4],但關(guān)于miR-17-92在前列腺癌中的作用及其機(jī)制的研究報(bào)道甚少。本研究通過建立高表達(dá)miR-17-92的前列腺癌細(xì)胞株,研究miR-17-92對其生物學(xué)行為及對順鉑耐藥性的影響,并探討其作用機(jī)制。
1.1 主要儀器、試劑和抗體
流式細(xì)胞儀FASCalibur購自美國BD Biosciences公司;System Microscope IX7熒光倒置顯微鏡購自奧林巴斯(中國)有限公司;NanoDrop1000購自美國Thermo公司;xCELLigence細(xì)胞實(shí)時(shí)動(dòng)態(tài)監(jiān)測系統(tǒng)、E-Plate培養(yǎng)板、LightCycler 480熒光定量PCR儀和FuGENE HD均購自美國Roche公司;Odyssey熒光掃描成像系統(tǒng)購自美國LI-COR公司;RPMI-1640和胎牛血清購自美國Gibco公司;抗體ERK(4695)、pERK(4370S)和整合素β1(9699)購自美國Cell Signaling Technology公司;β-actin(AT0001)抗體購自美國CMCTAG公司;α-tubulin(AJ1034a)抗體購自美國ABGENT公司;嘌呤霉素(J539-25MG)購自美國Amresco公司;逆轉(zhuǎn)錄試劑M-MLV(28025-013)和合成引物購自美國Invitrogen公司;SYBR Premix Ex Taq(RR420)購自寶生物工程(大連)有限公司;Matrigel(356234)購自美國BD Biosciences公司。
1.2 方法
1.2.1 細(xì)胞培養(yǎng)
前列腺癌DU145細(xì)胞株為本實(shí)驗(yàn)室長期培養(yǎng),完全培養(yǎng)基為含10%胎牛血清、100 U/mL青霉素和100 μg/mL鏈霉素的RPMI-1640,在37 ℃、CO2體積分?jǐn)?shù)為5%的飽和濕度細(xì)胞培養(yǎng)箱中培養(yǎng)。Phoenix A包裝細(xì)胞(中國科學(xué)院動(dòng)物研究所趙勇教授贈(zèng)送)使用含10%胎牛血清、100 U/mL青霉素和100 μg/mL鏈霉素的DMEM培養(yǎng)基進(jìn)行培養(yǎng)。選用生長良好的對數(shù)生長期細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.2 建立穩(wěn)定高表達(dá)miR-17-92基因簇的細(xì)胞株
在35 mm培養(yǎng)皿中接種Phoenix A包裝細(xì)胞,第2天細(xì)胞融合度達(dá)到70%~80%時(shí)進(jìn)行轉(zhuǎn)染。轉(zhuǎn)染試劑為FuGENE HD,使用包裝載體pCL和MSCV-miR-17-92按照產(chǎn)品說明共同轉(zhuǎn)染Phoenix A包裝細(xì)胞,18 h后通過熒光顯微鏡觀察轉(zhuǎn)染效率,更換新鮮培養(yǎng)基,48 h后收集病毒上清液,并用此病毒上清液轉(zhuǎn)染DU145靶細(xì)胞。同時(shí)使用包裝載體pCL和空載體MSCV轉(zhuǎn)染DU145細(xì)胞作為對照。利用嘌呤霉素(5 μg/mL)篩選,最終獲得穩(wěn)定轉(zhuǎn)染的細(xì)胞株。
1.2.3 實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(real-time fluorescent quantitative polymerase chain reaction,RTFQ-PCR)
Trizol一步法提取細(xì)胞總RNA,并用NanoDrop進(jìn)行核酸質(zhì)量控制。按照逆轉(zhuǎn)錄試劑說明,利用M-MLV將2 μg RNA逆轉(zhuǎn)錄合成cDNA。反應(yīng)體系20 μL,25 ℃ 10 min,37 ℃50 min,70 ℃ 15 min,4 ℃保存。RTFQ-PCR在LightCycler 480熒光定量PCR儀上進(jìn)行,每個(gè)反應(yīng)設(shè)3個(gè)復(fù)孔,40個(gè)循環(huán),以U6作為內(nèi)參照,檢測每個(gè)反應(yīng)孔中熒光達(dá)到設(shè)定值時(shí)所經(jīng)歷的循環(huán)數(shù)(即Ct值),基因mRNA相對表達(dá)水平用2-ΔΔCt計(jì)算。引物序列用NCBI的PrimerBlast設(shè)計(jì),具體引物序列見表1。
