潘 黎,田 思,張 利,林海丹,茍 慧,陳 青,李開庭,白定群,孔渝菡,歐云生,虞樂華
1.重慶醫(yī)科大學附屬第一醫(yī)院康復醫(yī)學科,重慶 400016;2.重慶醫(yī)科大學附屬第二醫(yī)院康復醫(yī)學科,重慶 400010;3.重慶醫(yī)科大學附屬第一醫(yī)院骨科,重慶 400016
膠質(zhì)瘤對MPPa-PDT敏感性研究中ABCG2的作用
潘 黎1,田 思1,張 利1,林海丹1,茍 慧2,陳 青1,李開庭1,白定群1,孔渝菡1,歐云生3,虞樂華2
1.重慶醫(yī)科大學附屬第一醫(yī)院康復醫(yī)學科,重慶 400016;2.重慶醫(yī)科大學附屬第二醫(yī)院康復醫(yī)學科,重慶 400010;3.重慶醫(yī)科大學附屬第一醫(yī)院骨科,重慶 400016
背景與目的:三磷酸腺苷結(jié)合轉(zhuǎn)運蛋白G超家族成員2(adenosine triphosphate-binding cassette superfamily G member 2,ABCG2)在多種腫瘤細胞中表達,能通過外排抗癌藥物參與腫瘤耐藥。本研究的目的旨在探討人膠質(zhì)瘤細胞對焦脫鎂葉綠酸甲酯(pyropheophorbide-a methyl ester,MPPa)介導的光動力療法(photodynamic therapy,PDT)殺傷效應的敏感性及其與ABCG2的關系。方法:選取處于對數(shù)生長期的膠質(zhì)瘤細胞株U87、A172,分別經(jīng)MPPa-PDT或MPPa-PDT+煙曲霉毒素C(fumitremorgin C,F(xiàn)TC)處理后,采用CCK-8法檢測細胞活性;采用蛋白[質(zhì)]印跡法(Western blot)檢測細胞內(nèi)ABCG2的表達;流式細胞技術法檢測未光照前各組細胞內(nèi)MPPa的含量;Annexin Ⅴ-FITC/PI雙染流式細胞術檢測細胞凋亡率;DCFH-DA染色觀察細胞內(nèi)活性氧(reactive oxygen species,ROS)的產(chǎn)生。結(jié)果:MPPa-PDT能抑制A172、U87細胞的活性,且呈一定的光能量依賴性,A172達到半數(shù)致死量所需光能量密度為U87的8倍;A172較U87細胞對MPPa-PDT不敏感;A172細胞內(nèi)高表達的ABCG2影響MPPa在細胞內(nèi)的聚集;抑制ABCG2后,不僅可以增強MPPa-PDT對A172細胞的殺傷作用,同時可增加MPPa-PDT觸發(fā)產(chǎn)生的ROS的量及細胞對MPPa的攝取。結(jié)論:人膠質(zhì)瘤細胞株A172對MPPa-PDT相對不敏感,并且產(chǎn)生這種現(xiàn)象的機制可能是ABCG2外排MPPa,減少MPPa的細胞內(nèi)聚集,進而減弱光敏劑活化后對腫瘤細胞的殺傷作用。
三磷酸腺苷結(jié)合轉(zhuǎn)運蛋白G超家族成員2;焦脫鎂葉綠酸甲酯;光動力療法;敏感性;膠質(zhì)瘤
神經(jīng)膠質(zhì)母細胞瘤(glioblastoma multiforme,GBM)是最常見且侵襲性最強的原發(fā)性腦腫瘤,導致GBM患者的中位生存期只有15個月[1],僅有3%~5%的患者能存活超過5年[2]。常規(guī)治療對大腦的損傷及藥物難以通過血腦屏障,導致膠質(zhì)母細胞瘤的根治非常困難[3]。光動力療法(photodynamic therapy,PDT)作為一種新型的腫瘤靶向治療方式,因其特異性強、敏感度高,被用于多種腫瘤的治療[4]。光敏劑可作為熒光染料對手術切除膠質(zhì)瘤進行引導,也可利用光敏劑在腫瘤組織的高聚集特點,在手術中通過PDT直接對腫瘤細胞進行靶向查殺以期達到“完全切除”[5]。研究表明細胞的異質(zhì)性及耐藥性使用于GBM治療的藥物不能完全滲透進入細胞,從而影響藥物作用,也降低腫瘤細胞對PDT治療的敏感性,導致許多GBM復發(fā)[3]。