亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        碳源和鹽度對(duì)好氧反硝化細(xì)菌脫氮特性的影響

        2016-12-12 00:44:49廖紹安黃捷暢王安利高方舟相晨曦羅年滔李永鋒藍(lán)宗堅(jiān)
        關(guān)鍵詞:鹽度硝化碳源

        廖紹安, 黃捷暢, 王安利*, 高方舟, 相晨曦, 羅年滔, 李永鋒, 藍(lán)宗堅(jiān)

        (1. 華南師范大學(xué)生命科學(xué)學(xué)院, 廣州 510631; 2. 廣東水產(chǎn)健康安全養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室, 廣州 510631;3. 廣東普通高校生態(tài)與環(huán)境科學(xué)重點(diǎn)實(shí)驗(yàn)室, 廣州 510631; 4. 清遠(yuǎn)市水產(chǎn)研究所, 清遠(yuǎn) 511500)

        ?

        碳源和鹽度對(duì)好氧反硝化細(xì)菌脫氮特性的影響

        廖紹安1,2,3, 黃捷暢1,2,3, 王安利1,2,3*, 高方舟1,2,3, 相晨曦1,2,3, 羅年滔4, 李永鋒4, 藍(lán)宗堅(jiān)4

        (1. 華南師范大學(xué)生命科學(xué)學(xué)院, 廣州 510631; 2. 廣東水產(chǎn)健康安全養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室, 廣州 510631;3. 廣東普通高校生態(tài)與環(huán)境科學(xué)重點(diǎn)實(shí)驗(yàn)室, 廣州 510631; 4. 清遠(yuǎn)市水產(chǎn)研究所, 清遠(yuǎn) 511500)

        采用16S rDNA序列分析對(duì)菌株LZX301進(jìn)行了初步鑒定,在150 r/m搖瓶好氧培養(yǎng),探討了碳源及鹽度對(duì)菌株好氧反硝化特性的影響. 結(jié)果表明,該菌株16S rDNA序列與PseudomonasstutzeriATTC 17594(AY905607.1)等3株施氏假單胞菌序列相似度為99%,系統(tǒng)發(fā)育樹分析顯示菌株LZX301與P.stutzeri的關(guān)系比同屬的P.aeruginosa和P.putida更近,因此初步確定菌株LZX301為P.stutzeri. 培養(yǎng)液初始含7 mg/L亞硝酸鹽和28 mg/L硝酸鹽、C/N比為10∶1條件下,以葡萄糖、乙酸鈉和蔗糖為碳源時(shí)無機(jī)氮去除率分別為79.1%、67.9%和38.8%,氨氮積累量分別為1.978、1.224、0.727 mg/L. 以葡萄糖為唯一碳源時(shí),在5‰、15‰、25‰等3個(gè)鹽度下無機(jī)氮總?cè)コ史謩e為73.2%、85.8%和78.7%,其中硝酸鹽去除率分別為89.8%、86.1%和76.5%,亞硝酸鹽去除率分別為36.2%、94.7%和96.4%,氨氮質(zhì)量濃度分別為2.117、0.691、0.595 mg/L. 研究結(jié)果表明菌株LZX301在鹽度5‰~25‰ 范圍內(nèi)具有較強(qiáng)的好氧反硝化能力,以葡萄糖為碳源脫氮效果最好,對(duì)該菌株的應(yīng)用具有指導(dǎo)意義.

        好氧反硝化; 脫氮; 碳源; 鹽度; 假單胞菌

        日益嚴(yán)重的氮污染是最重要的環(huán)境問題之一,反硝化作為主要的脫氮途徑長期以來被深入研究.傳統(tǒng)上認(rèn)為在厭氧或缺氧條件下反硝化才會(huì)發(fā)生,ROBERTSON等[1]首次發(fā)現(xiàn)具有好氧反硝化能力的Thiosphaerapantotropha改變了這一認(rèn)識(shí). 好氧反硝化菌在溶解氧較高水平下也具有較高的反硝化活性,可以實(shí)現(xiàn)硝化過程和好氧反硝化菌代謝在時(shí)空上有效耦合,為提高脫氮效率提供新思路和新工藝,因此,好氧反硝化菌的研究得到了較高重視. 目前已從不同環(huán)境中分離獲得了多種好氧反硝化菌,主要包括假單胞菌屬(Pseudomonas)、產(chǎn)堿桿菌屬(Alcaligenes)、副球菌屬(Paracoccus)和微小菌屬(Microvirgula)[2-3]. 碳源在細(xì)菌生長、呼吸作用和反硝化代謝中提供電子供體必不可少,其種類和碳氮比(C/N比)對(duì)脫氮有極為重要的影響;另外,鹽度也是影響反硝化效率的重要因素[4-5].

