周維燕,文劍波,華逢春,孔艷艷,張政偉,陸秀宏,管一暉
1. 復(fù)旦大學(xué)附屬華山醫(yī)院PET中心,上海 200235;
2. 復(fù)旦大學(xué)附屬華山醫(yī)院放射科,上海 200040
18F-脫氧葡萄糖PET/CT與彌散加權(quán)成像在原發(fā)性中樞神經(jīng)系統(tǒng)淋巴瘤中的相關(guān)性研究
周維燕1,文劍波2,華逢春1,孔艷艷1,張政偉1,陸秀宏1,管一暉1
1. 復(fù)旦大學(xué)附屬華山醫(yī)院PET中心,上海 200235;
2. 復(fù)旦大學(xué)附屬華山醫(yī)院放射科,上海 200040
目的:本研究回顧性分析原發(fā)性中樞系統(tǒng)淋巴瘤(primary central nervous system lymphoma,PCNSL)病灶18F-脫氧葡萄糖(18F-fluorodeoxyglucose,18F-FDG)半定量攝取與表觀擴(kuò)散系數(shù)(apparent diffusion coefficient,ADC)之間的關(guān)系。方法:納入14例在復(fù)旦大學(xué)附屬華山醫(yī)院同時行FDG PET/CT及彌散加權(quán)成像(diffusion weighted imaging,DWI)檢查的初診PCNSL患者。手動在經(jīng)濾波反投影(filtered back projection,F(xiàn)BP)重建后的腦PET圖勾畫PCNSL病灶感興趣區(qū)(region of interest,ROI),測算腫瘤FDG攝取半定量參數(shù)平均標(biāo)準(zhǔn)攝取值(mean standardized uptake value,SUVmean)及最大標(biāo)準(zhǔn)攝取值(maximum standardzed uptake value,SUVmax)。在ADC圖上腫瘤實質(zhì)、對側(cè)相應(yīng)正常腦白質(zhì)區(qū)各自勾畫ROI并分別測定ADC值,病灶A(yù)DC值取最小值(ADCmin),對側(cè)正常腦白質(zhì)ADC值取平均值(ADCmean),rADC為病灶A(yù)DCmin與對側(cè)正常腦白質(zhì)ADCmean的比值。采用Pearson分析對SUV與ADC半定量參數(shù)之間的相關(guān)性進(jìn)行分析。結(jié)果:14例PCNSL患者共計納入18個病灶,SUVmax與rADC(r=-0.584,P=0.011)、SUVmean與rADC(r=-0.559,P=0.016)均呈負(fù)相關(guān)。結(jié)論:基于病灶分析的治療前SUV與ADC值存在負(fù)相關(guān),PCNSL腫瘤細(xì)胞的代謝信息與其致密程度存在相關(guān)性,為DWI作為FDG PET診斷PCNSL和進(jìn)行療效監(jiān)測的替代技術(shù)提供了一定的理論依據(jù)。
18F-脫氧葡萄糖;正電子放射斷層成像;彌散加權(quán)成像;原發(fā)性中樞系統(tǒng)淋巴瘤
周維燕 ,復(fù)旦大學(xué)附屬華山醫(yī)院PET中心,博士研究生在讀。
主要研究方向:神經(jīng)退行性疾病新型PET探針合成及臨床前評價,腫瘤乏氧顯像等,目前已發(fā)表論文(含SCI收錄)、綜述多篇。出席SNMMI會議1次。