ABCG2作為ABC轉(zhuǎn)運蛋白家族的成員,參與多種腫瘤的耐藥過程[6]。近期有研究報道抑制人基底細胞癌BCC-1/KMC細胞內(nèi)高表達的ABCG2后,可增強PDT對該腫瘤的治療效果。由此,筆者推測ABCG2在GBM對PDT不敏感中可能起到了關鍵性作用。本研究選擇同一惡性程度來源的兩株GBM細胞株A172、U87,觀察PDT對其作用效果,利用ABCG2特異性抑制劑煙曲霉毒素C(fumitremorgin C,F(xiàn)TC)探討人膠質(zhì)瘤細胞對PDT殺傷效應不敏感的可能機制,為PDT更好地用于GBM的臨床治療提供實驗依據(jù)。
1.1 材料
光敏劑焦脫鎂葉綠酸甲酯(pyropheophorbide -a methyl ester,MPPa)購自美國Sigma-Aldrich公司,用二甲基亞砜溶解后過濾除菌,配制成終濃度為10 mmol/L儲存液避光儲存于-20 ℃的冰箱中;LED多波長光源由本課題組自行研制(本實驗選擇波長630 nm、連續(xù)輸出方式、光功率密度30 mW/cm2);DMEM高糖培養(yǎng)基、胰蛋白酶購自上海碧云天生物技術有限公司;胎牛血清購自德國PAN公司;CCK-8購自日本同仁化學研究所;Anne Ⅴ-PI雙染檢測試劑盒購自南京凱基生物技術有限公司;DCFH-DA購自美國Sigma公司;ABCG2抗體購自美國Abcam公司;β-actin抗體購自美國Proteintech公司;二抗購自北京中杉金橋生物技術有限公司。GBM細胞株U87、A172均由上海復旦大學生物醫(yī)學研究院培養(yǎng)。
1.2 細胞培養(yǎng)
GBM細胞株U87、A172在37 ℃、CO2體積分數(shù)為5%及飽和濕度的條件下于DMEM高糖培養(yǎng)液(含1%青鏈雙抗和10%胎牛血清)中進行傳代培養(yǎng)。
1.3 實驗分組及處理
MPPa-PDT處理:處于對數(shù)生長期的U87、A172細胞,與2 μmol/L的光敏劑MPPa共同溫育24 h后,按LED光能量密度:0、0.9、1.8、3.6、7.2和10.8 J/cm2進行隨機分組及光照;MPPa-PDT+FTC處理:將處于對數(shù)生長期的A172細胞隨機分為4組,其中A組為空白對照組,B組為FTC組,C組為MPPa-PDT組,D組為MPPa-PDT+FTC組。B、D組按參考文獻要求選擇5 μmol/L FTC,A、C組加入含等濃度的二甲基亞砜的培養(yǎng)基于37 ℃、CO2體積分數(shù)為5%的條件下溫育24 h后,更換培養(yǎng)基,按以上分組加入MPPa濃度2 μmol/L繼續(xù)避光溫育24 h。以上均使用波長630 nm、連續(xù)輸出方式、光功率密度為30 mW/cm2的集成LED特種光源照射。A、B、C和D組細胞接受240 s的光照(光照能量=功率×光照時間)。
1.4 檢測指標
1.4.1 CCK-8法檢測細胞活性
經(jīng)上述分組處理后的細胞繼續(xù)避光培養(yǎng)24 h后加入CCK-8試劑10 μL,于37 ℃、CO2體積分數(shù)為5%的條件下溫育30 min,用全波長酶標儀于450 nm波長下測定各孔吸光度(D)值,取平均值,并按公式計算細胞存活率:存活率=(D實驗組平均值-D陰性對照組值)∕(D空白對照組平均值-D陰性對照組值)×100%。
1.4.2 流式細胞技術檢測細胞內(nèi)MPPa的含量
處于對數(shù)生長期的細胞用胰酶消化,以1×105個/孔接種于6孔板中。待細胞貼壁后,每孔加入2 μmol/L的MPPa溫育24 h,PBS洗滌細胞3次,收集細胞,采用流式細胞技術檢測細胞內(nèi)MPPa含量。
1.4.3 蛋白[質(zhì)]印跡法(Western blot)檢測ABCG2蛋白的表達
