王雅寧,劉云啟,高金祥,藺 超,劉乃國
(濱州醫(yī)學(xué)院附屬醫(yī)院:1.腎內(nèi)科;2.骨關(guān)節(jié)外科;3.臨床醫(yī)學(xué)實驗中心,山東濱州 256603)
黃芪甲苷對糖尿病KKAy小鼠腎組織TGF-β1、SMAD2/3及α-SMA表達(dá)的影響
王雅寧1,劉云啟1,高金祥1,藺 超2,劉乃國3
(濱州醫(yī)學(xué)院附屬醫(yī)院:1.腎內(nèi)科;2.骨關(guān)節(jié)外科;3.臨床醫(yī)學(xué)實驗中心,山東濱州 256603)
目的 觀察黃芪甲苷對糖尿病KKAy小鼠腎組織轉(zhuǎn)化生長因子β1(TGF-β1)、SMAD2/3、α-平滑肌肌動蛋白(α-SMA)表達(dá)的影響,探討其延緩腎臟纖維化的可能機制。方法 雄性C57BL/6J小鼠10只作為對照組,20只2型糖尿病模型KKAy小鼠予以高脂飲食至14周,隨機數(shù)字法分為模型組和黃芪甲苷組,每組10只,黃芪甲苷組給予黃芪甲苷40 mg·kg-1·d-1,模型組與對照組給予等量生理鹽水。實驗期間,各組動物自由飲食、飲水。血糖儀測量16、20、24周齡時各組小鼠的血糖水平。24周時處死,觀察各組小鼠腎的病理學(xué)變化,免疫組織化學(xué)法測定TGF-β1、SMAD2/3、α-SMA的表達(dá)。結(jié)果 (1)血糖:與對照組相比,14周齡的KKAy小鼠血糖明顯升高,模型組血糖在16、20、24周時血糖明顯升高(P<0.05),黃芪甲苷組與其相比,血糖下降(P<0.05)。(2)腎組織形態(tài)學(xué):對照組腎小球及腎小管結(jié)構(gòu)清晰,未出現(xiàn)腎間質(zhì)纖維化,模型組腎小球系膜基質(zhì)增寬,系膜細(xì)胞增多,腎小管上皮細(xì)胞細(xì)胞質(zhì)空泡樣變性,腎間質(zhì)炎性細(xì)胞增多,黃芪甲苷組腎小管上皮細(xì)胞細(xì)胞質(zhì)較少,未呈現(xiàn)明顯的纖維化。(3)腎組織TGF-β1、SMAD2/3、α-SMA的表達(dá):對照組TGF-β1表達(dá)微弱,而模型組TGF-β1顯著表達(dá)于腎小管上皮細(xì)胞細(xì)胞質(zhì)(P<0.01);與模型組相比,黃芪甲苷組TGF-β1、α-SMA表達(dá)明顯下調(diào)(P<0.05);對照組腎小管與腎小球細(xì)胞核有少量磷酸化的SMAD2/3表達(dá),模型組表達(dá)增加(P<0.01),與模型組相比,黃芪甲苷組表達(dá)減少(P<0.05)。結(jié)論 黃芪甲苷通過影響TGF-β/SMADS信號通路,下調(diào)TGF-β1、α-SMA表達(dá),改善糖尿病小鼠腎臟纖維化。
黃芪甲苷;糖尿病腎??;轉(zhuǎn)化生長因子;肌動蛋白-α;Smads信號蛋白
糖尿病腎病是糖尿病微血管病變中的重要并發(fā)癥之一,是導(dǎo)致終末期腎病和糖尿病患者死亡的主要原因。腎小管及腎小球的炎癥、纖維化是糖尿病腎病進(jìn)展為終末期腎病的主要病理基礎(chǔ),并且腎小管的損傷先于腎小球損傷[1-2]。因此,阻斷腎小管纖維化在延緩腎功能惡化過程中起著重要的作用。包括轉(zhuǎn)化生長因子β1(TGF-β1)在內(nèi)的許多細(xì)胞因子參與了腎臟纖維化的過程。TGF-β1可誘導(dǎo)腎小管上皮細(xì)胞向纖維母細(xì)胞轉(zhuǎn)分化,且在糖尿病腎病的發(fā)展過程中,TGF-β1表達(dá)增加[3-4]。