何茜,蔡超,陳珍
· 論著 ·
NADPH氧化酶在Ang II介導(dǎo)H9C2心肌細(xì)胞凋亡中的作用
何茜1,蔡超1,陳珍1
目的 分析血管緊張素Ⅱ(Ang Ⅱ)介導(dǎo)的H9C2心肌細(xì)胞凋亡是否通過NADPH氧化酶/P38MAPK途徑。方法 體外培養(yǎng)H9C2心肌細(xì)胞,分組干預(yù):①Control組:僅加細(xì)胞培養(yǎng)液;②AngⅡ組:在Control組的基礎(chǔ)上加入AngⅡ;③apocynin組:在Control組的基礎(chǔ)上加apocynin;④AngⅡ+apocynin組:在Control組的基礎(chǔ)上加入AngⅡ以及apocynin(n=6)。干預(yù)24 h后測定NADPH氧化酶活性,TUNEL法檢測細(xì)胞凋亡,Western Blot 檢測P38MARK及相關(guān)凋亡蛋白的表達(dá)水平。結(jié)果 Control組、apocynin組、AngⅡ組、Ang II+apocynin組凋亡比例分別為(12.20±1.18)%、(14.71±3.88)%、(62.33± 4.79)%、(13.67±2.59)%。與Control組比較,AngⅡ組凋亡比例明顯增加,而AngⅡ+apocynin組凋亡比例較AngⅡ組下降,差異有統(tǒng)計學(xué)意義(P均<0.05)。與Control組比較,加入NADPH氧化酶抑制劑apocynin后細(xì)胞NADPH氧化酶活性降低;而僅加入AngⅡ的細(xì)胞NADPH氧化酶活性明顯升高,差異有統(tǒng)計學(xué)意義(P<0.05)。AngⅡ+apocynin組的NADPH氧化酶活性較AngⅡ組降低,差異有統(tǒng)計學(xué)意義(P<0.05)。與正常細(xì)胞比較,AngⅡ作用后,P38MAPK表達(dá)增加,凋亡蛋白Bax表達(dá)增加,抗凋亡蛋白Bcl-2表達(dá)減少,差異有統(tǒng)計學(xué)意義(P均<0.05)。Ang II+apocynin組較AngⅡ組P38MAPK表達(dá)降低,凋亡蛋白Bax表達(dá)減少,抗凋亡蛋白Bcl-2表達(dá)增加,差異有統(tǒng)計學(xué)意義(P均<0.05)。結(jié)論 血管緊張素II通過NADPH氧化酶/P38MAPK途徑介導(dǎo)H9C2心肌細(xì)胞凋亡。
凋亡;血管緊張素II;NADPH氧化酶;信號傳導(dǎo)
NADPH氧化酶類是決定內(nèi)皮細(xì)胞和血管平滑肌細(xì)胞氧化還原狀態(tài)的關(guān)鍵因素[1,2]。NADPH氧化酶激活參與高血壓和動脈粥樣硬化的病理生理過程。血管緊張素Ⅱ(Ang Ⅱ)被證實激活內(nèi)皮細(xì)胞、血管平滑肌細(xì)胞和成纖維細(xì)胞的NADPH氧化酶。另有研究表明[3],Ang II誘導(dǎo)心肌細(xì)胞凋亡,但NADPH氧化酶是否參與其中尚不明確。
apocynin是NADPH氧化酶的特異性抑制劑,抑制其亞基p47-phox活性,進(jìn)而抑制其激活[4]。同時抑制NADPH的活性和氧自由基(ROS)的產(chǎn)生,能夠抑制動脈粥樣硬化的起始過程。本研究將明確Ang Ⅱ介導(dǎo)的H9C2心肌細(xì)胞凋亡是否通過NADPH氧化酶以及P38MAPK途徑。
1.1主要試劑 H9C2心肌細(xì)胞購自中國科學(xué)院上海生命科學(xué)研究院,DMEM培養(yǎng)基、胎牛血清(FBS)、胰蛋白酶均購自Hyclone公司,TUNEL細(xì)胞凋亡原位檢測試劑盒購自凱基生物科技發(fā)展有限公司,兔抗鼠P38 MAPK、Bcl-2及Bax 抗體購自Proteintech,其他試劑均購自上海生物工程有限公司。
1.2細(xì)胞培養(yǎng) H9C2心肌細(xì)胞用含90% DMEM培養(yǎng)基、10%胎牛血清、青霉素(100μ/ml)和鏈霉素(100 μg /ml)的細(xì)胞培養(yǎng)液,在95%空氣和5% CO2培養(yǎng)箱中37℃培養(yǎng)。培養(yǎng)基每2~3 d更換1次。待細(xì)胞生長至對數(shù)期時,接種至6孔培養(yǎng)板,4 ml/孔(細(xì)胞數(shù)4×105/孔),進(jìn)行分組處理。