提取處于對數(shù)生長期的GBM細胞A172、U87全蛋白,采用BCA法測各細胞蛋白濃度并配平。取等質(zhì)量上述蛋白進行聚丙烯酰胺凝膠電泳(SDS-PAGE),濕轉(zhuǎn)法將蛋白質(zhì)轉(zhuǎn)移至0.45 μm的PVDF膜上,室溫下?lián)u床上封閉2 h、溫育ABCG2一抗(1∶1 000)、二抗(1∶5 000)后采用ECL化學發(fā)光法顯色,觀察兩細胞內(nèi)相應蛋白的表達情況。以β-actin為內(nèi)參,采用Image J軟件進行條帶的量化。
1.4.4 膜聯(lián)蛋白Annexin V-PI雙染,流式細胞儀檢測A172細胞的凋亡率
取處于對數(shù)生長期的A172膠質(zhì)瘤細胞,以1×105個/孔的密度接種于6孔板培養(yǎng)。待其貼壁后按以上分組進行光動力處理。24 h后離心消化收集所有懸浮及貼壁細胞,AnnexinV-FITC/PI雙染,流式細胞儀檢測細胞凋亡率。
1.4.5 DCFH-DA染色檢測A172細胞內(nèi)活性氧(reactive oxygen species,ROS)水平
不帶熒光的DCFH-DA可被細胞內(nèi)的ROS氧化為帶綠色熒光的DCF,通過檢測DCF的量可以反應細胞內(nèi)ROS的水平。將處于對數(shù)生長期的A172細胞均勻接種于48孔板中,待其貼壁后按以上分組進行光動力處理,倒掉原培養(yǎng)基,用PBS輕輕洗滌細胞3次,加入含25 μmol/L的DCFH-DA無血清培養(yǎng)基,用置于37 ℃、CO2體積分數(shù)為5%的條件下溫育30 min,棄掉培養(yǎng)基后PBS洗滌細胞3次,熒光顯微鏡下觀察并拍照。細胞接種于6孔板中,用PDT處理后,按上述方法進行DCFH-DA染色后用全波長酶標儀對ROS水平進行定量檢測(激發(fā)波長為488 nm;發(fā)射波長525 nm)。
1.5 統(tǒng)計學處理
2.1 CCK-8法檢測A172、U87兩細胞對Mppa-PDT殺傷效應的敏感性
CCK-8法結(jié)果顯示,同一MPPa濃度溫育后,MPPa-PDT對兩細胞的殺傷效應存在光能量依賴性,光能量密度越大,細胞活性越低(圖1A);A172半數(shù)致死量所需光能量密度值為7.2 J/cm2,U87則為0.9 J/cm2(圖1B);采用7.2 J/c m2的光能量密度照射后,A 1 7 2細胞活性為0.5 5 3±0.0 3 7,而U 8 7僅為0.017±0.002(P<0.05,圖1C);提示與U87細胞相比,A172對MPPa-PDT的殺傷效應相對不敏感。故選擇最終能量密度7.2 J/cm2用于A172細胞株后續(xù)的相關實驗。
圖1 不同光能量密度照射對兩細胞活性的影響Fig. 1 The ef f ect of dif f erent light energy on the two kinds of cells viability
2.2 兩細胞株中ABCG2蛋白表達的鑒定及MPPa含量的比較
Western blot檢測結(jié)果顯示,A172細胞內(nèi)ABCG2的表達明顯高于U87(t=4.021,P<0.05,圖2A);流式定量檢測顯示,A172細胞內(nèi)MPPa的含量明顯低于U87,約為U87的1/4(t=24.61,P<0.05,圖2B)。
2.3 抑制ABCG2后,A172細胞對MPPa-PDT殺傷效應敏感性的變化
CCK-8細胞活性檢測發(fā)現(xiàn),各組間細胞活性比較差異有統(tǒng)計學意義(F=27.803,P<0.001),但A組與B組間差異無統(tǒng)計學意義(P>0.05),加入ABCG2特異性抑制劑FTC的D組細胞活性較C組明顯降低,且差異有統(tǒng)計學意義(P<0.001);采用流式細胞術對細胞凋亡進行測定發(fā)現(xiàn),D組細胞凋亡率也明顯高于C組,且差異有統(tǒng)計學意義(χ2=3 873.629,P<0.001,圖3)。
2.4 抑制ABCG2后,對A172細胞內(nèi)MPPa的含量及PDT后ROS水平的影響