        本研究對(duì)源于對(duì)蝦養(yǎng)殖池中的一株好氧反硝化菌LZX301的16S rDNA進(jìn)行了同源性分析,并研究了碳源和鹽度對(duì)其脫氮性能的影響,為其在水產(chǎn)養(yǎng)殖系統(tǒng)中氮污染控制提供必要的基礎(chǔ).

        1 材料與方法

        1.1 實(shí)驗(yàn)菌株

        實(shí)驗(yàn)菌株來源于對(duì)蝦淡化養(yǎng)殖池生物膜,為本實(shí)驗(yàn)室保存菌株,編號(hào)為LZX301,具有較強(qiáng)的好氧反硝化能力.

        1.2 菌株活化培養(yǎng)

        基本培養(yǎng)基:醋酸鈉(1.64 g),葡萄糖(5.4 g),NH4Cl(1.07 g),NaNO3(0.85 g),K2HPO4(1.4 g),KH2PO4(2.7 g),pH 7.6,人工海水(鹽度10‰)1 000 mL,115 ℃滅菌30 min.

        取超低溫冰箱保存的菌株LZX301在LB瓊脂平板培養(yǎng)基上活化培養(yǎng)后,挑取菌落接種到基本培養(yǎng)基中液體純培養(yǎng)24 h.

        1.3 菌株16S rDNA序列分析

        用1.5 mL小離心管收集24 h培養(yǎng)的菌液,12 000 r/m離心2 min,棄上清液,收集菌體. 使用TAKARA細(xì)菌基因組提取試劑盒提取菌株基因組DNA,操作按照說明書進(jìn)行. 電泳檢測提取的基因組DNA.

        所采用的細(xì)菌通用引物27F(5′-AGAGTTTGATCCTGGCTCAG-3′)/1492R(5′-GGTTACCTTGTTACGACTT-3′)[6]由上海生工生物工程有限公司合成,對(duì)16S rDNA進(jìn)行PCR擴(kuò)增. 擴(kuò)增體系:2× Premix Taq (Ex TaqTMVersion,TaKaRa公司) 25 μL,引物各0.5 μmol/L,模板1 μL,滅菌去離子水補(bǔ)至50 μL. 采用PE2400 PCR擴(kuò)增儀,反應(yīng)程序?yàn)椋?4 ℃變性5 min;94 ℃變性30 s,60 ℃退火30 s,72 ℃延伸1 min,32個(gè)循環(huán);72 ℃延伸10 min,4 ℃保存. PCR產(chǎn)物以含0.15 mg/L溴化乙錠的1%瓊脂糖凝膠電泳檢測,凝膠圖像分析系統(tǒng)(Bio-Rad Gel Doe 2000)記錄結(jié)果. 用Microcon-PCR Purification Kit(Millipore)純化擴(kuò)增產(chǎn)物,由上海生工生物有限公司采用ABI 377 DNA測序儀完成測序. 測序結(jié)果在數(shù)據(jù)庫GenBank采用BLASTN程序進(jìn)行同源性檢索. 在NCBI上搜索參考序列,利用軟件MEGA 6對(duì)菌株LZX301及參考序列進(jìn)行遺傳關(guān)系分析,采用Neighbour-joint法構(gòu)建系統(tǒng)發(fā)育樹.

        1.4 搖瓶培養(yǎng)

        不同碳源培養(yǎng)基制備. 培養(yǎng)基基本組分:NaNO30.17 g,NaNO20.035 g,K2HPO41.4 g,KH2PO42.7 g,pH 7.6,人工海水(鹽度10‰)1 000 mL. 基本培養(yǎng)基配制3份,各份按C/N比均為10∶1分別加入葡萄糖、蔗糖、乙酸鈉等3種碳源,配制不同碳源培養(yǎng)基. 調(diào)節(jié)pH 7.6,各碳源培養(yǎng)基分裝250 mL各3瓶,115 ℃滅菌30 min.

