趙書(shū)濤,朱月強(qiáng),張志國(guó),李瑞,劉曉軍,劉亞?wèn)|
?
CdH分子2∑+和2Π態(tài)的偶極矩及振動(dòng)能級(jí)的理論研究
趙書(shū)濤1,2,朱月強(qiáng)1,張志國(guó)1,李瑞3,劉曉軍3,劉亞?wèn)|3
(1. 阜陽(yáng)師范學(xué)院 物理與電子工程學(xué)院,安徽 阜陽(yáng) 236037;2. 中國(guó)科學(xué)院 長(zhǎng)春光學(xué)精密機(jī)械與物理研究所,吉林 長(zhǎng)春 130033;3. 齊齊哈爾大學(xué) 理學(xué)院,黑龍江 齊齊哈爾 101006)
采用含Davidson修正的多參考組態(tài)相互作用方法(MRCI+Q),對(duì)CdH分子最低的5個(gè)解離限對(duì)應(yīng)的10個(gè)Λ-S態(tài)進(jìn)行能量計(jì)算.計(jì)算結(jié)果表明,X2S+,B2S+,C2S+,42S+,A2P,22P為束縛態(tài),14P,14S+,24S+,52S+為排斥態(tài).計(jì)算了6個(gè)束縛態(tài)和7個(gè)二重態(tài)(2S+,2P)的振動(dòng)能級(jí)、轉(zhuǎn)動(dòng)常數(shù)和偶極矩.理論計(jì)算結(jié)果與現(xiàn)有的實(shí)驗(yàn)值結(jié)果吻合較好.
CdH;偶極矩;振動(dòng)能級(jí);轉(zhuǎn)動(dòng)常數(shù)
Cd的化合物在環(huán)境污染中扮演重要的角色,已成為實(shí)驗(yàn)和理論上廣泛關(guān)注的課題[1-2].作為最簡(jiǎn)單的Cd的化合物,CdH引起了實(shí)驗(yàn)和理論研究的極大興趣.近些年,人們采用各種光譜技術(shù)和計(jì)算方法對(duì)其進(jìn)行了電子結(jié)構(gòu)和光譜性質(zhì)的研究[3-4].早在上世紀(jì)20年代,Mulliken[5-6]對(duì)CdH分子的可見(jiàn)光/近紫外譜帶進(jìn)行了光譜觀測(cè),一系列的光譜研究主要集中在激發(fā)態(tài)(A2P,B2S+,C2S+)到基態(tài)X2S+的躍遷.Balfour[7-8]觀測(cè)到了A2P-X2S+和B2S+-X2S+譜帶,并通過(guò)振動(dòng)和轉(zhuǎn)動(dòng)分析對(duì)這2個(gè)激發(fā)態(tài)的光譜參數(shù)進(jìn)行了擬合.Nedelec和Khan[9-10]等人對(duì)C2S+-X2S+譜帶和A2P-X2S+譜帶進(jìn)行了研究,發(fā)現(xiàn)了由C2S+態(tài)較高振動(dòng)能級(jí)的預(yù)解離導(dǎo)致的光譜彌散現(xiàn)象和2S+-A2P態(tài)之間的微擾現(xiàn)象.吳小光[11]等人對(duì)A2P和X2S+的光譜及壽命進(jìn)行測(cè)量,給出它們之間躍遷產(chǎn)生的具有轉(zhuǎn)動(dòng)結(jié)構(gòu)的光譜.
對(duì)CdH分子較低電子態(tài)的光譜性質(zhì)的理論研究也取得了一些成果.Balasubramanian[12]采用二階組態(tài)相互作用方法對(duì)它的較低電子態(tài)的能量值和光譜常數(shù)進(jìn)行了研究.李西平[13]等對(duì)分子進(jìn)行了二級(jí)電子相關(guān)(SOCI)計(jì)算,給出了較低態(tài)的勢(shì)能曲線和光譜參數(shù).然而這2個(gè)理論研究并未考慮自旋-軌道耦合效應(yīng)對(duì)光譜性質(zhì)的影響.Shepler[14]等人采用高精度耦合簇(CCSD(T))方法對(duì)X2S+進(jìn)行了研究,對(duì)較高激發(fā)態(tài)并未涉及.李瑞[15]等人采用考慮自旋-軌道耦合效應(yīng)的MRCI方法計(jì)算了較低電子態(tài)的電子結(jié)構(gòu)和光譜參數(shù).雖然一系列的理論研究計(jì)算給出了CdH分子的電子結(jié)構(gòu)和光譜性質(zhì),但關(guān)于該分子的偶極矩和振動(dòng)能級(jí)及轉(zhuǎn)動(dòng)常數(shù)的信息依然非常有限.
