張亞娟, 劉建成
(西北師范大學數(shù)學與統(tǒng)計學院, 蘭州 730070)
?
局部對稱空間中線性Weingarten超曲面
張亞娟, 劉建成*
(西北師范大學數(shù)學與統(tǒng)計學院, 蘭州 730070)
研究了局部對稱空間中具有有界平均曲率的可定向完備線性Weingarten超曲面的剛性分類. 在對超曲面的全臍張量Φ的模長進行適當限制下,應用廣義極大值原理,得到了該類超曲面是全臍的或等距于一個具有2個不同主曲率的超曲面,且其中一個主曲率的重數(shù)為1.
線性Weingarten超曲面; 局部對稱; δ-拼擠; 平均曲率
上述結論都是針對常數(shù)數(shù)量曲率超曲面而言的. 弱化這個條件的一種做法是考慮平均曲率H與標準數(shù)量曲率R滿足線性關系R=aH+b的超曲面,其中a,b,并把這種超曲面稱為線性Weingarten超曲面. 近幾年許多文獻對線性Weingarten超曲面進行了相關研究,參見文獻[3-14],其中文獻[3]證明了單位球面Sn+1(1)中具有非負截曲率的線性Weingarten超曲面Mn,如果滿足(n-1)a2+4n(b-1)≥0,那么Mn要么是全臍的,要么等距于環(huán)面Sn-k(c1)×Sk(c2),其中1≤k≤n-1,c1,=1. 文獻[12]研究了雙曲空間Hn+1中的具有有界平均曲率的線性Weingarten超曲面Mn,通過對Mn的全臍張量Φ的模長進行恰當?shù)南拗?得到了該類超曲面的剛性分類結果.
本文將更一般地研究外圍空間是局部對稱δ-拼擠黎曼流形中線性Weingarten超曲面的性質,得到了如下定理.
取Nn+1為單位球面Sn+1(1),則δ=c0=1,于是有
推論1 設Mn是Sn+1(1)中可定向完備超曲面. 假定Mn的平均曲率H有界,且標準數(shù)量曲率R與其平均曲率H滿足R=aH+b,a,b,a≤0,b>1. 如果
限制在超曲面Mn上時,有
用hijk、hijkl表示hij的一階和二階協(xié)變微分,則
hijk-hikj=-K(n+1)ijk,
(2)
12△S=12 ∑ >i,j △h2ij=∑ i,j,k h2ijk+∑ i,j hij△hij=∑ i,j,k h2ijk+
(4)
(5)
等號成立當且僅當至少有n-1個μi相等.
證明 根據(jù)式(1)有
(6)
注意到Nn+1是一個局部對稱空間,對式(6)兩邊同時求協(xié)變微分,可得
因此
由Cauchy-Schwarz不等式得
(2n2H-n(n-1)a)2|H|2.
(7)
(2n2H-n(n-1)a)2-4n2S=
4n4H2+n2(n-1)2a2-4n3(n-1)aH-
4n4H2+n2(n-1)2a2-4n3(n-1)aH-
4n2(n(n-1)+n2H2-n(n-1)(aH+b))=
n2(n-1)2a2+4n3(n-1)(b-1)=
n2(n-1)((n-1)a2+4n(b-1))≥0.
(8)
結合式(7)、(8)可得
(9)
(10)
定理1的證明 由式(10)可得
(11)
△(n2H2-n(n-1)(aH+b))=
(12)
由式(4)、(11)、(12)可得
(13)
令μi=i-H,則. 由引理3可知H≠0,因此不妨設H>0. 由條件及引理1可得
(14)
(15)
nc0(n2H2-S)=-nc0|Φ|2.
(16)
所以由引理2及式(13)~(16)可得
2nδ|Φ|2-nc0|Φ|2=|Φ|2PH(|Φ|),
(17)
其中
因此
(18)
(nH)≥|Φ|2PH(|Φ|)≥0.
(19)
另一方面,由引理4可知,存在點列{pk}?Mn,使得
(20)
由式(1)可得
(21)
注意到定理1的條件a≤0,結合式(20)、(21)可得
(22)
結合式(19)、(20)、(22)可得
sup|Φ|2Psup H(sup|Φ|)≥0.于是有sup|Φ|2Psup H(sup|Φ|)=0,繼而可知Φ0,Mn是全臍的,或. 如果存在點pMn,使得,則a≤0時H在p點也取得最大值. 由引理3可知,算子是橢圓算子,結合式(19),由Hopf極大值原理可以得到H在Mn上為常數(shù). 因此在Mn上|Φ|于是式(5)等號成立,因此Mn等距于具有2個不同主曲率的超曲面,且其中1個主曲率的重數(shù)為1. 定理1證畢.