作為TGF-β家族的下游信號轉(zhuǎn)導(dǎo)蛋白,Smads信號蛋白(SMAD)蛋白同腎臟纖維化密切相關(guān)。有研究發(fā)現(xiàn),TGF-β刺激腎小管上皮細(xì)胞時,SMAD2發(fā)生磷酸化并且轉(zhuǎn)入核內(nèi),促使腎小管上皮細(xì)胞表達(dá)膠原蛋白及α-平滑肌肌動蛋白(α-SMA)增加[5-6]。黃芪甲苷是從豆科植物黃芪中提取出來的具有抗氧化、抗炎的物質(zhì),可通過多種途徑保護(hù)腎臟。本研究通過觀察黃芪甲苷對糖尿病KKAy小鼠腎組織TGF-β1、SMAD2/3及α-SMA表達(dá)的影響,探討其對腎間質(zhì)纖維化的保護(hù)作用,為臨床應(yīng)用黃芪甲苷保護(hù)腎臟提供實驗依據(jù)。
1.1 材料
1.1.1 實驗動物 雄性C57BL/6J小鼠10只及KKAy小鼠20只,體質(zhì)量22~24 g,購自中國醫(yī)學(xué)科學(xué)院動物中心,飼養(yǎng)于無特定病原體(SPF)級動物實驗室;
1.1.2 主要試劑 黃芪甲苷(美國Sigma公司);DAB試劑盒、TGF-β1和α-SMA多克隆抗體(北京中山生物科技有限公司);磷酸化SMAD2/3多克隆抗體(武漢博士德公司)。
1.2 方法
1.2.1 動物分組及給藥 高脂飲食飼養(yǎng)至14周齡的KKAy小鼠當(dāng)隨機血糖大于13.9 mmol/L時提示造模成功[7],隨機數(shù)字法分成模型組和黃芪甲苷組(每日灌胃,劑量為40 mg·kg-1·d-1),同齡雄性C57BL/6J小鼠作為對照組,實驗期間,各組動物自由飲食、飲水。
1.2.2 標(biāo)本采集 分別于16、20、24周時尾靜脈取血測量血糖水平;24周齡時處死各組小鼠,以4%多聚甲醛固定腎組織。
1.2.3 指標(biāo)檢測 小鼠禁食6 h后羅氏血糖儀監(jiān)測血糖。
1.2.4 腎組織病理形態(tài)學(xué)觀察 石蠟包埋腎組織后切片,進(jìn)行常規(guī)蘇木精-伊紅(HE)染色及Masson染色,在光鏡下觀察;免疫組織化學(xué):據(jù)SABC試劑盒說明書測定TGF-β1、SMAD2/3及α-SMA表達(dá)情況,隨機數(shù)字法選取10個以上腎小球測定上述蛋白表達(dá)。
2.1 一般狀態(tài)比較 對照組老鼠對外界反應(yīng)靈敏,毛色順滑。模型組小鼠精神狀態(tài)差,步履緩慢,煩渴多尿,反應(yīng)差,毛發(fā)枯燥。隨著周齡的增加,上述癥狀更加明顯。黃芪甲苷組小鼠的精神狀態(tài)及反應(yīng)能力介于兩組之間。
2.2 黃芪甲苷對KKAy糖尿病小鼠血糖的影響 與對照組相比,14周齡的KKAy小鼠血糖明顯升高,模型組血糖在16、20、24周時血糖明顯升高(P<0.05),黃芪甲苷組與其相比,血糖下降(P<0.05)。見表1。
2.3 黃芪甲苷對KKAy糖尿病小鼠組織形態(tài)學(xué)的影響 對照組小鼠腎小球及腎小管結(jié)構(gòu)清晰,沒有腎間質(zhì)纖維化。模型組腎小球系膜基質(zhì)增寬,系膜細(xì)胞增多,腎小管上皮細(xì)胞細(xì)胞質(zhì)空泡樣變性,腎間質(zhì)炎性細(xì)胞增多。黃芪甲苷組腎小管上皮細(xì)胞細(xì)胞質(zhì)較少,未呈現(xiàn)明顯的纖維化。見圖1。