通過流式細胞術對各組細胞內(nèi)MPPa紅色熒光強度及含量的檢測均發(fā)現(xiàn),D組細胞內(nèi)MPPa含量明顯高于C組,差異有統(tǒng)計學意義(F=527.8,P<0.001,圖4);對ROS進行DCFHDA染色發(fā)現(xiàn),D組熒光強度最高,提示D組產(chǎn)生ROS的量最多(圖4);采用流式細胞術對ROS進行定量檢測其結(jié)果也顯示,4組中D組產(chǎn)生的ROS的量明顯高于其他各組(F=312.427,P<0.001,圖4)。
圖2 兩細胞株中ABCG2蛋白表達的鑒定及MPPa含量的比較Fig. 2 Identif i cation of the expression of ABCG2 protein and comparison the content of intracellular in the two cell lines
圖3 各組細胞活性和細胞凋亡率比較Fig. 3 The comparison of cell viability and cell apoptosis rate in each group
圖4 流式定量檢測各組細胞內(nèi)MPPa含量并比較各組細胞內(nèi)ROS水平Fig. 4 The intracellular contents of MPPa in each group without illumination were tested by fl ow cytometry and comparison the level of intracellular ROS in each group
ABC轉(zhuǎn)運蛋白利用ATP的綁定和(或)水解的能量驅(qū)動跨膜結(jié)構(gòu)域的構(gòu)象變化來轉(zhuǎn)運分子[7]。不同轉(zhuǎn)運蛋白轉(zhuǎn)運底物不同[8],如ABC轉(zhuǎn)運蛋白家族成員ABCG2,又稱乳腺癌耐藥蛋白,可以通過外排光敏劑,從而降低細胞內(nèi)光敏劑的積聚[9-11]。MPPa為葉綠素a的衍生物,是第二代新型光敏劑,因具有明確的化學結(jié)構(gòu)、較長的吸收波長及較強的組織滲透性等優(yōu)點,使其在臨床上有廣泛的應用前景[12-14]。有研究發(fā)現(xiàn),MPPa是ABCG2轉(zhuǎn)運蛋白的特異性底物,在高表達ABCG2的人結(jié)腸癌細胞株、乳腺癌細胞株[15]、人類基底癌細胞株[16]及骨髓瘤細胞[11]中均發(fā)現(xiàn)細胞內(nèi)MPPa外排現(xiàn)象。本實驗中A172細胞內(nèi)MPPa明顯低于U87細胞,而兩者ABCG2蛋白含量差異則為U87明顯低于A172,提示A172細胞內(nèi)MPPa含量較低可能與其高表達的ABCG2外排MPPa有關。已知PDT殺傷腫瘤的主要原理為光敏劑在一定波長的光照激發(fā)下發(fā)生復雜的光化學反應,通過產(chǎn)生ROS導致腫瘤組織不可逆的損傷[17]。提示PDT殺傷腫瘤細胞的關鍵是腫瘤細胞內(nèi)光敏劑活化產(chǎn)生的ROS。所以,細胞內(nèi)光敏劑含量的減少將直接導致PDT對腫瘤細胞的殺傷效應的減弱。在對早期肺癌患者進行PDT治療中發(fā)現(xiàn),肺癌細胞中ABCG2對光敏劑的外排作用直接影響PDT的療效[18]。本研究也發(fā)現(xiàn),A172與U87兩細胞株在相同光能量密度處理下,A172細胞活性均高于U87;同時,兩細胞株達到半數(shù)致死量所需的光能量密度也存在差異,A172所需光能量密度為7.2 J/cm2,高于U87的0.9 J/cm2。提示A172對MPPa-PDT的敏感性較U87差。結(jié)合此前兩細胞株中胞內(nèi)MPPa濃度及ABCG2含量的差異,我們推測A172對MPPa-PDT敏感性差可能與ABCG2外排MPPa后引起MPPa-PDT所致的ROS減少有關。