表1 RTFQ-PCR所用引物序列Tab. 1 The primer sequences used in RTFQ-PCR
1.2.4 蛋白[質(zhì)]印跡法(Western blot)檢測蛋白質(zhì)表達(dá)水平
將DU145-control細(xì)胞和DU145-miR-17-92細(xì)胞分別在RIPA裂解緩沖液中進(jìn)行裂解,提取細(xì)胞全蛋白。經(jīng)過10%SDS丙烯酰胺凝膠電泳后,半干轉(zhuǎn)到硝酸纖維素膜上。用5%脫脂奶粉室溫封閉1 h后,加入一抗,4 ℃溫育過夜。PBST洗膜后,二抗封閉1 h,用Odyssey熒光掃描成像系統(tǒng)成像檢測。
1.2.5 細(xì)胞遷移實(shí)驗(yàn)
利用xCELLigence系統(tǒng)和RTCA 1.2軟件進(jìn)行細(xì)胞指數(shù)的實(shí)時(shí)動(dòng)態(tài)監(jiān)測,細(xì)胞指數(shù)是由測得的生物電阻抗推算出的一個(gè)無量綱參數(shù),它與黏附上去的細(xì)胞數(shù)量直接相關(guān)。系統(tǒng)專用的培養(yǎng)板(CIM-plate)中未加細(xì)胞時(shí),各個(gè)培養(yǎng)孔中的細(xì)胞指數(shù)相同,為起始空白值,當(dāng)加入細(xì)胞后,隨著細(xì)胞的貼壁和增殖生長,由此產(chǎn)生的生物電阻抗信號產(chǎn)生變化,即細(xì)胞貼壁多,信號高,細(xì)胞指數(shù)數(shù)值大。先在下室中加入170 μL含10%胎牛血清的RPMI-1640,上室加入30 μL無血清的RPMI-1640進(jìn)行細(xì)胞培養(yǎng)的背景生物電阻抗監(jiān)測,然后每孔加入100 μL細(xì)胞懸液,細(xì)胞數(shù)為40 000個(gè),設(shè)置固定的時(shí)間間隔測定電阻。
1.2.6 體外劃痕實(shí)驗(yàn)
用同等力度分別在兩株細(xì)胞間劃一道痕,用PBS洗細(xì)胞3次,去除劃下的細(xì)胞,加入培養(yǎng)基,放入37 ℃、CO2體積分?jǐn)?shù)為5%的培養(yǎng)箱培養(yǎng)。分別在24、48和72 h各時(shí)間點(diǎn)拍照記錄。
1.2.7 細(xì)胞侵襲實(shí)驗(yàn)
利用xCELLigence系統(tǒng)和RTCA 1.2軟件進(jìn)行細(xì)胞指數(shù)的實(shí)時(shí)動(dòng)態(tài)監(jiān)測。將matrigel用無血清的培養(yǎng)基按1∶40稀釋后加20 μL到上室,在37 ℃培養(yǎng)箱中溫育4~6 h,而后在下室中加入170 μL含10%胎牛血清的RPMI-1640,上室加入30 μL無血清的RPMI-1640進(jìn)行細(xì)胞培養(yǎng)的背景生物電阻抗監(jiān)測,最后每孔加入100 μL細(xì)胞懸液,細(xì)胞數(shù)為40 000個(gè),設(shè)置固定的時(shí)間間隔測定電阻。
1.2.8 凝膠酶譜實(shí)驗(yàn)
DU145-miR-17-92和DU145-control細(xì)胞常規(guī)培養(yǎng)24 h,細(xì)胞融合度達(dá)70%~80%后,換無胎牛血清培養(yǎng)基,繼續(xù)培養(yǎng)24 h,收集培養(yǎng)上清液。取20 μL上清液于8%聚丙烯酰胺凝膠(含1%明膠)電泳后,取出凝膠,置于復(fù)性液中溫育1 h,然后置于消化液中37 ℃溫育40 h,溫育后經(jīng)染色液染色1 h,再經(jīng)脫色液脫色,終止液終止脫色。最后顯示,基質(zhì)金屬蛋白酶-2(matrix metalloprotein-2,MMP-2)和基質(zhì)金屬蛋白酶-9(matrix metalloprotein-9,MMP-9)為藍(lán)色背景上的透亮帶,干燥,封膠,拍照。
1.3 統(tǒng)計(jì)學(xué)處理
2.1 建立高表達(dá)miR-17-92基因簇的前列腺癌細(xì)胞株
在熒光顯微鏡下觀察,DU145-control細(xì)胞和DU145-miR-17-92細(xì)胞均表達(dá)很強(qiáng)的綠熒光信號;用流式細(xì)胞儀檢測各自的熒光率分別為97.1%和98.6%。RTFQ-PCR檢測發(fā)現(xiàn),DU145-miR-17-92細(xì)胞中miR-17-92家族各個(gè)成員的表達(dá)均較DU145-control細(xì)胞顯著上調(diào),其中,miR-17上調(diào)10倍,miR-18上調(diào)5倍,miR-19a上調(diào)8倍,miR-19b上調(diào)3倍,miR-20上調(diào)13倍,miR-92上調(diào)7倍(圖1)。