表1 各組小鼠末梢血糖水平
a:P<0.05,與對照組比較;b:P<0.05,與模型組比較。
圖2 黃芪甲苷對KKAy糖尿病小鼠腎組織TGF-β1、SMAD2/3及α-SMA表達(dá)的影響(免疫組織化學(xué)×200)
2.4 黃芪甲苷對KKAy糖尿病小鼠腎組織TGF-β1、SMAD2/3及α-SMA表達(dá)的影響 對照組TGF-β1表達(dá)微弱,而模型組TGF-β1顯著表達(dá)于腎小管上皮細(xì)胞細(xì)胞質(zhì)(P<0.01);與模型組相比,黃芪甲苷組TGF-β1、α-SMA表達(dá)明顯下調(diào)(P<0.05);對照組腎小管與腎小球細(xì)胞核有少量磷酸化的SMAD2/3表達(dá),模型組表達(dá)增加(P<0.01),同模型組相比,黃芪甲苷組表達(dá)減少(P<0.05)。見表2、圖2。
表2 各組小鼠腎組織TGF-β、SMAD2/3、α-SMA平均吸光度值
a:P<0.01,與對照組比較;b:P<0.05,與模型組比較。
黃芪甲苷是豆科植物膜莢黃芪的干燥根,是從黃芪總苷中分離的一類單體化合物,是豆科植物黃芪的主要成分,具有抗應(yīng)激、降低血糖、調(diào)節(jié)免疫、利水消腫、保護(hù)腎臟等多種藥理學(xué)作用[8]。膜莢黃芪具有延緩糖尿病腎病發(fā)展及延緩腎小球系膜基質(zhì)增生的作用。然而,有關(guān)黃芪甲苷的腎臟保護(hù)機制尚未完全闡明。有研究表明,在高糖或鏈脲霉素誘導(dǎo)的1型糖尿病大鼠模型中,黃芪甲苷通過增加足細(xì)胞α3β1整合素的表達(dá),下調(diào)整合素的表達(dá),發(fā)揮對足細(xì)胞的保護(hù)作用[9]。此外,黃芪甲苷通過Caspase-3調(diào)節(jié)Bax/Bcl-2以抑制足細(xì)胞凋亡[10]。有研究者發(fā)現(xiàn),在急性腎損傷時,黃芪甲苷通過抑制核因子-κB(NF-κB)表達(dá)及阻斷p38MAPK通路來減少炎性因子的釋放,修復(fù)損傷的腎小管[11-12]。有研究證實,黃芪甲苷可通過下調(diào)TGF-β1及阻斷p38MAPK通路,抑制高糖誘導(dǎo)的人腎小管上皮細(xì)胞發(fā)生凋亡[13-14]。最近研究證實,黃芪甲苷通過抑制腎小管上皮細(xì)胞產(chǎn)生活性氧從而減輕氧化應(yīng)激,阻斷上皮細(xì)胞轉(zhuǎn)分化的發(fā)生[15-16]。因此,假設(shè)黃芪甲苷通過TGF-β1介導(dǎo)的細(xì)胞通路影響炎癥及纖維化,此項研究旨在觀察黃芪甲苷對糖尿病KKAy小鼠TGF-β1、SMAD2/3及α-SMA表達(dá)的影響,探討其對腎間質(zhì)纖維化的作用。
腎間質(zhì)纖維化及腎小管損傷在腎臟疾病發(fā)展過程中起了重要的作用,且與腎功能下降密切相關(guān)。腎小管上皮細(xì)胞轉(zhuǎn)分化是糖尿病腎病進(jìn)程中的關(guān)鍵一環(huán),且在此進(jìn)程中腎功能惡化的重要機制之一就是腎小管間質(zhì)纖維化。在腎小管間質(zhì)纖維化發(fā)展過程中,承擔(dān)細(xì)胞外基質(zhì)合成的細(xì)胞主要為肌成纖維母細(xì)胞,而近曲小管上皮細(xì)胞可轉(zhuǎn)分化為肌成纖維母細(xì)胞。因此,延緩慢性腎臟病發(fā)展的關(guān)鍵就是抑制腎小管間質(zhì)纖維化[17-18]。