FTC是一種從煙曲霉中分離得到的霉菌毒素,通過增加耐藥細胞內(nèi)的藥物積聚、改變拓撲異構(gòu)酶的活性等方式逆轉(zhuǎn)由ABCG2介導的多藥耐藥[19-20]。在表達功能性的ABCG2人胃癌細胞S-120中加入ABCG2抑制劑FTC后,可逆轉(zhuǎn)S-120的耐藥特性,增加抗腫瘤藥物SN-38對S-120細胞的毒性作用[21]。本實驗也證實,加入FTC抑制A172細胞高表達的ABCG2后,細胞活性下降,而凋亡率顯著升高,這說明A172細胞中ABCG2被FTC特異性抑制后,MPPa-PDT對A172細胞的殺傷效應增強。在PDT中,ROS的產(chǎn)生源于MPPa的激活,細胞內(nèi)MPPa的含量將直接影響其被光照激活后ROS的產(chǎn)量,進一步影響PDT對細胞的殺傷效果。本實驗發(fā)現(xiàn)抑制ABCG2蛋白的功能,細胞內(nèi)MPPa的含量明顯增多,并伴隨著ROS的產(chǎn)量的增加。這種現(xiàn)象在人結(jié)腸癌HCT116和人腎癌A498兩細胞系中也得到證實,兩細胞系中ABCG2表達的減弱,可使PDT誘導的ROS的產(chǎn)生增多,增強PDT對這兩細胞系的殺傷效應[22]。另外Choi等[22]的研究發(fā)現(xiàn),ABCG2蛋白的表達受核因子E2相關轉(zhuǎn)錄因子2(the transcription factor NF-E2-related factor 2,NRF2)的調(diào)控。采用小干擾RNA技術敲除人乳腺癌MDA-MB-231細胞內(nèi)NRF2基因后,細胞對光敏劑的攝取明顯多于未敲除組,且細胞內(nèi)ABCG2蛋白表達量降低;而未敲除組經(jīng)ABCG2抑制劑處理后,與敲除NRF2基因的細胞相比,兩者在細胞內(nèi)光敏劑濃度及產(chǎn)生的ROS水平間比較,則差異無統(tǒng)計學意義[22]。Hajri等[23]在結(jié)腸癌HT293細胞中也進一步證實NRF2-ABCG2通路參與HT293對MPPa介導的PDT的不敏感。在相關實驗中也證明NRF2還可通過下游分子血紅素氧合酶1、NADP(H)醌氧化還原酶等的表達發(fā)揮強大的抗氧化及細胞保護作用,從而對PDT產(chǎn)生耐受[24-27]。
綜上所述,本實驗證明,GBM細胞株A172對MPPa-PDT相對不敏感,并且產(chǎn)生這種現(xiàn)象的機制可能是ABCG2外排MPPa,減少MPPa的細胞內(nèi)聚集,進而減弱光敏劑活化后對腫瘤細胞的殺傷作用。為臨床提高PDT治療GBM的治療效果提供一定的實驗依據(jù)。
[1] BLEEKER F E, MOLENAAR R J, LEENSTRA S. Recent advances in the molecular understanding of glioblastoma[J]. J Neurooncol, 2012, 108(1): 11-27.
[2] GALLEGO O. Nonsurgical treatment of recurrent glioblastoma[J]. Curr Oncol, 2015, 22(4): e273-e281.
[3] LAWSON H C, SAMPATH P, BOHAN E, et al. Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience[J]. J Neurooncol, 2007, 83(1): 61-70.
[4] HUANG H C, MALLIDI S, LIU J, et al. Photodynamic therapy synergizes with irinotecan to overcome compensatory mechanisms and improve treatment outcomes in pancreatic cancer[J]. Cancer Res, 2016, 76(5): 1066-1077.