原發(fā)性中樞神經(jīng)系統(tǒng)淋巴瘤(primary central nervous system lymphoma,PCNSL)約占原發(fā)性腦腫瘤的5%。中樞神經(jīng)系統(tǒng)內(nèi)并無內(nèi)源性淋巴組織,所以PCNSL病因尚未完全明確,與EB病毒及巨細(xì)胞病毒感染有關(guān)[1]。90%的PCNSL病理類型是彌漫大B細(xì)胞型,通常為高級別,較少見的病理類型還有Burkitt淋巴瘤和T細(xì)胞淋巴瘤。與系統(tǒng)性淋巴瘤不同,PCNSL首診常表現(xiàn)為神經(jīng)系統(tǒng)癥狀,如顱內(nèi)壓升高、局部神經(jīng)功能缺損、癲癇發(fā)作、眼科或精神癥狀等[2]。該病與獲得性免疫缺陷綜合征(acquired immunodeficiency syndrome,AIDS)相關(guān),但近年來免疫正常人群PCNSL發(fā)病率呈上升趨勢[3]。PCNSL的治療方法及預(yù)后不同于其他腦惡性腫瘤,因此尋找可靠的非創(chuàng)傷性影像學(xué)方法來準(zhǔn)確評估PCNSL十分必要。
全身18F-脫氧葡萄糖(18F-fluorodeoxyglucose,18F-FDG) PET/CT有助于除外中樞神經(jīng)系統(tǒng)以外的淋巴瘤病灶,幫助PCNSL診斷的建立。PCNSL在18F-FDG顯像中主要表現(xiàn)為高代謝,標(biāo)準(zhǔn)攝取值(standardized uptake value,SUV)有助于PCNSL與具有淋巴瘤相似糖代謝特點的腦腫瘤如高級別膠質(zhì)瘤鑒別[4]。彌散加權(quán)成像(diffusion weighted imaging,DWI)是一項測定組織內(nèi)自由水分子運動的MR技術(shù),可評估病灶微結(jié)構(gòu)。腫瘤細(xì)胞密度是影響DWI信號的重要因素,腦惡性腫瘤細(xì)胞密度高,可造成自由水彌散受限,繼而DWI呈現(xiàn)高信號[5]。DWI相關(guān)參數(shù)可幫助PCNSL與高級別膠質(zhì)瘤鑒別,并進(jìn)一步用于療效監(jiān)測[6]。本研究擬對治療前同時接受18F-FDG PET/ CT及DWI檢查的14例PCNSL病例進(jìn)行回顧性分析。
1.1一般資料
收集2011年3月—2014年11月在復(fù)旦大學(xué)附屬華山醫(yī)院神經(jīng)外科接受立體定向活檢手術(shù)或開顱手術(shù)且神經(jīng)病理證實為PCNSL彌漫大B細(xì)胞型的免疫正常14例患者的治療前完整18F-FDG PET/ CT及完整DWI影像學(xué)資料(兩次檢查間隔時間為0~12 d)。其中男性8例、女性6例;年齡44~78歲,平均(56.2±8.3)歲,中位年齡58.5歲。入組標(biāo)準(zhǔn):① 中樞神經(jīng)系統(tǒng)受損表現(xiàn)為首發(fā)癥狀,病變局限于中樞神經(jīng)系統(tǒng)內(nèi)(包括眼、腦組織、脊髓、軟腦膜);② 胸片、胸部或腹部CT檢查、腹部B超、全血常規(guī)、骨髓穿刺涂片檢查等未發(fā)現(xiàn)全身淋巴造血組織和其他部位受累;③ 人類免疫缺陷病毒(human immunodeficiency virus,HIV)感染陰性,近期未使用免疫抑制劑;④ 無糖尿病及合并其他體部腫瘤。所有患者均被詳細(xì)告知該研究目的和檢查流程,并簽署知情同意書。
1.2檢查方法
1.2.1PET/CT顯像
儀器為SIEMENS Biograph 64 PET/CT儀。18F-FDG為本中心應(yīng)用FDG4模塊自動化生產(chǎn),放化純度>99%。顯像前所有患者禁食6~8 h,血糖控制在<11.1 mmol/L。靜脈注射18F-FDG 370~555 MBq后,休息45~60 min開始掃描。采用專門的腦部采集程序進(jìn)行圖像采集,顯像前患者頭部接受低劑量CT掃描,再以3D模式進(jìn)行PET采集8 min,經(jīng)濾波反投影(filtered back projection,F(xiàn)BP)重建。
1.2.2 DWI顯像