2.2 高表達(dá)miR-17-92增強(qiáng)DU145細(xì)胞的遷移能力
在遷移實(shí)驗(yàn)中,xCELLigence系統(tǒng)實(shí)時(shí)動(dòng)態(tài)監(jiān)測顯示,DU145-miR-17-92細(xì)胞的細(xì)胞指數(shù)曲線自2 h起高于DU145-control細(xì)胞,即DU145-miR-17-92細(xì)胞遷移速率快于DU145-control細(xì)胞,兩者差異呈時(shí)間依賴性增加,差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01,圖2A)。體外劃痕實(shí)驗(yàn)的結(jié)果顯示,DU145-miR-17-92細(xì)胞從劃痕邊緣向中間的遷移速度顯著快于DU145-control細(xì)胞(圖2B)。
圖1 RTFQ-PCR檢測DU145-control和DU145-miR-17-92細(xì)胞中miR-17-92基因簇的mRNA表達(dá)水平Fig. 1 The mRNA expression of miR-17-92 gene cluster in DU145-control and DU145-miR-17-92 cells was examined by RTFQ-PCR
2.3 高表達(dá)miR-17-92增強(qiáng)DU145細(xì)胞的侵襲能力
xCELLigence系統(tǒng)實(shí)時(shí)動(dòng)態(tài)監(jiān)測顯示,18 h起DU145-miR-17-92細(xì)胞的細(xì)胞指數(shù)曲線高于DU145-control細(xì)胞(P<0.01),即DU145-miR-17-92細(xì)胞侵襲能力強(qiáng)于DU145-control細(xì)胞,兩者差異呈時(shí)間依賴性增加,差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01,圖3A)。Western blot檢測DU145-miR-17-92細(xì)胞和DU145-control細(xì)胞中整合素β1的表達(dá)水平發(fā)現(xiàn),DU145-miR-17-92細(xì)胞中整合素β1的表達(dá)水平顯著高于DU145-control細(xì)胞(圖3B)。凝膠酶譜實(shí)驗(yàn)檢測兩細(xì)胞中MMP的活性發(fā)現(xiàn),MMP-2在兩細(xì)胞株中的活性均很低,而MMP-9在DU145-miR-17-92細(xì)胞中的活性高于DU145-control細(xì)胞(圖3C)。
圖2 DU145-miR-17-92和DU145-control細(xì)胞遷移實(shí)驗(yàn)Fig. 2 The migration of DU145-miR-17-92 and DU145-control cells
2.4 高表達(dá)miR-17-92增強(qiáng)DU145細(xì)胞對順鉑的耐藥性
xCELLigence系統(tǒng)實(shí)時(shí)動(dòng)態(tài)監(jiān)測顯示,順鉑處理后各時(shí)間點(diǎn)DU145-control細(xì)胞死亡顯著,DU145-miR-17-92細(xì)胞死亡卻并不明顯。在12 h后的各時(shí)間點(diǎn)上,DU145-miR-17-92細(xì)胞相對于對照組細(xì)胞,呈現(xiàn)出順鉑抵抗性(圖4A)。動(dòng)態(tài)監(jiān)測數(shù)據(jù)分析發(fā)現(xiàn),DU145-control細(xì)胞的順鉑半抑制濃度為3.45 μmol/L,DU145-miR-17-92細(xì)胞的順鉑半抑制濃度為5.88 μmol/L,高表達(dá)miR-17-92使DU145細(xì)胞順鉑耐藥性增強(qiáng)。Western blot檢測發(fā)現(xiàn),用順鉑處理后兩株細(xì)胞中基礎(chǔ)性ERK1/2的蛋白質(zhì)表達(dá)均較高且差異無統(tǒng)計(jì)學(xué)意義,DU145-control細(xì)胞中ERK1/2的磷酸化水平呈時(shí)間依賴性增加;而DU145-miR-17-92細(xì)胞中ERK1/2的磷酸化水平并沒有受到順鉑的影響,呈持續(xù)高水平磷酸化(圖4B)。RTFQ-PCR和Western blot檢測發(fā)現(xiàn),DU145-miR-17-92細(xì)胞中ERCC1在mRNA和蛋白質(zhì)水平的表達(dá)均高于DU145-control細(xì)胞(圖4C、D)。