[5] STUMMER W, PICHLMEIER U, MEINEL T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase Ⅲ trial[J]. Lancet Oncol, 2006, 7(5):392-401.
[6] CHUNA C, ZAIDEN N, CHONG K H, et al. Characterization of a side population of astrocytoma cells in response to temozolomide[J]. J Neurosurg, 2008, 109(5): 856-866.
[7] HOLLENSTEIN K, DAWSON R J, LOCHER K P. Structure and mechanism of ABC transporter proteins[J]. Curr Opin Struct Biol, 2007, 17(4): 412-418.
[8] POHL A, DEVAUX P F, HERRMANN A. Function of prokaryotic and eukaryotic ABC proteins in lipid transport[J]. Biochim Biophys Acta, 2005, 1733(1): 29-52.
[9] MERLIN J L, GAUTIER H, BARBERI-HEYOB M, et al. The multidrug resistance modulator SDZ-PSC 833 potentiates the photodynamic activity of chlorin e6 independently of P-glycoprotein in multidrug resistant human breast adenocarcinoma cells[J]. Int J Oncol, 2003, 22(4): 733-739.
[10] TSAI T, HONG R L, TSAI J C, et al. Effect of 5-aminolevulinicacid-mediated photodynamic therapy on MCF-7 and MCF-7/ ADR cells[J]. Lasers Surg Med, 2004, 34(1): 62-72.
[11] ROBEY R W, STEADMAN K, POLGAR O, et al. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy[J]. Cancer Biol Ther, 2005, 4(2):187-194.
[12] LUO T, WILSON B C, LU Q B. Evaluation of oneand two-photon activated photodynamic therapy with pyropheophorbide-a methyl ester in human cervical, lung and ovarian cancer cells[J]. J Photochem Photobiol B, 2014, 132: 102-110.
[13] GUELLUY P H, FONTAIN-AUPART M P, GRAMMENOS A, et al. Optimizing photodynamic therapy by liposomal formulation of the photosensitizer pyropheophorbide-a methyl ester: in vitro and ex vivo comparative biophysical investigations in a colon carcinoma cell line[J]. Photochem Photobiol Sci, 2010, 9(9): 1252-1260.
[14] XU J, XIA X, LEUNG A W, et al. Sonodynamic action of pyropheophorbide-a methyl ester induces mitochondrial damage in liver cancer cells[J]. Ultrasonics, 2011, 51(4): 480-484.
[15] HAZLEHURST L A, FOLEY N E, GLEASON-GUZMAN M C, et al. Multiple mechanisms confer drug resistance to mitoxantrone in the human 8 226 myeloma cell line[J]. Cancer Res, 1999, 59(5): 1021-1028.
[16] SUN W, KAJIMOTO Y, INOUE H, et al. Gefitinib enhances the efficacy of photodynamic therapy using 5-aminolevulinic acid in malignant brain tumor cells[J]. Photodiagnosis Photodyn Ther, 2013, 10(1): 42-50.
[17] RKEIN A M, OZOG D M. Photodynamic therapy[J]. Dermatol Clin, 2014, 32(3): 415-425.
[18] USUDA J, TSUNODA Y, ICHINOSE S, et al. Breast cancer resistant protein (BCRP) is a molecular determinant of the outcome of photodynamic therapy (PDT) for centrally located early lung cancer[J]. Lung Cancer, 2010, 67(2): 198-204.
[19] ROSS D D, YANG W, ABRUZZO L V, et al. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines[J]. J Natl Cancer Inst, 1999, 91(5): 429-433.
[20] RABINDRAN S K, HE H, SINGH M, et al. Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C[J]. Cancer Res, 1998, 58(24):5850-5858.
[21] CHANG C H, WANG Y, ZALATH M, et al. Combining ABCG2 inhibitors with IMMU-132, an anti-Trop-2 antibody conjugate of SN-38, overcomes resistance to SN-38 in breast and gastric cancers[J]. Mol Cancer Ther, 2016, 15(8):1910-1919.
[22] CHOI B H, RYOO I G, KANG H C, et al. The sensitivity of cancer cells to pheophorbide a-based photodynamic therapy is enhanced by Nrf2 silencing[J]. PloS one, 2014, 9(9):e107158.