腎小管上皮細(xì)胞在受到刺激后轉(zhuǎn)分化為成纖維母細(xì)胞,進(jìn)而分泌某些細(xì)胞因子,細(xì)胞極性消失,大量細(xì)胞外基質(zhì)積聚,最終導(dǎo)致腎間質(zhì)纖維化。在腎小管上皮細(xì)胞轉(zhuǎn)分化過程中,TGF-β1扮演了重要角色,而作為TGF-β家族的下游信號轉(zhuǎn)導(dǎo)蛋白,SMAD蛋白同腎臟纖維化密切相關(guān)。在本研究中,探討了黃芪甲苷對糖尿病KKAy小鼠血糖及腎臟病理形態(tài)學(xué)的影響。實驗結(jié)果顯示,與對照組相比,模型組腎組織纖維化及血糖明顯升高;同模型組相比,黃芪甲苷組腎間質(zhì)纖維化減輕,血糖水平下降,細(xì)胞增生減少,這提示黃芪甲苷可減少糖尿病KKAy小鼠血糖水平,延緩腎臟纖維化的發(fā)展。此外,與對照組相比,模型組TGF-β1、SMAD2/3及α-SMA表達(dá)明顯增加,與模型組相比,黃芪甲苷組上述指標(biāo)表達(dá)下降。α-SMA是腎小管上皮細(xì)胞轉(zhuǎn)分化的標(biāo)志,其水平高低可反映腎臟纖維化的程度。先前的體外研究發(fā)現(xiàn),SMAD2/3表達(dá)于人系膜細(xì)胞,且在TGF-β1導(dǎo)致膠原Ⅰ分泌增加的過程中也有SMAD信號通路的參與[19-20]。腎小管上皮細(xì)胞轉(zhuǎn)分化分為4個過程:腎小管上皮細(xì)胞間緊密連接的破壞;α-SMA的表達(dá)及肌動蛋白細(xì)胞骨架的重排; 腎小管基底膜的破壞;腎小管上皮細(xì)胞發(fā)生遷移,侵襲能力增加。TGF-β1作為關(guān)鍵的細(xì)胞因子通過調(diào)節(jié)細(xì)胞增殖和分化參與了上述過程,該因子可抑制基質(zhì)降解酶的表達(dá),促進(jìn)腎小管上皮細(xì)胞轉(zhuǎn)分化,抑制腎小管細(xì)胞增殖,最終導(dǎo)致腎臟炎癥及纖維化[20-21]。體外實驗證實,在腎小球系膜細(xì)胞及腎小管上皮細(xì)胞,高糖刺激可激活SMAD信號通路,引起TGF-β1過表達(dá)。本實驗證實TGF-β1、SMAD2/3及α-SMA在糖尿病小鼠腎組織中高表達(dá),同上述研究一致。此外,TGF-β/SMADS信號通路的激活可使α-SMA表達(dá)增加[22-24]。本研究發(fā)現(xiàn),黃芪甲苷可使糖尿病KKAy小鼠TGF-β1、SMAD2/3及α-SMA表達(dá)減弱,說明黃芪甲苷可通過下調(diào)TGF-β1、SMAD2/3及α-SMA的表達(dá),抑制TGF-β/SMADS信號通路,最終減輕腎臟纖維化。
膜莢黃芪以往被認(rèn)為有利水消腫的功效。本研究發(fā)現(xiàn),黃芪甲苷可通過調(diào)節(jié)TGF-β/SMADS信號通路并且下調(diào)TGF-β1、SMAD2/3及α-SMA的表達(dá),改善糖尿病小鼠腎臟纖維化,從而通過抑制腎小管間質(zhì)纖維化及腎小管上皮細(xì)胞轉(zhuǎn)分化,發(fā)揮腎臟保護(hù)作用。
[1]Wang JY,Gao YB,Zhang N,et al.miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy[J].Mol Cell Endocrinol,2014,392(1/2):163-172.