        不同鹽度培養(yǎng)基制備. 培養(yǎng)基基本組分:NaNO30.17 g,NaNO20.035 g,K2HPO41.4 g,KH2PO42.7 g,pH 7.6,葡萄糖0.875 g. 人工海水鹽度設(shè)置3個(gè)梯度,分別為5‰、15‰、25‰. 調(diào)節(jié)pH 7.6,每個(gè)鹽度的培養(yǎng)基分裝250 mL各3瓶,115 ℃滅菌30 min.

        將LZX301液體培養(yǎng)物離心去上清液,用鹽度為10‰的無菌海水重懸浮,制備濃度約為5.0×108cells/mL的菌懸液. 每瓶液體培養(yǎng)基接入制備好的菌懸液5 mL,32 ℃下?lián)u床培養(yǎng),轉(zhuǎn)速150 r/min.

        1.5 樣品分析方法及儀器

        定時(shí)取樣,用上海元析UV-5500PC紫外可見分光光度計(jì)在波長600 nm下檢測OD600,氨氮濃度采用納氏試劑分光光度法測定[7],亞硝酸鹽濃度和硝酸鹽濃度分別采用N- (1-萘基)-乙二胺分光光度法和鋅鎘還原法測定(GB/T 12763.4-2007)[8],鹽度采用折射儀ATAGO MASTER-S/Mill α測定.

        2 結(jié)果與分析

        2.1 菌株16S rDNA序列分析

        對(duì)菌株LZX301的16S rDNA擴(kuò)增和測序,得到1 488個(gè)堿基的部分片段序列, 提交GenBank的登記號(hào)為KX685271. Blast比對(duì)結(jié)果顯示,該菌株與多株施氏假單胞菌(Pseudomonasstutzeri)菌株16S rDNA序列相似性均達(dá)99%,表1列出了菌株LZX301與其中3株的相似度結(jié)果. 16S rDNA 序列分析可以作為細(xì)菌鑒定的手段,利用該方法90%以上的可以鑒定到屬,65%~83%的可以鑒定到種[9]. 一般情況下16S rDNA 序列相似度高于99%被認(rèn)為是同一個(gè)種[10].

        表1 菌株LZX301的16S rDNA部分序列同源檢索結(jié)果

        根據(jù)BLAST結(jié)果[11],確認(rèn)LZX301菌株屬于Pseudomonas屬,從γ-Proteobacteria類群中搜索與LZX301相似或相近的參考序列,構(gòu)建系統(tǒng)發(fā)育樹(圖1). 菌株LZX301與高相似度的P.stuzeriDQ1、P.stuzeriA1501和P.stuzeriATTC 17594歸為同類,且可信度達(dá)到100%;而與同屬的P.aeruginosa和P.putida親緣關(guān)系較遠(yuǎn). 因此,初步認(rèn)定菌株LZX301為P.stuzeri.

        目前已發(fā)現(xiàn)的好氧反硝化菌中屬水平上假單胞菌的最多,其中又以施氏假單胞菌為主[2,12],如P.stutzeriSU2[13]、P.stutzeriYZN-001[14]、P.stutzeriTR2[15]、P.stutzeriPCN-1[16]、P.stutzeriKTB[17]、P.stuzeriC3[18]和P.stutzeriYG-24[19].