0=∫M(nH)*1≥∫M|Φ|2PH(|Φ|)*1.
(23)
[1]CHENGSY,YAUST.Hypersurfaceswithconstantscalarcurvature[J].MathematicscheAnnalen,1977,225(3):195-204.[2]SHUSC.Completehypersurfaceswithconstantscalarcurvatureinahyperbolicspace[J].BalkanJournalofGeometryandItsApplications,2007,12(2):107-115.
[3]LIHZ,SUHYJ,WEIGX.LinearWeingartenhypersurfacesinaunitsphere[J].BulletinoftheKoreanMathematicalSociety,2009,46(2): 321-329.
[4]SHUSC.LinearWeingartenhypersurfacesinarealspaceform[J].GlasgowMathematicalJournal,2010,52(3):635-648.
[5]LPEZR.RotationallinearWeingartensurfacesofhyperbolictype[J].IsraelJournalofMathematics,2008,167(1):283-301.
[6]BARROSA,SILVAJ,SOUSAP.RotationallinearWeingartensurfacesintotheEuclideansphere[J].IsraelJournalofMathematics,2012,192(2):819-830.
[7]YANGD.LinearWeingartenspacelikehypersurfacesinlocallysymmetricLorentzspace[J].BulletinoftheKoreanMathematicalSociety,2012,49(2):271-284.
[8]DELIMAHF,DELIMAJR.CompletelinearWeingartenspacelikehypersurfacesimmersedinalocallysymmetricLorentzspace[J].ResultsinMathematics,2013,63(3/4):865-876.
[9]AQUINOCP,DELIMAHF.OnthegeometryoflinearWeingartenhypersurfacesinthehyperbolicspace[J].MonatsheftefürMathematik,2013,171(3/4):259-268.
[10]AQUINOCP,DELIMAHF,VELSQUEZMAL.AnewcharacterizationofcompletelinearWeingartenhypersurfacesinrealspaceforms[J].PacificJournalofMathematics,2013,261(1):33-43.
[11]AQUINOCP,DELIMAHF,VELSQUEZMAL.Gene-ralizedmaximumprinciplesandthecharacterizationoflinearWeingartenhypersurfacesinspaceforms[J].MichiganMathematicalJournal,2014,63(1):27-40.[12]AQUINOCP,DELIMAHF,VELSQUEZMAL.LinearWeingartenhypersurfaceswithboundedmeancurvatureinthehyperbolicspace[J].GlasgowMathematicalJournal,2015,57(3):653-663.
[13]CHAOXL,WANGPJ.LinearWeingartenhypersurfacesinlocallysymmetricmanifolds[J].BalkanJournalofGeometryandItsApplications,2014,19(2):50-59.
[14]CHAOXL.LinearWeingartenhypersurfacesinaunitsphere[J].BulletinoftheIranianMathematicalSociety,2015,41(2):353-362.
[15]OKUMURAM.Hypersurfacesandapinchingproblemonthesecondfundamentaltensor[J].AmericanJournalofMathematics,1974,96(1):210.
【中文責編:莊曉瓊 英文責編:肖菁】
Linear Weingarten Hypersurfaces in Locally Symmetric Manifolds
ZHANG Yajuan, LIU Jiancheng*
(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
The rigidity classifications for complete orientable linear Weingarten hypersurfaces with bounded mean curvature in locally symmetric manifold are studied. By supposing a suitable restriction on the norm of the totally umbilical tensorΦand using the generalized maximum principle, it is proved that such a hypersurface must be either totally umbilical or isometric to the hypersurface with two distinct principal curvatures, one of which is simple.
linear Weingarten hypersurfaces; locally symmetric;δ-pinching; mean curvature
2016-01-21 《華南師范大學學報(自然科學版)》網(wǎng)址:http://journal.scnu.edu.cn/n
國家自然科學基金項目(11261051)
O
A
*通訊作者:劉建成,教授,Email:liujc@nwnu.edu.cn.