1.3實驗分組和干預(yù) H9C2心肌細(xì)胞分組:①Control組:僅加細(xì)胞培養(yǎng)液;②AngⅡ組:在Control組的基礎(chǔ)上加AngⅡ,終濃度為100 nmol/L;③apocynin組:在Control組的基礎(chǔ)上加apocynin,終濃度為100 μmol/L;④Ang Ⅱ+apocynin組:在Control組的基礎(chǔ)上加終濃度100 nmol/L的AngⅡ以及100 μmol/L的apocynin。
1.4NADPH氧化酶活性測定 細(xì)胞經(jīng)藥物處理24 h后,除去培養(yǎng)基,PBS洗滌2次。 每孔加100 μl胰蛋白酶消化1min,吹打后將細(xì)胞懸液加入EP 管中, 每孔再加入100 μl PBS洗滌,在4℃下2500 g離心5 min,然后以PBS再懸浮,隨后加入250 μmol/L NADPH孵育,在λ=340 nm下觀察5 min,通過吸光率的減少來探測NADPH的消耗量。為分析NADPH氧化酶的活性,在檢測之前30 min加入10 μmol/L DPI,來檢測DPI抑制后的NADPH消耗率。為了標(biāo)準(zhǔn)化,取等量的細(xì)胞加入SDS溶解,濃縮蛋白后通過Lowry solution測定。用來計算NADPH消耗總量的吸收消光系數(shù)是6.22 mM-1 cm-1,結(jié)果以pmol NADPH / min·mg蛋白表示。
1.5TUNEL法檢測細(xì)胞凋亡 ①細(xì)胞96孔板固定:各孔分別加入100μl預(yù)冷的4%多聚甲醛,室溫下固定1h;②通透:吸出多聚甲醛后用PBS洗3次,各孔加入100μl的0.1%檸檬酸鈉、0.1%TritonX-100,冰上通透8 min;③ 封閉:將液體吸出后PBS洗3次(3 min/次),并用3%H2O2/甲醇室溫避光反應(yīng)30 min;④ 制陽性片:每孔加100 μl含不同活性單位的DNaseⅠ反應(yīng)液,室溫反應(yīng)30 min,然后PBS洗3次(3 min/次);⑤連接標(biāo)記:吸干PBS后每孔加40μl Equilibration Buffer+1.0 μl FITC-12-dUTP和4.0 μl TdT Enzyme,加蓋玻片37℃避光60 min(其中陰性對照不加TdT酶反應(yīng)液),結(jié)束后PBS洗3次(3 min/次);⑥鏡檢:采用激發(fā)波長450~500 nm,發(fā)射波長515~565 nm熒光顯微鏡檢測;⑦采集圖片,統(tǒng)計凋亡率:每組設(shè)3個復(fù)孔,每個復(fù)孔取6個視野,統(tǒng)計每視野下TUNEL陽性細(xì)胞所占百分比,計算細(xì)胞凋亡率。
1.6Western Blot測定凋亡相關(guān)蛋白的表達(dá) 細(xì)胞經(jīng)藥物處理24 h后,除去培養(yǎng)基,PBS 洗滌2次。 每孔加1 ml 胰蛋白酶消化1 min,吹打后將細(xì)胞懸液加入EP 管中, 每孔再加入 200 μl PBS洗滌,4℃ 2500 g離心5 min,將EP管底部的細(xì)胞用冷 0.01 mol/L PBS 清洗3次后加150 μl 細(xì)胞裂解液和3 μl的蛋白酶抑制劑PMSF,提取總蛋白后通過BCA 法測定蛋白濃度。40 μg蛋白加入5 ×SDS凝膠加樣緩沖液中,100℃加熱5 min使蛋白變性。12% SDS-PAGE電泳分離蛋白,轉(zhuǎn)移至PVDF膜,封閉液封閉1 h,按1:1000分別加入兔抗鼠P38 MAPK、Bcl-2及Bax 一抗,4℃孵育過夜。分別加入辣根過氧化物酶標(biāo)記的山羊抗兔二抗(1:1000),室溫孵育1 h,用超敏ECL化學(xué)發(fā)光顯色液進(jìn)行顯色。用Labwork凝膠圖像分析系統(tǒng)對膠片掃描,以Control組的面積灰度值為100與實驗組進(jìn)行比較和半定量分析。
1.7統(tǒng)計學(xué)分析 所有數(shù)據(jù)均采用SPSS 18.0統(tǒng)計軟件處理。計量資料采用均數(shù)±標(biāo)準(zhǔn)差(±s)表示,多組間均數(shù)的比較采用方差分析。P<0.05為差異有統(tǒng)計學(xué)意義。
圖1 TUNEL染色結(jié)果(A:Control組;B:apocynin組;C:Ang II組;D:Ang II+apocynin組,n=3)
