張利平,何焱玲
?
Rho GTPase/ROCK信號通路在皮膚病免疫調(diào)節(jié)中的研究進(jìn)展
張利平,何焱玲
張利平
在皮膚血管炎和皮膚腫瘤的免疫調(diào)節(jié)中,Rho GTPase/ROCK信號通路對T淋巴細(xì)胞的調(diào)節(jié)作用受到越來越多的重視。該通路主要影響細(xì)胞骨架重排及細(xì)胞運(yùn)動。近年來研究表明,在系統(tǒng)性紅斑狼瘡、白塞病及黑素瘤的發(fā)病機(jī)制中,Rho GTPase/ROCK信號通路通過影響T淋巴細(xì)胞的黏附遷移、激活、效應(yīng)等方面,進(jìn)而影響免疫反應(yīng)的發(fā)生。目前已有一些Rho GTPase/ROCK信號通路的抑制劑如Y27632、法舒地爾等應(yīng)用于基礎(chǔ)或臨床研究中,并取得了一定的成果,有望成為治療疾病的潛力藥物,且近年來越來越多的證據(jù)還表明ROCK抑制劑在皮膚愈合和瘢痕治療中發(fā)揮作用。
Rho GTPase/ROCK信號通路;T淋巴細(xì)胞;血管炎,皮膚;黑素瘤
[J Pract Dermatol, 2016, 9(4):259-261]
在皮膚血管炎和皮膚腫瘤的發(fā)病的機(jī)制中,T淋巴細(xì)胞介導(dǎo)的免疫反應(yīng)發(fā)揮著重要的作用。近年來分子生物學(xué)機(jī)制研究表明,Rho相關(guān)性卷曲蛋白激酶(Rho GTPase/ROCK)信號通路參與T淋巴細(xì)胞介導(dǎo)的免疫反應(yīng),介導(dǎo)上述疾病的發(fā)病。研究Rho GTPase/ROCK信號通路對于細(xì)胞免疫的調(diào)節(jié),有利于為皮膚疾病的免疫調(diào)節(jié)提供新認(rèn)識。
在細(xì)胞中,Rho GTPase是Ras超家族的一個子集,包括20多種細(xì)胞內(nèi)信號蛋白,如RhoA、Cdc42和Rac1等[1]。Rho GTPase在GTP結(jié)合活化狀態(tài)和GDP結(jié)合非活化狀態(tài)之間轉(zhuǎn)化,起到分子開關(guān)的作用,控制著多種生物學(xué)行為如細(xì)胞增生、基因表達(dá)、細(xì)胞游走及細(xì)胞凋亡[2]。ROCK是RhoA的底物分子,是一種重要的絲氨酸/蘇氨酸蛋白激酶。Rho GTPase/ROCK信號通路主要通過影響細(xì)胞內(nèi)肌動蛋白骨架動態(tài)變化和某些信號傳導(dǎo),進(jìn)而影響T淋巴細(xì)胞介導(dǎo)的免疫反應(yīng)。該通路可以被鳥嘌呤核苷酸交換因子(活化因子)、Rho GTP酶活化蛋白(抑制因子)所調(diào)節(jié)。
2.1 影響T淋巴細(xì)胞的遷移
在免疫反應(yīng)的最初階段,T淋巴細(xì)胞從血管內(nèi)遷移到組織中離不開細(xì)胞本身的極化和跨內(nèi)皮細(xì)胞運(yùn)動。Heasman等[3]通過使用RNA干擾篩選技術(shù),證實(shí)了RhoA在該運(yùn)動中發(fā)揮重要作用,同時發(fā)現(xiàn)RhoA耗竭會導(dǎo)致T淋巴細(xì)胞前緣和尾端結(jié)構(gòu)極性不顯著,細(xì)胞凸起和收縮的特定部位也消失,導(dǎo)致T淋巴細(xì)胞遷移極性消失;隨后又利用Rho活性生物傳感器成像系統(tǒng)發(fā)現(xiàn),RhoA在細(xì)胞前緣局部激活后,才會產(chǎn)生細(xì)胞運(yùn)動如延伸和收縮。細(xì)胞收縮離不開ROCK激活及肌動-肌球蛋白收縮[4]。正常的T淋巴細(xì)胞的皺褶主要發(fā)生在凸起的前端,這表明T淋巴細(xì)胞前端擴(kuò)展及肌動蛋白絲的動態(tài)變化離不開RhoA/ROCK信號通路的激活。在實(shí)驗(yàn)水平上證實(shí)了該通路通過改變細(xì)胞骨架的動態(tài)性,進(jìn)而影響T淋巴細(xì)胞的遷移。