圖3 DU145-miR-17-92和DU145-control細(xì)胞侵襲實(shí)驗(yàn)及侵襲相關(guān)蛋白質(zhì)的表達(dá)水平Fig. 3 The invasion of DU145-miR-17-92 and DU145-control cells and the expression level of invasion-related proteins
圖4 順鉑處理后DU145-miR-17-92和DU145-control細(xì)胞的生長情況以及順鉑耐藥相關(guān)基因的mRNA和蛋白質(zhì)表達(dá)水平Fig. 4 The cell growth of DU145-miR-17-92 and DU145-control cells after the treatment of cisplatin and the expression level of drugresistance-related gene
miR-17-92基因簇是第一個(gè)被發(fā)現(xiàn)的具有致瘤作用的miRNA,由miR-17、miR-18、miR-19a、miR-20a、miR-19b和miR-92組成,各個(gè)成員之間及與各個(gè)信號通路如PTEN、TGF-β之間相互協(xié)作,靶向調(diào)控腫瘤抑制蛋白質(zhì)的表達(dá),從而增強(qiáng)miR-17-92的致瘤作用[5]。
整合素β1是與細(xì)胞黏附相關(guān)的Intergrins家族中的重要成員,在腫瘤細(xì)胞的侵襲方面扮演著重要角色,整合素β1的活化和表達(dá)的上調(diào)涉及多種人類腫瘤細(xì)胞的誘導(dǎo)形成和播散過程[6],上皮惡性腫瘤如乳腺癌和惡性膠質(zhì)瘤,發(fā)生轉(zhuǎn)移和侵襲時(shí),整合素β1會(huì)過表達(dá)[7]。另有研究表明,整合素β1與胃癌轉(zhuǎn)移相關(guān),抑制整合素β1的表達(dá),會(huì)降低胃癌的轉(zhuǎn)移[8]。本實(shí)驗(yàn)中,高表達(dá)miR-17-92促進(jìn)了整合素β1在DU145中的表達(dá),因此,miR-17-92增強(qiáng)DU145細(xì)胞的遷移及侵襲能力可能和整合素β1的上調(diào)有關(guān)。
MMP-2和MMP-9是MMP家族成員,腫瘤細(xì)胞通過高表達(dá)MMP改變細(xì)胞外基質(zhì),增加侵襲能力。MMP參與腫瘤發(fā)生、發(fā)展的各個(gè)階段,包括增殖、分化、凋亡、黏附、遷移及腫瘤的轉(zhuǎn)移和侵襲[9]。近年來,有研究表明,miRNA在轉(zhuǎn)錄后參與MMP調(diào)控,最終影響MMP基因的翻譯和表達(dá)[10-11]。本研究發(fā)現(xiàn),高表達(dá)miR-17-92,會(huì)上調(diào)MMP-9的表達(dá),進(jìn)一步驗(yàn)證了miR-17-92增強(qiáng)DU145細(xì)胞的遷移、侵襲能力。
以鉑類為基礎(chǔ)的化療藥物第1次轉(zhuǎn)變了腫瘤的治療模式,而順鉑是其中一種廣譜并有效的抗癌藥。它通過與細(xì)胞核內(nèi)的基因組DNA結(jié)合,引起DNA的復(fù)制和轉(zhuǎn)錄分離,導(dǎo)致細(xì)胞死亡[12-13]。然而,腫瘤細(xì)胞對順鉑的耐藥性又限制了它的使用。細(xì)胞內(nèi)藥物濃度過低、細(xì)胞內(nèi)解毒作用增強(qiáng)和對藥物誘導(dǎo)的損傷的強(qiáng)修復(fù)反應(yīng)是介導(dǎo)細(xì)胞對順鉑耐藥的幾種方式。有研究發(fā)現(xiàn),在對順鉑耐藥的細(xì)胞中,依賴ERCC1和色素性干皮癥基因A的表達(dá),核苷酸切除修復(fù)活性增強(qiáng),導(dǎo)致順鉑耐藥[14]。在本研究中,與DU145-control細(xì)胞相比,DU145-miR-17-92細(xì)胞具有顯著的順鉑耐藥性,且DU145-miR-17-92細(xì)胞中ERCC1的mRNA和蛋白質(zhì)表達(dá)水平均高于對照組,表明miR-17-92增強(qiáng)DU145細(xì)胞的順鉑耐藥性可能和ERCC1表達(dá)上調(diào)有關(guān)。