本文采用高精度從頭算方法對(duì)CdH分子的較低電子態(tài)的勢(shì)能曲線和偶極矩進(jìn)行研究.基于Λ-S態(tài)勢(shì)能曲線的結(jié)果,擬合給出束縛態(tài)的振動(dòng)能級(jí)和轉(zhuǎn)動(dòng)常數(shù).
應(yīng)用MOLPRO2010程序包[16]中的從頭計(jì)算方法精確計(jì)算了CdH分子的電子結(jié)構(gòu).計(jì)算中對(duì)Cd原子和H原子分別采用aug-cc-pwCVTZ-dk[17]和aug-ccpVTZ-DK[18]基組.由于軟件包的局限,在理論計(jì)算時(shí),CdH分子的Cμv群得由C2v群代替.兩者之間的對(duì)應(yīng)關(guān)系為:Σ+=A1,Π= B1+B2,Δ= A1+A2和Σ-=A2.在核間距為0.12~0.8 nm區(qū)間,采用態(tài)平均的完全活性空間自洽場(chǎng)(CASSCF)[19-20]方法對(duì)CdH的較低電子態(tài)進(jìn)行計(jì)算.在計(jì)算中,選取Cd的5s5p6s6p和H的1s原子軌道對(duì)應(yīng)的9個(gè)分子軌道(5a1,2b1,2b2)作為活性空間.采用MRCI+Q方法[21-22]計(jì)算了CdH分子的10個(gè)Λ-S態(tài)的能量值,計(jì)算中,Cd的內(nèi)殼層電子1s22s22p63s23p63d104s24p6被放入凍芯軌道,而它的4d105s2和H原子的1s1電子參與內(nèi)殼層-價(jià)殼層關(guān)聯(lián)效應(yīng)計(jì)算,總共考慮了13個(gè)電子的關(guān)聯(lián)效應(yīng).
基于計(jì)算的Λ-S態(tài)勢(shì)能曲線,利用LEVEL程序包[23]求解CdH分子的一維核運(yùn)動(dòng)Schr?dinger方程來(lái)獲得束縛態(tài)(X2S+,B2S+,C2S+,42S+,A2P,22P)的振動(dòng)能級(jí)和轉(zhuǎn)動(dòng)常數(shù).
2.1 離解限和電子態(tài)
CdH分子最低5個(gè)離解限為Cd(1Sg)+H(2Sg),Cd(3Pu)+H(2Sg),Cd(1Pu)+H(2Sg),Cd(3Sg)+H(2Sg),Cd(1Sg)+H(2Sg),由離解限的原子態(tài)可以推導(dǎo)出對(duì)應(yīng)的分子態(tài).Cd,H原子態(tài)和CdH分子態(tài)分屬為SO(3)和 Cμv群,兩者對(duì)應(yīng)關(guān)系為:Sg?Σ+,Pu?Σ++Π.
(1)
(2)
(3)
(4)
通過(guò)式(1),可以推導(dǎo)出第1,5離解限Cd(1Sg)+H(2Sg),Cd(1Sg)+H(2Sg)對(duì)應(yīng)的電子態(tài)都為2S+;由式(2),可以得到第2離解限Cd(3Pu)+H(2Sg)對(duì)應(yīng)的電子態(tài)為2,4S+,2,4P;由式(3)得出第3離解限Cd(1Pu)+H(2Sg)對(duì)應(yīng)的電子態(tài)為2S+,2P;由式(4)給出第4離解限Cd(3Sg)+H(2Sg)對(duì)應(yīng)電子態(tài)2,4S+.
CdH分子的5個(gè)離解限對(duì)應(yīng)10個(gè)電子態(tài),在這些電子態(tài)中涉及二重態(tài)的有7個(gè):2S+(5),2P(2);四重態(tài)的有3個(gè):4S+(2),4P.