采用SIEMENS Trio Tim 3.0T磁共振掃描儀,16通道相控陣頭線圈。掃描參數(shù):自旋回波(spin echo,SE)序列軸位T1WI (TR=2 000 ms,TE= 9 ms),軸位T2WI (TR=3 000 ms,TE=98 ms),軸位液體衰減反轉(zhuǎn)恢復(fù)(fluid attenuated inversion recovery,F(xiàn)LAIR)序列(TR=7 000 ms,TE=93 ms),層厚5.0 mm,層間距1.0 mm。9例患者術(shù)前行常規(guī)增強(qiáng)掃描,采用經(jīng)肘靜脈注射對比劑Gd-DTPA,劑量為0.1 mmol/kg,分別行軸位(層厚5.0 mm,層間距1.0 mm)、矢狀位及冠狀位掃描(層厚4.0 mm,層間距1.0 mm)。5例患者在術(shù)中導(dǎo)航或穿刺時進(jìn)行3D增強(qiáng)采用TRA序列(TR=1 900 ms,TE= 293 ms),后在SIEMENS Syngo工作站重建獲得多平面成像。DWI采用單次激發(fā)平面回波成像(single shot echo planar imaging,SS-EPI)序列(TR=5 100 ms,TE=90 ms),擴(kuò)散敏感系數(shù)b=1 000 s/mm2,層厚5.0 mm,層間距1 mm。
1.3圖像處理與分析
1.3.118F-FDG圖像分析
采用半定量分析方法評估腫瘤對18F-FDG的攝?。汗串嬻w積為0.04~0.08 mm3的感興趣區(qū)(region of interest,ROI),對放射性攝取明顯的腫瘤組織取攝取最明顯部位,測定半定量參數(shù)SUVmean及SUVmax;對無明顯攝取的腫瘤組織,勾勒參照對比MRI T1WI增強(qiáng)圖像進(jìn)行。
1.3.2DWI圖像分析
將DWI原始圖像輸入工作站獲得表觀擴(kuò)散系數(shù)(apparent diffusion coefficient,ADC)圖。參照同一層面的T2WI、T1WI增強(qiáng)圖像,依據(jù)ADC圖于腫瘤實質(zhì)、對側(cè)相應(yīng)正常腦白質(zhì)區(qū)各取3個ROI,每個ROI的面積定為0.16 cm2,分別測ADC值,病灶A(yù)DC取最小值(ADCmin),對側(cè)正常腦白質(zhì)取平均值(ADCmean),相對ADC值(relative ADC,rADC)=病灶A(yù)DCmin/對側(cè)正常腦白質(zhì)ADCmean。
1.4統(tǒng)計學(xué)處理
2.1病變數(shù)目及分布
14例PCNSL患者中,單發(fā)病灶8例(占57.14%),多發(fā)病例6例(占42.86%),其中2個病灶4例(占28.57%),3個及以上病灶2例(占14.29%)(注:累及多個部位的呈融合狀態(tài)的病灶記為1個,不重復(fù)計數(shù))。其中幕上病灶21個(87.5%),幕下病灶3個(12.5%),病灶累及最常見部位為額顳葉及基底節(jié)區(qū)。部分病灶水腫異常明顯導(dǎo)致ADC圖上ROI無法勾畫未納入測量,累計納入可測量病灶數(shù)為18個。另外,病灶增強(qiáng)后小結(jié)節(jié)狀或斑點狀病灶(<8 mm)較小,未列入統(tǒng)計;其中1個病灶T1WI增強(qiáng)見強(qiáng)化且FLAIR呈高信號,但FDG攝取未見明顯增高,同機(jī)融合CT密度亦呈等密度,周圍不伴明顯水腫,為PET失檢病灶。
2.218F-FDG代謝特征及SUV值
18個PCNSL病灶對18F-FDG的攝取均明顯高于腦對側(cè)皮質(zhì),SUVmean為16.4±9.4,SUVmax為18.2±9.7。
2.3DWI信號特征及ADC值