        圖1 基于菌株LZX301的16S rDNA部分序列與參考序列用N-J法構(gòu)建的系統(tǒng)發(fā)育樹

        Figure 1 Phylogenetic tree constructed by the Neighbour Joining method on the basis of partial 16S rDNA sequence of the strain LZX301 and the reference strains

        2.2 不同碳源對(duì)菌株LZX301脫氮特性的影響

        圖2 葡萄糖、蔗糖和乙酸鈉為碳源時(shí)培養(yǎng)液中菌體濃度、氨氮濃度、亞硝酸鹽濃度和硝酸鹽濃度的變化

        Figure 2 Concentrations of strain LZX301,ammonia,nitrite and nitrate using glucose,sucrose,and sodium acetate as the carbon source

        2.3 不同鹽度對(duì)菌株LZ301脫氮特性的影響

        圖3 不同鹽度培養(yǎng)液中菌體濃度以及氨氮、亞硝酸鹽、硝酸鹽質(zhì)量濃度的變化

        3 結(jié)論

        在水環(huán)境氮污染治理中反硝化菌發(fā)揮著極為重要的作用,篩選高效反硝化菌是科研工作者的一項(xiàng)重要任務(wù);另外,反硝化代謝需要利用碳源作為還原劑異化還原高價(jià)態(tài)的氮,不同的反硝化菌對(duì)碳源的需求存在差異,因此,比較不同碳源對(duì)反硝化菌脫氮特征的影響可以為反硝化菌的應(yīng)用提供極為重要的指導(dǎo). 本文對(duì)菌株LZX301的研究分析,得到以下結(jié)論:

        (1)經(jīng)16S rDNA序列的相似性比較和系統(tǒng)發(fā)育分析,初步確定好氧反硝化細(xì)菌菌株LZX301為施氏假單胞菌(Pseudomonasstutzeri).

        (2)碳源和鹽度對(duì)其生長和脫氮特性的影響實(shí)驗(yàn)結(jié)果表明,在C/N比為10∶1、無機(jī)氮為亞硝酸鹽氮和硝酸鹽氮時(shí),葡萄糖為碳源時(shí)菌株LZX301的脫氮效果最好、乙酸鈉次之、蔗糖最差,且有輕微的氨氮積累. 在以葡萄糖為唯一碳源時(shí),鹽度5‰~25‰范圍內(nèi),48 h LZX301的無機(jī)氮去除率介于73.2%~85.8%,具有較高的脫氮活性,但是也出現(xiàn)氨氮積累.

        施氏假單胞菌(P.stutzeri)是常見的好氧反硝化菌,已報(bào)道的好氧反硝化菌屬于該種的菌株最多. 從本文的研究結(jié)果來看,實(shí)驗(yàn)菌株LZX301可用于中低鹽度廢水,特別是海水養(yǎng)殖水體的脫氮修復(fù)或是海水養(yǎng)殖廢水的凈化.

        [1] ROBERTSON L A,KUENEN J G,KLEIJNTJENS R. Aerobic denitrification and heterotrophic nitrification byThiosphaerapantotropha[J]. Antonie Van Leeuwenhoek,1985,51(4):445-445.[2] 梁煒,詹穎. 好氧反硝化菌的分離及應(yīng)用研究進(jìn)展[J]. 廣東化工,2016,12:105-107.

        LIANG W,ZHAN Y. Research progress on isolation and application of aerobic denitrifier[J]. Guangdong Chemical Industry,2016,12:105-107.

        [3] 郭焱,張召基,陳少華. 好氧反硝化微生物學(xué)機(jī)理與應(yīng)用研究進(jìn)展[J]. 微生物學(xué)通報(bào),2016,DOI:10.13344/j.microbiol.china.160001.

        GUO Y,ZHANG Z J,CHEN S H. Microbiology and potential application of arobic denitrification:a review[J]. Microbiology China,2016,DOI:10.13344/j.microbiol.china.160001.

        [4] 鮮思淑,陳茂霞,熊蓉,等. 異養(yǎng)硝化-好氧反硝化影響因素研究進(jìn)展[J]. 水處理技術(shù),2016(1):1-6.

        XIAN S S,CHEN M X,XIONG R,et al. Research advances of heterotrophic nitrification-aerobic denitrification under different factors[J]. Technology of Water Treatment,2016(1):1-6.

        [5] 喬森,劉雪潔,周集體. 異養(yǎng)硝化-好氧反硝化在生物脫氮方面的研究進(jìn)展[J]. 安全與環(huán)境學(xué)報(bào),2014(2):128-135.

        QIAO S,LIU X J,ZHOU J T. Research progress of heterotrophic nitrification- aerobic denitrification in biological denitrification[J]. Journal of Safety and Environment,2014(2):128-135.