2.1TUNEL染色結(jié)果 采用熒光顯微鏡觀察H9C2心肌細(xì)胞變化,綠色熒光標(biāo)記的凋亡細(xì)胞的細(xì)胞核,AngⅡ組凋亡細(xì)胞較多(圖1)。Control組、apocynin組、AngⅡ組、AngⅡ+apocynin組凋亡比例分別為(12.20±1.18)%、(14.71 ±3.88)%、(62.33±4.79)%、(13.67± 2.59)%。與Control組比較,AngⅡ組凋亡比例明顯增加,而AngⅡ+apocynin組凋亡比例較AngⅡ組下降,差異有統(tǒng)計學(xué)意義(P均<0.05)。
2.2各組NADPH氧化酶活性比較 Control組、apocynin組、AngⅡ組、AngⅡ+apocynin組NADPH氧化酶活性分別為(3.34±0.89)pmol NADPH/ min·mg蛋白、(3.11±0.78)pmol NADPH/ min·mg蛋白、(11.03±3.41)pmol NADPH/ min·mg蛋白、(3.76±1.06)pmol NADPH/ min·mg蛋白。與Control組比較,加入NADPH氧化酶抑制劑apocynin后NADPH氧化酶活性降低;而僅加入Ang II的NADPH氧化酶活性明顯升高,差異有統(tǒng)計學(xué)意義(P<0.05)。AngⅡ+apocynin組的NADPH氧化酶活性較AngⅡ組降低,差異有統(tǒng)計學(xué)意義(P<0.05)。
2.3各組凋亡相關(guān)蛋白的表達(dá)水平比較 與正常細(xì)胞比較,AngⅡ作用后,P38 MAPK表達(dá)增加,凋亡蛋白Bax表達(dá)增加,抗凋亡蛋白Bcl-2表達(dá)減少,差異有統(tǒng)計學(xué)意義(P<0.05)。AngⅡ+apocynin組較AngⅡ組,P38 MAPK表達(dá)降低,凋亡蛋白Bax表達(dá)減少,抗凋亡蛋白Bcl-2表達(dá)增加,差異有統(tǒng)計學(xué)意義(P均<0.05)(圖2,表1)。
表1 各組凋亡相關(guān)蛋白的表達(dá)水平(n=6)
NADPH氧化酶在血管平滑肌細(xì)胞和內(nèi)皮細(xì)胞均表達(dá),AngⅡ激活NADPH氧化酶提高此類細(xì)胞的活性[5]。本研究進(jìn)一步表明,AngⅡ提高NADPH氧化酶活性,這種變化能被NADPH氧化酶抑制劑apocynin逆轉(zhuǎn),與其他研究[6]結(jié)果一致。此外,NADPH氧化酶參與AngⅡ誘導(dǎo)的心肌肥大[7]。
Ma等[8]研究發(fā)現(xiàn),AngⅡ可以誘導(dǎo)新生大鼠心肌細(xì)胞和成年大鼠心室細(xì)胞凋亡。這些發(fā)現(xiàn)表明,AngⅡ介導(dǎo)的心肌細(xì)胞凋亡是通過AT1受體。Komiya M等[9]證實在細(xì)胞中加入NADPH氧化酶抑制劑apocynin可抑制細(xì)胞凋亡。然而,該研究未提供關(guān)于NADPH氧化酶活性和表達(dá)的變化。
Bcl-2位于線粒體和細(xì)胞核膜,Bcl-2磷酸化和失活導(dǎo)致細(xì)胞凋亡。P38MAPK激活已被證明誘導(dǎo)線粒體Bcl-2失活,產(chǎn)生細(xì)胞色素C從線粒體釋放細(xì)胞質(zhì),導(dǎo)致Caspase-3激活和凋亡[10]。本研究中,Ang II促使P38MAPK以及Bax蛋白表達(dá)增加,而抑制Bcl-2蛋白表達(dá),與Zhao HR等[11]研究結(jié)果一致。而apocynin干預(yù)后P38 MAPK及Bax蛋白表達(dá)減少,Bcl-2蛋白表達(dá)增加,說明這些變化通過NADPH氧化酶介導(dǎo)??傊?,Ang II通過NADPH氧化酶/P38 MAPK途徑誘導(dǎo)H9C2心肌細(xì)胞凋亡。
圖2 凋亡相關(guān)蛋白的表達(dá)水平(與Control組比較,*P<0.05;與AngII組比較,+P<0.05,n=6)
[1] Bai YP,Hu CP,Yuan Q,et al. Role of VPO1, a newly identified heme-containing peroxidase, in ox-LDL induced endothelial cell apoptosis[J]. Free Radic Biol Med,2011,51(8):1492-500.