PI3K/AKT信號通路的活化與化療藥物耐藥性密切相關(guān),此外,ERK1/2的活化能促進(jìn)多種腫瘤細(xì)胞對化療藥物的耐藥性,抑制ERK1/2的活化能抑制腫瘤細(xì)胞增殖,促進(jìn)凋亡,逆轉(zhuǎn)藥物耐藥性[15]。在本研究中,順鉑作用后,DU145-control細(xì)胞中ERK1/2的磷酸化水平呈時(shí)間依賴性增加,表明其順鉑耐藥性逐漸增強(qiáng),而在DU145-miR-17-92細(xì)胞中ERK1/2呈現(xiàn)持續(xù)高水平的磷酸化,進(jìn)一步證實(shí)了miR-17-92能夠增強(qiáng)DU145細(xì)胞的順鉑耐藥性。
綜上所述,高表達(dá)miR-17-92顯著增強(qiáng)了DU145細(xì)胞的遷移、侵襲能力,其機(jī)制與整合素β1的表達(dá)上調(diào)及MMP-9活性增強(qiáng)有關(guān)。此外,miR-17-92能夠增強(qiáng)DU145細(xì)胞對順鉑的耐藥性,該過程與ERK1/2的持續(xù)高水平磷酸化密切相關(guān);另外,ERCC1表達(dá)水平的上調(diào)可能是導(dǎo)致DU145對順鉑耐藥的重要機(jī)制之一。
[1] CALIN G A, CROCE C M. MicroRNA-cancer connection:the beginning of a new tale[J]. Cancer Res, 2006, 66(15):7390-7394.
[2] JIN H Y, LAI M, XIAO C. MicroRNA-17-92 is a powerful cancer driver and a therapeutic target[J]. Cell Cycle, 2014, 13(4): 495-496.
[3] PORKKA K P, PFEIFFER M J, WALTERING K K, et al. MicroRNA expression profiling in prostate cancer[J]. Cancer Res, 2007, 67(13): 6130-6135.
[4] OZEN M, CREIGHTON C J, OZDEMIR M, et al. Widespread deregulation of microRNA expression in human prostate cancer[J]. Oncogene, 2008, 27(12): 1788-1793.
[5] CESAR S F, EDNA T K. Insights into Regulation of the miR-17-92 Cluster of miRNAs in Cancer[J]. Front Med (Lausanne), 2015, 2: 64.
[6] AHMED N, RILEY C, OLIVA K, et al. Integrin-linked kinase expression increases with ovarian tumour grade and is sustained by peritoneal tumour fluid[J]. J Pathol, 2003, 201(2): 229-237.
[7] WEAVER V M, LELIEVRE S, LAKINS J N, et al. Beta4Integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium[J]. Cancer Cell, 2002, 2(3): 205-216.
[8] LIN M T, CHANG C C, LIN B R, et al. Elevated expression of Cyr61 enhances peritoneal dissemination of gastric cancer cells through integrain alpha2beta1[J]. J Biol Chem, 2007, 282(47): 34594-34604.
[9] DERYUGINA E I, QUIGLEY J P. Matrix metalloproteinases and tumor metastasis[J]. Cancer Metastasis Rev, 2006, 25(1): 9-34.
[10] CROCE C M. Oncogenes and cancer[J]. N Engl J Med, 2008, 358(5): 502-511.