        [6] EDWARDS U,ROGALL T,BL?CKER H,et al. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA[J]. Nucleic Acids Research,1989,17(19):7843-7853.

        [7] 國家環(huán)保總局. 水和廢水監(jiān)測分析方法 [M]. 4版. 北京:中國環(huán)境科學(xué)出版社,2002:279.

        [8] 國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局,國家標(biāo)準(zhǔn)化管理委員會(huì). 海洋調(diào)查規(guī)范 第四部分:海水化學(xué)要素調(diào)查:GB/T 12763.4-2007 [S]. 北京:中國標(biāo)準(zhǔn)出版社,2007:17.

        [9] JANDA J M,ABBOTT S L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory:pluses,perils,and pitfalls[J]. Journal of Clinical Microbiology,2007,45(9):2761.

        [10] 朱詩應(yīng),戚中田. 16S rDNA擴(kuò)增及測序在細(xì)菌鑒定與分類中的應(yīng)用[J]. 微生物與感染,2013,8(2):106.

        ZHU S Y,QI Z T. Application of bacterial 16S rDNA amplification and sequencing in the classification and identification of bacteria[J]. Journal of Microbes and Infections,2013,8(2):106.

        [11]AGOSTINO M. Introduction to the BLAST Suite and BLASTN[M]∥AGOSTINO M. Practical Bioinformatics,[S. l.]:Garland Science,2012:47.

        [12]JI B,YANG K,ZHU L,et al. Aerobic denitrification:a review of important advances of the last 30 years[J]. Biotechnology and Bioprocess Engineering,2015,20(4):643-651.[13]SU J J,LIU B Y,LIU C Y. Comparison of aerobic denitrification under high oxygen atmosphere byThiosphaerapantotropha,ATCC 35512 andPseudomonasstutzeri,SU2 newly isolated from the activated sludge of a piggery wastewater treatment system[J]. Journal of Applied Microbiology,2001,90(3):457-462.

        [14]ZHANG J B,WU P X,HAO B,et al. Heterotrophic nitrification and aerobic denitrification by the bacteriumPseudo-monasstutzeriYZN-001[J]. Bioresource Technology,2011,102(21):9866-9869.

        [15]MIYAHARA M,KIM S W,ZHOU S,et al. Survival of the aerobic denitrifierPseudomonasstutzeristrain TR2 during co-culture with activated sludge under denitrifying conditions[J]. Bioscience,Biotechnology,and Biochemistry,2012,76(3):495-500.

        [16]ZHENG M S,HE D,MA T,et al. Reducing NO and N2O emission during aerobic denitrification by newly isolatedPseudomonasstutzeriPCN-1[J]. Bioresource Technology,2014,162(6):80-88.

        [17]ZHOU M,YE H,ZHAO X. Isolation and characterization of a novel heterotrophic nitrifying and aerobic denitrifying bacteriumPseudomonasstutzeriKTB for bioremediation of wastewater[J]. Biotechnology and Bioprocess Engineering,2014,19(2):231-238.

        [18]JI B,YANG K,WANG H,et al. Aerobic denitrification byPseudomonasstutzeriC3 incapable of heterotrophic nitrification[J]. Bioprocess and Biosystems Engineering,2015,38(2):407-409.

        [19]LI C,YANG J,WANG X,et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacteriumPseudomonasstutzeriYG-24[J]. Bioresource Technology,2015,182:18-25.

        [20] 高喜燕,劉鷹,鄭海燕,等. 一株海洋好氧反硝化細(xì)菌的鑒定及其好氧反硝化特性[J]. 微生物學(xué)報(bào),2010,50(9):1166.

        GAO X Y,LIU Y,ZHENG H Y,et al. Identification and characteristics of a marine aerobic denitrifying bacterium[J]. Acta Microbiologica Sinica,2010,50(9):1166.

        [21] 韓永和,章文賢,莊志剛,等. 耐鹽好氧反硝化菌A-13菌株的分離鑒定及其反硝化特性[J]. 微生物學(xué)報(bào),2013,53(1).

        HAN Y H,ZHANG W X,ZHUANG Z G,et al. Isolation and characterization of the salt-tolerant aerobic denitrifying bacterial strain A-13[J]. Acta Microbiologica Sinica,2013,53(1).