18個淋巴瘤病灶在DWI (b=1 000 s/mm2)上均表現(xiàn)為高于腦灰質(zhì)的信號,在ADC圖上表現(xiàn)為低或等信號。ADC圖上ROI的選擇避免周圍水腫區(qū)及瘤內(nèi)血管的容積效應(yīng)。在每一病灶實質(zhì)部分分別放置3個ROI進(jìn)行測量,記錄病灶A(yù)DCmin。然后以同樣大小的ROI測量病灶對側(cè)正常白質(zhì)區(qū)ADCmean。病灶A(yù)DCmin與對側(cè)正常白質(zhì)區(qū)ADCmean的比值為rADC。病灶A(yù)DCmin平均值為(0.542±0.058)×10-3mm2/s,正常白質(zhì)ADCmean平均值為(0.712±0.052)×10-3mm2/s,rADC平均值為0.764±0.082。
2.4病理結(jié)果
均為彌漫大B細(xì)胞非霍奇金淋巴瘤,光鏡下見瘤組織彌漫密集,呈片狀分布,瘤細(xì)胞大小較一致,胞質(zhì)少,核大,腫瘤間質(zhì)成分相對較少,腫瘤血管內(nèi)皮增生少見。
2.5 相關(guān)性分析
采用軟件SPSS 19.0,SUVmean與SUVmax呈顯著正相關(guān)(Pearson雙側(cè)檢驗:r=0.994,P<0.001),ADCmin與rADC亦呈顯著正相關(guān)(Pearson雙側(cè)檢驗:r=0.755,P<0.001),SUVmax與rADC(Pearson雙側(cè)檢驗:r=-0.584,P=0.011,圖1)及SUVmean與rADC (Pearson雙側(cè)檢驗:r=-0.559,P=0.016)呈負(fù)相關(guān),SUV-max與ADCmin之間無顯著相關(guān)性(r=-0.340,P=0.168)。
圖1 PCNSL患者SUVmax與rADC相關(guān)性
顱內(nèi)原發(fā)性淋巴瘤的起源、病因和發(fā)病機(jī)制目前尚不完全清楚,但免疫系統(tǒng)缺陷患者的EB病毒病因?qū)W說受到較多肯定。本組患者HIV均為陰性,未使用免疫抑制劑,病理證實均為彌漫大B細(xì)胞非霍奇金淋巴瘤。PCNSL的常用治療方案為基于甲氨蝶呤或美羅華的大劑量化療或全腦放療,手術(shù)并不是一線推薦治療,患者通常反應(yīng)良好,并可達(dá)到臨床緩解[7],所以臨床亟需敏感和特異性俱佳的用于診斷及療效判斷的影像學(xué)技術(shù)。研究表明,F(xiàn)DG PET/CT及DWI技術(shù)均可用于淋巴瘤鑒別診斷[8-9](包括侵襲型與惰性淋巴瘤亞型鑒別[10])、療效[11]及預(yù)后評估[12],各自與多種免疫組化指標(biāo)相關(guān),且存在交叉,那么基線(治療前)相關(guān)參數(shù)可能存在某種關(guān)聯(lián)性,已在非小細(xì)胞肺癌及其轉(zhuǎn)移淋巴結(jié)[13]、乳腺癌[14-15]、腹膜癌[16]、頭頸部腫瘤[17]、胰腺腺癌[18]等中證明ADC與SUV存在負(fù)相關(guān)。
顱內(nèi)原發(fā)性淋巴瘤多數(shù)位于深部白質(zhì),T1WI多呈稍低或等信號,T2WI呈等或稍高信號,瘤周水腫和占位效應(yīng)較輕,均勻強(qiáng)化,灌注成像被認(rèn)為可用于鑒別淋巴瘤與膠質(zhì)瘤。研究顯示,F(xiàn)DG PET相關(guān)半定量參數(shù)可用于鑒別淋巴瘤與其他性質(zhì)的腦腫瘤[19],但由于顱內(nèi)病變影像學(xué)表現(xiàn)和臨床癥狀可不典型,存在重疊區(qū),常易誤診。PCNSL通常位于幕上,病灶位于腦干及小腦者較為少見,與本組病例一直。PCNSL在化療前病灶通常并不出現(xiàn)鈣化或出血,憑此可與膠質(zhì)母細(xì)胞瘤鑒別。與膠質(zhì)母細(xì)胞瘤相似,PCNSL可跨越胼胝體,同時累及雙側(cè)額葉及胼胝體,呈經(jīng)典蝴蝶狀分布,此時病灶通常較大(圖2)。