2.2 偶極矩
在核間距0.12~0.8 nm上取51個(gè)點(diǎn)(在0.12~0.3、0.3~0.4、0.4~0.8 nm上,分別每0.005,0.01,0.1 nm取一點(diǎn)),采用MRCI+Q方法對(duì)Cd(1Sg)+H(2Sg),Cd(3Pu)+H(2Sg),Cd(1Pu)+H(2Sg),Cd(3Sg)+H(2Sg),Cd(1Sg)+H(2Sg)5個(gè)離解限對(duì)應(yīng)的10個(gè)L-S態(tài)的能量進(jìn)行計(jì)算,結(jié)果表明束縛態(tài)都為二重態(tài).計(jì)算得到的第2,3,4,5離解限與第1離解限的能量差為30 681,44 375,50 442,52 387 cm-1,與實(shí)驗(yàn)值[24]31 246,43 692,51 483,53 310 cm-1的偏差分別為1.8%,1.5%,2%,1.7%.理論結(jié)果與實(shí)驗(yàn)值偏差較小,表明理論計(jì)算的準(zhǔn)確性.討論二重態(tài)2S+和2P的偶極矩見(jiàn)圖1.
圖1 MRCI+Q 計(jì)算的CdH 分子的二重態(tài)偶極矩曲線
從圖1可以看出,所有的電子態(tài)的偶極矩在核間距很大的區(qū)域都趨于零,表明它們的離解產(chǎn)物都為中性原子,這與上述5個(gè)離解限的理論推導(dǎo)結(jié)果相吻合.X2S+在平衡位置0.176 nm附近成鍵區(qū)域的偶極矩接近于零,表明基態(tài)具有共價(jià)性特點(diǎn).A2P在平衡位置0.167 nm附近的偶極矩絕對(duì)值為1.90 Debye,表明電子態(tài)在此區(qū)域具有部分離子性特點(diǎn).B2S+平衡位置0.241 nm附近和C2S+右側(cè)的平坦勢(shì)阱區(qū)域的偶極矩具有較大值,表明電子態(tài)具有離子性特點(diǎn),這2個(gè)電子態(tài)在0.15 nm附近發(fā)生避免交叉,導(dǎo)致偶極矩急劇變化,發(fā)生極性反轉(zhuǎn).C2S+與42S+具有相同對(duì)稱性,在0.2~0.3 nm區(qū)域存在避免交叉作用,導(dǎo)致它們的離子性特征從一個(gè)態(tài)轉(zhuǎn)移到另外一個(gè)態(tài).52S+的偶極矩在很大區(qū)域內(nèi)都不為零,具有離子性特征.22P態(tài)在0.2 nm附近偶極矩急劇變化,表明與上一個(gè)2P態(tài)有避免交叉現(xiàn)象,在核間距大于0.24 nm時(shí),偶極矩接近于零,說(shuō)明具有共價(jià)性特點(diǎn).
在Λ-S束縛態(tài)(X2S+,B2S+,C2S+,42S+,A2P,22P)的勢(shì)能曲線基礎(chǔ)上,借助LEVEL程序包對(duì)CdH分子核運(yùn)動(dòng)的薛定諤方程進(jìn)行求解,擬合出它們的振動(dòng)能級(jí)和轉(zhuǎn)動(dòng)常數(shù)(見(jiàn)表1).
表1 X2S+,B2Σ+,C2Σ+,42Σ+和A2Π,22Π的振動(dòng)能級(jí)和轉(zhuǎn)動(dòng)常數(shù) cm-1
表1 X2S+,B2Σ+,C2Σ+,42Σ+和A2Π,22Π的振動(dòng)能級(jí)和轉(zhuǎn)動(dòng)常數(shù) cm-1
n X2S+B2S+C2S+42S+A2Π22Π 0703.35.298 2525 086.62.870 1140 514.75.881 3744 330.25.657 9423 510.75.950 0847 358.45.938 36 12 029.25.034 7526 039.22.836 2342 101.35.644 8545 929.25.413 5225 167.65.754 2149 015.75.688 77 226 960.02.799 5543 580.65.393 9247 441.95.171 8126 743.85.548 7649 612.72.420 12 327 846.12.761 0148 866.14.936 1149 956.02.196 75 428 698.52.717 5250 200.64.706 5950 199.82.026 06 529 518.82.667 6551 448.44.487 5550 348.31.925 94 630 307.72.612 8752 614.44.273 4650 424.91.338 11 731 064.72.554 0453 483.10.610 63 831 788.92.489 8853 697.54.051 49 932 479.52.419 2353 755.40.622 37 1033 135.12.340 9754 024.60.636 08 1133 753.52.254 0154 289.70.650 96 1234 331.92.155 5154 550.00.666 38 1334 866.02.041 9754 689.23.799 49 1435 350.61.908 6954 804.70.682 13 1535 778.91.749 8355 053.30.698 06 1636 141.61.551 5355 295.40.714 13 1736 426.11.297 7755 530.50.742 42 1836 610.40.850 6755 758.10.748 58
對(duì)應(yīng)6個(gè)束縛態(tài),通過(guò)理論計(jì)算分別找到2,19,3,23,3和7個(gè)振動(dòng)能級(jí),出于篇幅考慮,對(duì)于42S+電子態(tài)則只給出了前19個(gè)振動(dòng)能級(jí).A2P,B2S+,C2S+,42S+電子態(tài)的零振動(dòng)能級(jí)與基態(tài)X2S+的零振動(dòng)能級(jí)的能量差值為22 807,24 383,39 811,43 626 cm-1與實(shí)驗(yàn)值[25]22 776,24 749,40 314,44 136 cm-1的偏差分別為0.1%,1.5%,1.2%,1.2%,表明了理論計(jì)算的可靠性.基態(tài)X2S+的= 0,1的轉(zhuǎn)動(dòng)常數(shù)為5.298,5.035 cm-1與實(shí)驗(yàn)值[3]915.325,5.063 cm-1吻合較好.其它電子態(tài)的振動(dòng)能級(jí)和轉(zhuǎn)動(dòng)常數(shù)的實(shí)驗(yàn)值尚無(wú)報(bào)到.