        [22]ZHENG H Y,LIU Y,GAO X Y,et al. Characterization of a marine origin aerobic nitrifying-denitrifying bacterium[J]. Journal of Bioscience & Bioengineering,2012,114(1):36.

        [23]SU J F,ZHANG K,HUANG T L,et al. Heterotrophic nitrification and aerobic denitrification at low nutrient conditions by a newly isolated bacterium,Acinetobactersp.SYF26[J]. Microbiology,2015,161:833.

        [24]LORRAIN M J,TARTAKOVSKY B,PEISAJOVICH-GILKSTEIN A,et al. Comparison of different carbon sources for ground water denitrification[J]. Environmental Technology,2004,25(9):1043.

        [25] 胡國山,張建美,蔡惠軍. 碳源、C/N和溫度對(duì)生物反硝化脫氮過程的影響[J]. 科學(xué)技術(shù)與工程,2016,16(14):75.

        HU G S,ZHANG J M,CAI H J. Effect of carbon source,C/N ratio and temperature on biological denitrification process[J]. Science Technology and Engineering,2016,16(14):75.

        [26]GUO L,CHEN Q,FEI F,et al. Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water[J]. Bioresource Technology,2013,142(4):49.

        [27] 孫雪梅,李秋芬,張艷,等. 一株海水異養(yǎng)硝化-好氧反硝化菌系統(tǒng)發(fā)育及脫氮特性[J]. 微生物學(xué)報(bào),2012,52(6):687.

        SUN X M,LI Q F,ZHANG Y,et al. Phylogenetic analysis and nitrogen removal characteristics of a heterotrophic nitrifying-aerobic denitrifying bacteria strain from marine environment[J]. Acta Microbiologica Sinica,2012,52(6):687.

        [28]MIAO Y,LIAO R,ZHANG X X,et al. Metagenomic insights into salinity effect on diversity and abundance of denitrifying bacteria and genes in an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Chemical Engineering Journal,2015,277:121.

        [29]ZHAO W,WANG Y,LIU S,et al. Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors[J]. Chemical Engineering Journal,2013,215:252.

        [30] 廖紹安,鄭桂麗,王安利,等. 養(yǎng)蝦池好氧反硝化細(xì)菌新菌株的分離鑒定及特征[J]. 生態(tài)學(xué)報(bào),2006,26(11):3721.

        LIAO S A,ZHENG G L,WANG A L,et al. Isolation and characterization of a novel aerobic denitrifier from shrimp pond[J]. Acta Ecologica Sinica,2006,26(11):3721.

        [31]SONG Z F,AN J,FU G H,et al. Isolation and characterization of an aerobic denitrifyingBacillussp.YX-6 from shrimp culture ponds[J]. Aquaculture,2011,319(1):191.

        【中文責(zé)編:莊曉瓊 英文責(zé)編:李海航】

        Effect of Carbon Source and Salinity on Nitrogen Removal of An Aerobic Denitrifier

        LIAO Shaoan1,2,3, HUANG Jiechang1,2,3, WANG Anli1,2,3*, Gao Fangzhou1,2,3, XIANG Chenxi1,2,3, LUO Niantao4,LI Yongfeng4, LAN Zongjian4

        (1. School of Life Sciences, South China Normal University, Guangzhou 510631, China;2. Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangzhou 510631, China;3. Key Laboratory of Safe and Healthy Aquaculture in Guangdong Province, Guangzhou 510631, China;4. Qingyuan Fisheries Research Institute, Qingyuan 511500, China)