[23] HAJRI A, WACK S, MEYERR C, et al. In vitro and in vivo efficacy of photofrin and pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells[J]. Photochem Photobiol, 2002, 75(2): 140-148.
[24] ADACHI T, NAKAGAWA H, CHUNG I, et al. Nrf2-dependent and -independent induction of ABC transporters ABCC1, ABCC2, and ABCG2 in HepG2 cells under oxidative stress[J]. J Exp Ther Oncol, 2007, 6(4): 335-348.
[25] CHEN Q, LI W, WAN Y, et al. Amplified in breast cancer 1 enhances human cholangiocarcinoma growth and chemoresistance by simultaneous activation of Akt and Nrf2 pathways[J]. Hepatology, 2012, 55(6): 1820-1829.
[26] JIA Y, CHEN J, ZHU H, et al. Aberrantly elevated redox sensing factor Nrf2 promotes cancer stem cell survival via enhanced transcriptional regulation of ABCG2 and Bcl-2/ Bmi-1 genes[J]. Oncol Rep, 2015, 34(5): 2296-2304.
[27] MASUDE Y, VAZIRI N D, LI S, et al. The effect of Nrf2 pathway activation on human pancreatic islet cells[J]. PloS one, 2015, 10(6): e0131012.
The role of ABCG2 in the sensitivity of glioma to pyropheophorbide-amethyl ester-mediated photodynamic therapy
PAN Li1, TIAN Si1, ZHANG Li1, LIN Haidan1, GOU Hui2, CHEN Qing1, LI
Kaiting1, BAI Dingqun1, KONG Yuhan1, OU Yunsheng3, YU Lehua2(1. Department of Rehabilitation Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; 2. Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; 3. Department of Rehabilitation Medicine Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China)
Background and purpose: Adenosine triphosphate-binding cassette superfamily G member 2 (ABCG2), which has been found over-expressed in a variety of cancer cells, takes part in the drug resistance of cancer through efflux of anticancer drugs. The purpose of this study was to investigate the mechanisms of human glioblastoma cells sensitivity to pyropheophorbide-a methyl ester (MPPa)-mediated photodynamic therapy (PDT) eradicating tumour cells and its relationship to ABCG2. Methods: U87 and A172 glioma cell lines in the logarithmic growth phase wereselected and exposed to the treatment of MPPa-PDT and MPPa-PDT+fumitremorgin C (FTC) respectively. The cell viability was measured with the use of CCK-8 assay. The expression of ABCG2 was detected by Western blot. The intracellular contents of MPPa in each group without illumination were tested by fl ow cytometry. Flow cytometry with Annexin Ⅴ-FITC/PI double staining was used to detect the cell apoptotic rate. DCFH-DA staining was used to assess the generation of intracellular reactive oxygen species (ROS). Results: The MPPa-mediated PDT could eradicate A172 and U87 cancer cells in an energy-dependent manner. The light energy density in A172 was 8 times of that in U87 when the cell viability reached median lethal dose after MPPa-mediated PDT. The high expression of ABCG2 in A172 cells af f ected the accumulation of intracellular MPPa. Inhibition of ABCG2, not only could enhance the eradicating ef f ect of MPPa-PDT on A172 cells, but also could increase the yield of ROS triggered by MPPa-PDT and the accumulation of intracellular MPPa. Conclusion: The human glioblastoma cell line A172 is insensitive to MPPa-mediated PDT. The mechanism may relate to ABCG2, which decreases the MPPa content in cancer cells through efflux of MPPa, resulting in decline of cytotoxicity.
Adenosine triphosphate-binding cassette superfamily G member 2; Pyropheophorbide-a methyl ester; Photodynamic therapy; Sensitivity; Glioma
KONG Yuhan E-mail: Kong-yuhan@foxmail.com
10.19401/j.cnki.1007-3639.2017.02.001
R739.41
A
1007-3639(2017)02-0081-08
2016-08-30
2016-11-29)
國家自然科學基金資助項目(81401865,81572634)。
孔渝菡 E-mail:Kong_yuhan@foxmail.com