[11] ESQUELA K A, SLACK F J. Oncomirs-microRNAs with a role in cancer[J]. Nat Rev Cancer, 2006, 6(4): 259-269.
[12] GONZALEZ V M, FUERTES M A, ALONSO C, et al. Is cisplatin-induced cell death always produced by apoptosis?[J]. Mol Pharmacol, 2001, 59(4): 657-663.
[13] FUERTES M A, ALONSO C, PEREZ J M. Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance[J]. Chem Rev, 2002, 103(3): 645-662.
[14] MEHMOOD R K. Review of Cisplatin and oxaliplatin in current immunogenic and monoclonal antibody treatments[J]. Oncol Rev, 2014, 8(2): 256.
[15] SI H, PENG C, LI J, et al. RNAi-mediated knockdown of ERK1/2 inhibits cell proliferation and invasion and increases chemosensitivity to cisplatin in human osteosarcoma U2-OS cells in vitro[J]. Int J Oncol, 2012, 40(4): 1291-1297.
miR-17-92 cluster increases the migration and invasion abilities of DU145 prostate cancer cells and enhances the cisplatin resistance
CHEN Hao, ZHOU Peng, XU Jingjing, ZHOU Jun, GUO Feng (Central
Lab, the First Affiliated Hospital of Soochow University, Suzhou 215007, Jiangsu Province, China)
Background and purpose: miR-17-92 gene cluster overexpression has been observed in various cancers, such as lung cancer, liver cancer, gastric cancer and prostate cancer. In this study, we established the stable cell line overexpressing miR-17-92 to explore the inf l uence of miR-17-92 on the migration, invasion abilities and cisplatin resistance of the prostate cancer DU145 cells. Methods: miR-17-92 overexpression vectors were constructed. DU145 cells were infected with the viral supernatants produced by Phoenix A packaging system. Real-time fl uorescent quantitative polymerase chain reaction (RTFQ-PCR) was conducted to detect the expression level of miR-17-92 in the cells. The migration and invasion abilities were measured by a real-time xCELLigence system. The scratch healing assay was carried out to investigate the migration abilities. The expression of integrin β1 was detected by Western blot, and the activities of matrix metalloprotein-2 (MMP-2) and matrix metalloprotein-9 (MMP-9) were measured by gelatinzymography experiment. The cell growth of the two cell lines after the treatment of cisplatin was detected by a real-time xCELLigence system. The mRNA expression of ERCC1 was measured by RTFQ-PCR. Western blot was conducted to investigate the protein expressions of ERCC1, ERK1/2 and pERK1/2. Results: DU145-miR-17-92 cells migrated faster than DU145-control cells during the 24 h continuous monitoring (P<0.01). The scratch healing assay indicated that DU145-miR-17-92 cells migrated from the edge towards the scratch center faster than DU145-control cells. DU145-miR-17-92 cells invaded through matrigel markedly faster than DU145-control cells (P<0.01). The protein expression level of integrin β1 and the MMP-9 activities in DU145-miR-17-92 cells were increased than those in DU145-control cells. After the treatment of cisplatin, DU145-miR-17-92 cells grew faster than DU145-control cells, presenting cisplatin resistance (P<0.01). The phosphorylation of ERK1/2 in DU145-miR-17-92 cells was constantly at a high level regardless of the treatment of cisplatin. Compared with DU145-control cells, the expression of drug resistance-related gene ERCC1 was dramatically increased in DU145-miR-17-92 cells after the treatment of cisplatin. Conclusion: miR-17-92 overexpression increases the migration and invasion abilities of the prostate cancer DU145 cells, which is associated with the upregulated expression of integrin β1 and the increased activity of MMP-9. Besides, miR-17-92 overexpression enhances the cisplatin resistance of DU145, which is correlated with the increased phosphorylation level of ERK and the upregulated expression of ERCC1 at both the mRNA and protein levels.
miR-17-92; Prostate cancer; DU145; Invasion; Migration; Cisplatin
GUO Feng E-mail: guofeng27@suda.edu.cn
10.19401/j.cnki.1007-3639.2017.02.003
R737.25
A
1007-3639(2017)02-0095-07
2016-04-18
2016-07-24)
國家自然科學(xué)基金資助項(xiàng)目(81172433,81400154);江蘇省自然科學(xué)基金資助項(xiàng)目(BK20151211)。
國 風(fēng) E-mail:guofeng27@suda.edu.cn