        The aerobic denitrifying bacterium strain LZX301 was analyzed using 16S rDNA sequence. The similarity of 16S rDNA sequences between the aerobic denitrifying bacterium strain LZX301 andPseudomonasstutzeriaccessed in GenBank was 99%, and phylogenetic analysis showed that the strain, formed a monophyletic clade with members ofP.stutzeri, less closely related toP.aeruginosaorP.putida, which indicated that the strain LZX301 be assigned as the type strain ofP.stutzeri. The tests were conducted to study the effect of carbon sources and salinity on the nitrogen removal efficiency when the initial concentrations were 7 mg/L nitrite nitrogen and 28 mg/L nitrate nitrogen in the liquid media with C/N ratio 10, shaking speed at 150 r/min. The inorganic nitrogen removal efficiency was 79.1%,67.9% and 38.8%, and ammonium accumulation was observed to 1.978, 1.224 and 0.727 mg/L for glucose, sodium acetate and sucrose, respectively, which revealed glucose was the most efficient carbon source. With glucose as sole carbon source, nitrate nitrogen removal efficiency was 89.8%,86.1% and 76.5%,nitrite nitrogen removal efficiency was 36.2%, 94.7% and 96.4%, and the accumulated ammonium nitrogen was at 2.117, 0.691 and 0.595 mg/L at salinities of 5‰, 15‰ and 25‰, respectively, which revealed the strain LZX301 had good ability in removing inorganic nitrogen at salinities of 5‰-25‰. These results implied great potential of the strain LZX301 in practical applications.

        aerobic denitrification; nitrogen removal; carbon source; salinity; Pseudomonas

        2016-03-15 《華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n

        國家自然科學(xué)基金項(xiàng)目(31472302,31172432);廣東省海洋漁業(yè)科技與產(chǎn)業(yè)發(fā)展專項(xiàng)(A201401B01);廣東省海洋漁業(yè)科技推廣專項(xiàng)(A201001H02)

        Q93

        A

        1000-5463(2016)06-0030-07

        *通訊作者:王安利,教授,Email:wangalok@163.com.

        猜你喜歡
        鹽度硝化碳源
        緩釋碳源促進(jìn)生物反硝化脫氮技術(shù)研究進(jìn)展
        不同碳源對(duì)銅溜槽用鋁碳質(zhì)涂抹料性能的影響
        昆鋼科技(2021年6期)2021-03-09 06:10:20
        MBBR中進(jìn)水有機(jī)負(fù)荷對(duì)短程硝化反硝化的影響
        四甘醇作碳源合成Li3V2(PO4)3正極材料及其電化學(xué)性能
        厭氧氨氧化與反硝化耦合脫氮除碳研究Ⅰ:
        鹽度和pH對(duì)細(xì)角螺耗氧率和排氨率的影響
        鹽度脅迫對(duì)入侵生物福壽螺的急性毒性效應(yīng)
        適用于高鹽度和致密巖層驅(qū)油的表面活性劑
        海水反硝化和厭氧氨氧化速率同步測定的15N示蹤法及其應(yīng)用
        膠州灣夏季鹽度長期輸運(yùn)機(jī)制分析
        av在线免费观看麻豆| 人妻少妇偷人精品久久性色av| 91一区二区三区在线观看视频| 男女动态91白浆视频| 一二三四五区av蜜桃| 日韩精品视频一区二区三区| 日本少妇高潮喷水xxxxxxx| 国产xxx69麻豆国语对白| 久久久久亚洲av无码专区首jn| 亚洲国产成人无码av在线影院| 青草视频在线播放| 国产精品亚洲综合色区韩国| 日本少妇人妻xxxxx18| 91精品啪在线观看国产18| av无码精品一区二区乱子| 欧美日韩国产另类在线观看| 特一级熟女毛片免费观看| 少妇高潮无码自拍| 久久婷婷综合激情亚洲狠狠| 情爱偷拍视频一区二区| 内射爽无广熟女亚洲| 国产又爽又粗又猛的视频| 亚洲国产成人精品无码区99| 日韩国产欧美成人一区二区影院| 国产精品久久婷婷六月| 亚洲国产精品成人一区二区在线| 久久综合国产精品一区二区| 亚洲国产一区二区三区精品| 插入日本少妇一区二区三区| 亚洲性无码一区二区三区| 午夜福利电影| 囯产精品无码一区二区三区| 国产精品久久夜伦鲁鲁| 亚洲av日韩一卡二卡| 无码喷潮a片无码高潮| 综合色区亚洲熟妇另类| 欧美黑人疯狂性受xxxxx喷水| 久久久久亚洲av成人网址| 日韩成精品视频在线观看| 丝袜美腿视频一区二区| 日韩aⅴ人妻无码一区二区|