[2]Araoka T,Abe H,Tominaga T,et al.Transcription factor 7-like 2 (TCF7L2)regulates activin receptor-like kinase 1 (ALK1)/Smad1 pathway for development of diabetic nephropathy[J].Mol Cells,2010,30(3):209-218.
[3]Ding Z,Chen Z,Chen X,et al.Adenovirus-mediated anti-sense ERK2 gene therapy inhibits tubular epithelial-mesenchymal transition and ameliorates renal allograft fibrosis[J].Transpl Immunol,2011,25(1):34-41.
[4]何鳳,喻陸,童俊容,等.整合素連接激酶在梗阻性腎病腎小管上皮細(xì)胞轉(zhuǎn)分化中的作用及尿激酶對其表達(dá)調(diào)節(jié)的研究[J].南方醫(yī)科大學(xué)學(xué)報,2009,29(5):909-913.
[5]Yin Y,Qi F,Song Z,et al.Ferulic acid combined with astragaloside IV protects against vascular endothelial dysfunction in diabetic rats[J].Biosci Trends,2014,8(4):217-226.
[6]Chen J,Chen Y,Luo Y,et al.Astragaloside IV ameliorates diabetic nephropathy involving protection of podocytes in streptozotocin induced diabetic rats[J].Eur J Pharmacol,2014,736(736):86-94.
[7]Yamada Y,Muraki A,Oie M,et al.Soymorphin-5,a soy-derived μ-opioid peptide,decreases glucose and triglyceride levels through activating adiponectin and PPARα systems in diabetic KKAy mice[J].Am J Physiol Endocrinol Metab,2012,302(4):E433-E440.
[8]Li M,Yu L,She T,et al.Astragaloside IV attenuates Toll-like receptor 4 expression via NF-κB pathway under high glucose condition in mesenchymal stem cells[J].Eur J Pharmacol,2012,696(1/3):203-209.
[9]Qi W,Chen X,Poronnik P,et al.The renal cortical fibroblast in renal tubulointerstitial fibrosis[J].Int J Biochem Cell Biol,2006,38(1):1-5.
[10]Weil EJ,Lemley KV,Mason CC,et al.Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy[J].Kidney Int,2012,82(9):1010-1017.
[11]Toyoda M,Najafian B,Kim Y,et al.Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy[J].Diabetes,2007,56(8):2155-2160.
[12]Reidy K,Susztak K.Epithelial-mesenchymal transition and podocyte loss in diabetic kidney disease[J].Am J Kidney Dis,2009,54(4):590-593.
[13]Fukuda A,Chowdhury MA,Venkatareddy MP,et al.Growth-dependent podocyte failure causes glomerulosclerosis[J].J Am Soc Nephrol,2012,23(8):1351-1363.
[14]Zou MS,Yu J,Nie GM,et al.1,25-dihydroxyvitamin D3 decreases adriamycin-induced podocyte apoptosis and loss[J].Int J Med Sci,2010,7(5):290-299.
[15]Lv L,Wu SY,Wang GF,et al.Effect of astragaloside IV on hepatic glucose-regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin[J].Phytother Res,2010,24(2):219-224.
[16]Yuan W,Zhang Y,Ge Y,et al.Astragaloside IV inhibits proliferation and promotes apoptosis in rat vascular smooth muscle cells under high glucose concentration in vitro[J].Planta Med,2008,74(10):1259-1264.
[17]Salmon AH,Neal CR,Harper SJ.New aspects of glomerular filtration barrier structure and function:five layers (at least)not three[J].Curr Opin Nephrol Hypertens,2009,18(3):197-205.
[18]Xavier S,Niranjan T,Krick S,et al.TbetaRI independently activates Smad- and CD2AP-dependent pathways in podocytes[J].J Am Soc Nephrol,2009,20(10):2127-2137.
[19]Piwkowska A,Rogacka D,Audzeyenka I,et al.High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes[J].J Cell Biochem,2011,112(6):1661-1672.
[20]Tan S,Wang G,Guo Y,et al.Preventive effects of a natural Anti-Inflammatory agent,astragaloside Ⅳ,on ischemic acute kidney injury in rats[J].Evid Based Complement Alternat Med,2013,2013:284025.