[2] Ma QL,Zhang GG,Peng J,et al. Vascular peroxidase 1: a novel enzyme in promoting oxidative stress in cardiovascular system[J]. Trends Cardiovasc Med,2013,23(5):179-83.
[3] Kim JI,Jung SW,Yang E,et al. Heat shock augments angiotensin II-induced vascular contraction through increased production of reactive oxygen species[J]. Biochem Biophys Res Commun,2010,399(3):452-7.
[4] Winiarska K,F(xiàn)ocht D,Sierakowski B,et al. NADPH oxidase inhibitor,apocynin, improves renal glutathione status in Zucker diabetic fatty rats:a comparison with melatonin[J]. Chem Biol Interact,2014,218(2):12-9.
[5] Silva J,Pastorello M,Arzola J,et al. AT1receptor and NAD(P)H oxidase mediate angiotensin II-stimulated antioxidant enzymes and mitogen-activated protein kinase activity in the rat hypothalamus[J]. J Renin Angiotensin Aldosterone Syst,2010,11(4):234-42.
[6] Kim JI,Jung SW,Yang E,et al. Heat shock augments angiotensin II-induced vascular contraction through increased production of reactive oxygen species[J]. Biochem Biophys Res Commun,2010,399(3):452-7.
[7] Kaysen GA,Eiserich JP. The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction[J]. J Am Soc Nephrol,2004,15(3):538-48.
[8] Ma Y,Kong L,Kai N,et al. Apolipoprotein-J prevents angiotensin II-induced apoptosis in neonatal rat ventricular cells[J]. Lipids Health Dis,2015,14(1):114.
[9] Komiya M,F(xiàn)ujii G,Miyamoto S,et al. Suppressive effects of the NADPH oxidase inhibitor apocynin on intestinal tumorigenesis in obese KK-A(y) and Apc mutant Min mice[J]. Cancer Sci,2015,106(11):1499-505.
[10] Shimizu S,Ishigamori R,F(xiàn)ujii G,et al. Involvement of NADPH oxidases in suppression of cyclooxygenase-2 promoterdependent transcriptional activities by sesamol[J]. J Clin Biochem Nutr,2015,56(2):118-22.
[11] Zhao HR,Jiang T,Tian YY,et al. Angiotensin II triggers apoptosis via enhancement of NADPH oxidase-dependent oxidative stress in a dopaminergic neuronal cell line[J]. Neurochem Res,2015,40(4):854-63.
本文編輯:姚雪莉
Effect of NADPH oxidase on Ang II-mediated apoptosis of H9C2 cardiomyocytes
HE Qian*, CAI Chao,CHEN Zhen.*Department of Cardiovasology, Taihe Hospital, Shiyan City, Shiyan 442000, China.
Objective To analyze the apoptosis of H9C2 cardiomyocytes induced by angiotensin II (Ang II)through NADPH oxidase/P38MAPK pathway. Methods H9C2 cardiomyocytes were cultured in vitro, and then divided into control group (added only nutrient fluid), Ang II group (added Ang II besides nutrient fluid), apocynin group (added apocynin besides nutrient fluid) and Ang II+apocynin group (added Ang II and apocynin besides nutrient fluid, each n=6). The activity of NADPH oxidase was detected after 24 h, apoptosis was detected by using terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL), and expressions of P38MARK and relevant apoptotic protein were detected by using Western Blot method. Results The apoptotic rate was (12.20± 1.18)% in control group, (14.71±3.88)% in apocynin group, (62.33±4.79)% in Ang II group and (13.67±2.59)% in Ang II+apocynin group. Compared with control group, the apoptotic rate increased significantly in Ang II group,and compared with Ang II group it decreased in Ang II+apocynin group (all P<0.05). Compared with control group,the activity of NADPH oxidase decreased in apocynin group and increased significantly in Ang II group (P<0.05). The activity of NADPH oxidase decreased in Ang II+apocynin group compared with Ang II group (P<0.05). Compared with normal cells, the expressions of P38MAPK and apoptotic protein Bax increased, and expression of anti-apoptotic protein Bcl-2 decreased after Ang II effecting (all P<0.05). The expressions of P38MAPK and apoptotic protein Bax decreased, and expression of anti-apoptotic protein Bcl-2 increased in Ang II+apocynin group compared with Ang II group (all P<0.05). Conclusion The apoptosis of H9C2 cardiomyocytes is induced by Ang II through NADPH oxidase/P38MAPK pathway.
Apoptosis; Angiotensin II; NADPH oxidase; Signal transduction
· 論著 ·
R541
A
1674-4055(2016)09-1093-03
1442000 十堰,十堰市太和醫(yī)院心血管內(nèi)科
10.3969/j.issn.1674-4055.2016.09.23