因此,本文的理論計(jì)算結(jié)果可以為后續(xù)的實(shí)驗(yàn)提供參考.
對(duì)CdH分子的最低的5個(gè)離解限Cd(1Sg)+H(2Sg),Cd(3Pu)+H(2Sg),Cd(1Pu)+H(2Sg),Cd(3Sg)+H(2Sg),Cd(1Sg)+H(2Sg)的10個(gè)L-S電子態(tài)進(jìn)行了MRCI+Q的理論計(jì)算.關(guān)于二重態(tài)2S+和2P的偶極矩的計(jì)算表明,基態(tài)X2S+在成鍵區(qū)域具有共價(jià)性特征;B2S+,C2S+和42S+電子態(tài)存在由于避免交叉現(xiàn)象導(dǎo)致偶極矩急劇變化的特點(diǎn).對(duì)束縛態(tài)X2S+,B2S+,C2S+,42S+,A2P,22P的振動(dòng)能級(jí)和轉(zhuǎn)動(dòng)常數(shù)的計(jì)算表明,A2P,B2S+,C2S+,42S+電子態(tài)與基態(tài)X2S+的零振動(dòng)能級(jí)能量差值及基態(tài)X2S+的= 0,1的轉(zhuǎn)動(dòng)常數(shù)都與實(shí)驗(yàn)值吻合很好.預(yù)測(cè)的其它激發(fā)態(tài)的振動(dòng)能級(jí)和轉(zhuǎn)動(dòng)常數(shù)可以為后續(xù)的實(shí)驗(yàn)提供參考.
[1] Koren,Kump P.Influence of CdCl2and CdSO4supplementation on Cd distribution and ligand environment in leaves of the Cd hyperaccumulator Noccaea(Thlaspi)praecox[J].Plant and Soil,2013,370(1-2):125,148
[2] Küpper H,Andresen E.Mechanisms of metal toxicity in plants[J].Metallomics,2016, 8(3):269-285
[3] Shayesteh A,Le Roy R J,Varberg T D,et al.Multi-isotopologue analyses of new vibration rotation and pure rotation spectra of ZnH and CdH[J].J Mol Spectrosc,2006,237(1):87-96
[4] Eliav E,Kaldor U,Hess B A.The relativistic Fock-space coupled-cluster method for molecules:CdH and its ions[J].J Chem Phys,1998,108(9):3409-3415
[5] Mulliken R S.Electronic States and Band Spectrum Structure in Diatomic Molecules.VII.2P?2S and2S?2P Transitions[J].Phys Rev,1928,32(3):388-416
[6] Mulliken R S.Systematic Relations between Electronic Structure and Band-Spectrum Structure in Diatomic Molecules.II.The ZnH,CdH and HgH Molecules and their Spectra[J].Proc Natl Acad Sci U S A,1926,12(3):151-158
[7] Balfour W J,Ram R S.The B2Σ+state of cadmium deuteride[J].J Mol Spectrosc,1987,121(1):199-208
[8] Balfour W J.The A2Π- X2Σ+Emission System of Cadmium Deuteride[J].Phys Scr,1982,25(2):257-267
[9] Nedelec O,Majournat B,Dufayard J.Configuration mixings and line intensities in CdH and HgH A2Π-X2Σ+transitions[J].Chem Phys,1989,134(1):137-148
[10] Khan M A.A New Band System in CdH and CdD[J].Proc Phys Soc,1962,80(6):1264-1268
[11] 吳小光,張培林,趙朔嫣.CdH分子基態(tài)X2Σ+和激發(fā)態(tài)A2П光譜和壽命測(cè)量[J].光學(xué)學(xué)報(bào),1993,13(9):769-774
[12] Balasubramanian K.The low lying states of the secondrow transition metal hydrides(YH CdH)[J].J Chem Phys,1990,93(11):8061-8072
[13] 李西平,戴樹(shù)珊.CdH分子的量子化學(xué)研究[J].物理化學(xué)學(xué)報(bào),1996,12(6):508-512
[14] Shepler B C,Peterson K A.Chemically Accurate Thermochemistry of Cadmium:An ab Initio Study of Cd + XY(X = H,O,Cl,Br;Y = Cl,Br)[J].J Phys Chem A,2006,110(44):12321-12329
[15] Li R,Zhai Z,Zhang X M,et al.Spin orbit all-electron configuration interaction study on the electronic structure and radiative lifetimes of low-lying excited states of CdH[J].Chem Phys Lett,2014,599:51-56
[16] Werner H J,Knowles P,Knizia G,et al.MOLPRO version 2010 1,a package of ab initio programs[EB/OL].[2010].http://www.molpro.net