[21]Zheng R,Deng Y,Chen Y,et al.Astragaloside Ⅳ attenuates complement membranous attack complex induced podocyte injury through the MAPK pathway[J].Phytother Res,2012,26(6):892-898.
[22]Qi W,Niu J,Qin Q,et al.Astragaloside Ⅳ attenuates glycated albumin-induced epithelial-to-mesenchymal transition by inhibiting oxidative stress in renal proximal tubular cells[J].Cell Stress Chaperones,2014,19(1):105-114.
[23]Meng LQ,Tang JW,Wang Y,et al.Astragaloside Ⅳ synergizes with ferulic acid to inhibit renal tubulointerstitial fibrosis in rats with obstructive nephropathy[J].Br J Pharmacol,2011,162(8):1805-1818.
[24]Gui DK,Huang JH,Guo YP,et al.Astragaloside Ⅳ ameliorates renal injury in streptozotocin-induced diabetic rats through inhibiting NF-kappa B-mediated inflammatory genes expression[J].Cytokine,2013,61(3):970-977.
The effect of astragaloside on TGF-β1,SMAD2/3,and α-SMA expression in the kidney tissues of diabetic KKAy mice
WangYaning1,LiuYunqi1,GaoJinxiang1,LinChao2,LiuNaiguo3
(1.DepartmentofNephrology;2.DepartmentofBoneandJointSurgery;3.DepartmentofClinicalandMedicineLab,theAffiliatedHospitalofBinzhouMedicalUniversity,Binzhou,Shandong256603,China)
Objective To study the effect of astragaloside on TGF-β1,SMAD2/3,and α-SMA expression in the kidney tissue of diabetic KKAy mice,and evaluate its potential role in renal interstitial fibrosis.Methods 20 type 2 diabetic KKAy mice were randomly divided into model group and astragaloside group,while 10 male C57BL/6J mice were selected as the control.Astragaloside at 40 mg·kg-1·d-1was given when the KKAy mice fed with high-fat diet to 14 weeks old.The mice in the control and model group received normal saline at 40 mg·kg-1·d-1.Blood glucose meter was used to detect the blood glucose value of each mice at 16th,20th and 24th week.The mice were killed at 24 weeks old and the kidney tissue samples were collected.Pathology morphological changes were observed.Results (1)blood glucose value:cmpared with the control group,the blood glucose value of KKAy mice at 14 week increased significantly,and that of model group also increased significantly at 16th,20th and 24th week (P<0.05);the blood glucose value of astragaloside group decreased compared with control group (P<0.05).(2)Morphology of kidney:in the control group,the glomerular and tubular had clear structure,there was no renal interstitial fibrosis;in the model group,the renal glomerular mesangial matrix had broaden,mesangial cell had increased,renal tubular epithelial cell cytoplasm showed vacuole degeneration,renal interstitial inflammatory cell had increased.In astragaloside group,there were few renal tubular epithelial cell cytoplasm,and there was no obvious fibrosis.(3)TGF-β1,SMAD2/3,and α-SMA expression levels of the kidney issuse:compared with control group,mice in model group up-regulated TGF-β1,SMAD2/3 and α-SMA expression (P<0.05).TGF-β1,SMAD2/3,and α-SMA expression levels in astragaloside group were significantly lower than those in the model group (P<0.05).There was few phosphorylated SMAD2/3 expression in renal tubular and glomerular nuclei,while that of model group increased (P<0.01),and compared with model group,that of the astragaloside group decreased (P<0.05).Conclusion Astragaloside can delay the renal fibrosis process in diabetic mice by influencing the TGF-β/SMADS signaling pathway and down-regulating TGF-β1 and α-SMA expression,thus to relieve renal fibrosis in diabetic mice.
astragaloside;diabetic nephropathy;TGF-β1;α-SMA;SMAD
王雅寧(1983-),主治醫(yī)師,碩士,主要從事慢性腎臟病的基礎(chǔ)與臨床研究。
??·基礎(chǔ)研究
10.3969/j.issn.1671-8348.2017.05.007
R692.6
A
1671-8348(2017)05-0596-04
2016-07-08
2016-09-06)