圖2 PCNSL患者18F-FDG PET/CT與DWI MRI影像學(xué)表現(xiàn)
本研究顯示,PCNSL病灶A(yù)DCmin平均值為(0.542±0.058)×10-3mm2/s,正常白質(zhì)ADCmean平均值為(0.712±0.052)×10-3mm2/s。Matsushima等[20]研究證實30例膠質(zhì)瘤及6例PCNSL患者病灶SUVmax比值(選擇對側(cè)額葉作為參考區(qū))與ADCmin存在負(fù)相關(guān)(r=-0.68,P<0.000 1),其中病灶A(yù)DCmin平均為(0.58±0.13)×10-3mm2/s,ADCmean平均值為(0.66±0.16)×10-3mm2/s,SUVmax平均值為25.3±3.99,均高于本研究結(jié)果,這可能是由于該研究納入病例較少而導(dǎo)致差異存在。本研究發(fā)現(xiàn)PCNSL多病灶患者額葉代謝常常減低,若選擇對側(cè)額葉作為參考計算SUVmax比值將不能真實評估病灶代謝情況,故未計算SUVmax比值。為消除白質(zhì)纖維彌散各項異性的影響,本研究引入rADC概念,即腫瘤組織ADC值與對側(cè)半球?qū)?yīng)正常部位腦白質(zhì)ADC值的比值,結(jié)果顯示病灶A(yù)DCmin均低于正常白質(zhì)ADCmean,故rADC均<1。本組14例PCNSL患者18個病灶在DWI上均表現(xiàn)為高于腦灰質(zhì)的信號,在ADC圖上表現(xiàn)為低或等信號,與其相對低彌散特性相一致。
PCNSL病灶18F-FDG半定量攝取值SUVmax通常為14~22,約為腦灰質(zhì)SUVmean的2.5倍。盡管如此,腦皮質(zhì)、基底節(jié)區(qū)及丘腦的正常高代謝本底常掩蓋淋巴瘤病灶[21],特別是CT上呈等密度病灶時,易造成假陰性。本研究中漏診的唯一病灶位于左側(cè)橋壁,F(xiàn)DG代謝未見明顯異常增高,但增強(qiáng)MRI顯示明顯,可能是由于該病灶處于早期,病灶腫瘤細(xì)胞尚不夠致密所致。因此,在探查早期病灶方面,MRI增強(qiáng)技術(shù)可能具有獨到優(yōu)勢。
此外,9例單側(cè)腦內(nèi)病變PCNSL患者中7例對側(cè)小腦出現(xiàn)腦代謝減低的現(xiàn)象,稱為交叉性小腦失聯(lián)絡(luò),原因可能是病灶位于大腦中動脈分布腦區(qū),局部腦缺血導(dǎo)致皮質(zhì)橋小腦束受損,使對側(cè)小腦失去神經(jīng)支配[22]。
本研究亦發(fā)現(xiàn)基于病灶分析的治療前ADC與SUV存在負(fù)相關(guān),表明PCNSL的葡萄糖代謝信息與腫瘤細(xì)胞致密程度存在相關(guān)性,為DWI作為FDG PET診斷PCNSL和進(jìn)行療效監(jiān)測的替代技術(shù)提供了一定的理論依據(jù)。PET/MRI一體機(jī)技術(shù)的引進(jìn),可一次掃描獲得PET代謝、MRI解剖及其他功能MRI序列信息,有助于反映病灶不同生物學(xué)特性,相互提供互補功能影像學(xué)信息,且一定時間范圍內(nèi)的異機(jī)對照研究為后期同機(jī)PET/ MRI相關(guān)技術(shù)在國內(nèi)的應(yīng)用提供了一定的經(jīng)驗與借鑒。
[1] RICARD D, IDBAIH A, DUCRAY F, et al. Primary brain tumours in adults [J]. Lancet, 2012, 379(9830): 1984-1996.