[17] Peterson K A,F(xiàn)iggen D,Dolg M,et al.Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y Pd[J].J Chem Phys,2007,126(12):124101
[18] JrTHD.Gaussian basis sets for use in correlated molecular calculations.I.The atoms boron through neon and hydrogen[J].J Chem
Phys,1989,90(2):1007-1023
[19] Werner H J,Knowles P J.A second order multiconfiguration SCF procedure with optimum convergence[J].J Chem Phys,1985, 82(11):5053-5063
[20] Knowles P J,Werner H J.An efficient second-order MCSCF method for long configuration expansions[J].Chem Phys Lett,1985, 115(3):259-267
[21] Knowles P J,Werner H J.An efficient method for the evaluation of coupling coefficients in configuration interaction calculations[J].Chem Phys Lett,1988,145(6):514-522
[22] Werner H J,Knowles P J.An efficient internally contracted multiconfiguration reference configuration interaction method[J].J Chem Phys,1988,89(9):5803-5814
[23] Le Roy R J.LEVEL8.0:A computer program for solving the radial Schr?dinger equation for bound and quasibound levels[J].Chem Phys Res Rep CP-663,University of Waterloo:Ontario,Canada,2007
[24] Moore C E.Atomic Energy Levels[M].National Bureau of Standard:Washington,DC,1971
[25] Huber K P,Herzberg G.Molecular Spectra and Molecular Structure:IV.Constants of diatomic molecules[M].New York:Van Nostrand Reinhold,1979
Theoretical study on the dipole moments and vibrational levels of the2S+and2Pstates of CdH molecule
ZHAO Shu-tao1,2,ZHU Yue-qiang1,ZHANG Zhi-guo1,LI Rui3,LIU Xiao-jun3,LIU Ya-dong3
(1. School of Physics and Electronic Engineering,F(xiàn)uyang Normal University,F(xiàn)uyang 236037,China;2. Changchun Institute of Optics,F(xiàn)ine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;3. School of Science,Qiqihar University,Qiqihar 161006,China)
The multi-reference configuration interaction including Davidson correction(MRCI+Q)calculations were performed for the ten Λ-S states correlating with the first five dissociation asymptotes of CdH molecule. The computed results show that X2S+,B2S+,C2S+,42S+,A2P,22Pare the bound states,while the 14P,14S+,24S+,52S+are the repulsive states. The vibrational levels and rotational constants of the six bound states and the dipole moments of these seven doublet states(2S+,2P)were determined,which are in good accordance with the previous experimental values.
CdH;dipole moment;vibrational level;rotational constant
1007-9831(2016)09-0042-04
O561
A
10.3969/j.issn.1007-9831.2016.09.012
2016-07-10
國(guó)家自然科學(xué)基金項(xiàng)目(11604052);長(zhǎng)春光機(jī)所國(guó)家光柵工程中心開(kāi)放基金項(xiàng)目(K201601);黑龍江省自然基金項(xiàng)目(A2015010);黑龍江省教育廳青年創(chuàng)新人才培養(yǎng)計(jì)劃資助項(xiàng)目(UNPYSCT-2015095)
趙書(shū)濤(1982-),男,安徽阜陽(yáng)人,講師,博士,從事原子與分子物理、光學(xué)的研究.E-mail:zhaosht2013@sina.com