[2] MCNAMARA S. Treatment of primary brain tumours in adults [J]. Nurs Stand, 2012, 27(14): 42-47.
[3] OLSON J E, JANNEY C A, RAO R D, et al. The continuing increase in the incidence of primary central nervous system non-Hodgkin lymphoma: a surveillance,epidemiology, and end results analysis [J]. Cancer, 2002,95(7): 1504-1510.
[4] KAWAI N, MIYAKE K, YAMAMOTO Y, et al.18F-FDG PET in the diagnosis and treatment of primary central nervous system lymphoma [J]. Biomed Res Int,2013, 2013: 247152.
[5] ZACHARIA T T, LAW M, NAIDICH T P, et al. Central nervous system lymphoma characterization by diffusion-weighted imaging and MR spectroscopy [J]. J Neuroimaging, 2008, 18(4): 411-417.
[6] MOFFAT B A, CHENEVERT T L, LAWRENCE T S, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response [J]. Proc Natl Acad Sci USA, 2005, 102(15): 5524-5529.
[7] KASENDA B, FERRERI A J, MARTURANO E, et al. First-line treatment and outcome of elderly patients with primary central nervous system lymphoma (PCNSL)—a systematic review and individual patient data metaanalysis [J]. Ann Oncol, 2015, 26(7): 1305-1313.
[8] DOSKALIYEV A, YAMASAKI F, OHTAKI M, et al. Lymphomas and glioblastomas: differences in the apparent diffusion coefficient evaluated with high b-value diffusion-weighted magnetic resonance imaging at 3T [J]. Eur J Radiol, 2012, 81(2): 339-344.
[9] NAKAJIMA S, OKADA T, YAMAMOTO A, et al. Primary central nervous system lymphoma and glioblastoma: differentiation using dynamic susceptibilitycontrast perfusion-weighted imaging, diffusion-weighted imaging, and18F-fluorodeoxyglucose positron emission tomography [J]. Clin Imaging, 2015, 39(3): 390-395.
[10] MOSAVI F, WASSBERG C, SELLING J, et al. Wholebody diffusion-weighted MRI and18F-FDG PET/CT can discriminate between different lymphoma subtypes [J]. Clin Radiol, 2015, 70(11): 1229-1236.
[11] PALMEDO H, URBACH H, BENDER H, et al. FDGPET in immunocompetent patients with primary central nervous system lymphoma: correlation with MRI and clinical follow-up [J]. Eur J Nucl Med Mol Imaging,2006, 33(2): 164-168.
[12] MAYERHOEFER M E, KARANIKAS G, KLETTER K, et al. Evaluation of diffusion-weighted magnetic resonance imaging for follow-up and treatment response assessment of lymphoma: results of an18F-FDG-PET/ CT-controlled prospective study in 64 patients [J]. Clin Cancer Res, 2015, 21(11): 2506-2513.
[13] SCHAARSCHMIDT B M, BUCHBENDER C,NENSA F, et al. Correlation of the apparent diffusion coefficient (ADC) with the standardized uptake value(SUV) in lymph node metastases of non-small cell lung cancer (NSCLC) patients using hybrid18F-FDG PET/ MRI [J]. PLoS One, 2015, 10(1): e0116277.
[14] KITAJIMA K, YAMANO T, FUKUSHIMA K, et al. Correlation of the SUVmax of FDG-PET and ADC values of diffusion-weighted MR imaging with pathologic prognostic factors in breast carcinoma [J]. Eur J Radiol,2016, 85(5): 943-949.
[15] BABA S, ISODA T, MARUOKA Y, et al. Diagnostic and prognostic value of pretreatment SUV in18F-FDG/ PET in breast cancer: comparison with apparent diffusion coefficient from diffusion-weighted MR imaging [J]. J Nucl Med, 2014, 55(5): 736-742.
[16] SCHWENZER N F, SCHMIDT H, GATIDIS S, et al. Measurement of apparent diffusion coefficient with simultaneous MR/positron emission tomography in patients with peritoneal carcinomatosis: comparison with18F-FDG-PET [J]. J Magn Reson Imaging, 2014, 40(5): 1121-1128.
[17] HAN M, KIM S Y, LEE S J, et al. The correlations between MRI perfusion, diffusion parameters, and18F-FDG PET metabolic parameters in primary headand-neck cancer: a cross-sectional analysis in single institute [J]. Medicine (Baltimore), 2015, 94(47): e2141.
[18] SAKANE M, TATSUMI M, KIM T, et al. Correlation between apparent diffusion coefficients on diffusionweighted MRI and standardized uptake value on FDGPET/CT in pancreatic adenocarcinoma [J]. Acta Radiol,2015, 56(9): 1034-1041.
[19] YAMAGUCHI S, HIRATA K, KOBAYASHI H, et al. The diagnostic role of18F-FDG PET for primary central nervous system lymphoma [J]. Ann Nucl Med, 2014,28(7): 603-609.
[20] MATSUSHIMA N, MAEDA M, UMINO M, et al. Relation between FDG uptake and apparent diffusion coefficients in glioma and malignant lymphoma [J]. Ann Nucl Med, 2012, 26(3): 262-271.
[21] KAWAI N, MIYAKE K, OKADA M, et al. Usefulness and limitation of FDG-PET in the diagnosis of primary central nervous system lymphoma [J]. No Shinkei Geka,2013, 41(2): 117-126.
[22] YOU D L, SHIEH F Y, TZEN K Y, et al. Cerebral perfusion SPECT in transient ischemic attack [J]. Eur J Radiol, 2000, 34(1): 48-51.
Relationship between 18F-fluorodeoxyglucose PET/CT and diffusion weighted imaging in primary central nervous system lymphoma
ZHOU Weiyan1, WEN Jianbo2, HUA Fengchun1, KONG Yanyan1, ZHANG Zhengwei1, LU Xiuhong1, GUAN Yihui1(1. PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China; 2. Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai 200235, China)
Correspondence to: GUAN Yihui E-mail: guanyihui@hotmail.com
Objective: To retrospectively evaluate the relationship between18F-fluorodeoxyglucose (18F-FDG) uptake using PET/CT and apparent diffusion coefficient (ADC) in patients with primary central nervous system lymphoma (PCNSL). Methods: A total of 14 PCNSL cases with 18 lesions underwent both FDG PET/CT scan and diffusion weighted imaging at onset. The meanstandardized uptake value (SUVmean) and maximum standardized uptake value (SUVmax) were calculated to assess the tumor FDG uptake on brain PET/CT images with filtered back projection (FBP) reconstruction. On ADC map, ADCmin of the lesions and ADCmean of the contralateral normal white matters were calculated. The relative ADC (rADC) was obtained by the ratio of ADCmin of the tumor to ADCmean of the contralateral normal white matter. Pearson’s correlation analysis was used to assess the relationship between FDG uptake and ADC-derived parameters. Results: Negative correlations between SUVmax and rADC, between SUVmean and rADC were found for PCNSL cases (r=-0.584, P=0.011; r=-0.559, P=0.016, respectively). Conclusion: There is negative correlation between SUV and rADC before treatment. Both FDG PET/CT and DWI are useful methods in diagnosing PCNSL by evaluating tumor metabolic activity and cellular density. They are closely correlated. DWI could be an alternative imaging technique for FDG PET/CT in the diagnosis and therapy monitoring of PCNSL.
18F-fluorodeoxyglucose; Positron emission tomography; Diffusion weighted imaging; Primary central nervous system lymphoma
R445.5
A
1008-617X(2016)03-0257-06
國家自然科學(xué)基金(No:81271516、81571345);上海市科委項目(No:14DZ1930402);復(fù)旦大學(xué)老年醫(yī)學(xué)專項支持計劃青年學(xué)者創(chuàng)新研究項目(No:IDF151006);上海市衛(wèi)生局資助項目(No:20134313)
管一暉 E-mail:guanyihui@hotmail.com
(2016-09-03)