2.2 影響T淋巴細(xì)胞的激活
Rho GTPase/ROCK信號通路通過調(diào)節(jié)樹突狀細(xì)胞(dendritic cell,DC)與T淋巴細(xì)胞間的相互作用,進(jìn)而影響細(xì)胞免疫反應(yīng)。DC和T淋巴細(xì)胞相互作用離不開特殊結(jié)構(gòu)即免疫突觸(immune synapses, IS)。IS是免疫細(xì)胞間高度結(jié)構(gòu)化、分子化的接口,DC與T淋巴細(xì)胞間IS形成可以激活T淋巴細(xì)胞[5]。Malinova等[6]利用共聚焦電子顯微鏡技術(shù)揭示了DC中肌動蛋白參與IS的形成、穩(wěn)定和功能的發(fā)揮。同樣,Markey等[7]利用成像流式細(xì)胞術(shù)也證實(shí)了體外條件下DC和CD4+T淋巴細(xì)胞可形成IS,該過程涉及絲狀肌動蛋白的聚合。
為了揭示Rho GTPase/ROCK信號通路在IS形成的機(jī)制,研究表明Myo9b是該過程中不可或缺的調(diào)節(jié)蛋白。Myo9b是肌球蛋白超家族中一員,其分子結(jié)構(gòu)的尾端有Rho GTPase活化結(jié)構(gòu)域,是Rho GTPase靶蛋白,可以負(fù)性調(diào)節(jié)DC中的RhoA。Xu等[8]利用Myo9b-/-缺陷鼠動物模型觀察到,相對于對照組小鼠,實(shí)驗(yàn)組DC中RhoA活性增加,使得肌球蛋白輕鏈磷酸化水平提高,影響了DC和T淋巴細(xì)胞的相互作用;另一方面,Myo9b-/-缺陷鼠DC中Rho GTPase/ROCK信號通路過度活化,DC遷移受到影響,DC與T淋巴細(xì)胞接觸的個數(shù)和對照組相比,明顯減少;再者M(jìn)yo9b主要存在于肌動蛋白聚合的地方,在實(shí)驗(yàn)鼠免疫突觸間隙中肌動蛋白的含量明顯減少,改變了DC與T淋巴細(xì)胞間的結(jié)合力,影響了T淋巴細(xì)胞的激活,而且T淋巴細(xì)胞活化所依賴的表面分子CD25、CD69表達(dá)明顯降低,T淋巴細(xì)胞增生明顯減少。在實(shí)驗(yàn)水平上證實(shí)了Rho GTPase/ROCK信號通路通過影響IS的形成,影響T淋巴細(xì)胞的激活。
2.3 影響T淋巴細(xì)胞的效應(yīng)
ROCK在調(diào)節(jié)T淋巴細(xì)胞介導(dǎo)的免疫效應(yīng)方面起著重要作用。最近研究表明:Th17偏移刺激CD4+T淋巴細(xì)胞ROCK的活化,使白細(xì)胞介素(IL)-17及IL-21分泌增多[9]。Zanin-Zhorov等[10]發(fā)現(xiàn)健康人服用ROCK抑制劑KD025后,T淋巴細(xì)胞分泌IL-17及IL-21水平下降,具體機(jī)制在于一方面是ROCK通路受到抑制后,T淋巴細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄活化因子3(signal transducers and activators of transcription,STAT3)磷酸化水平降低,IL-17、IL-21啟動子結(jié)合率降低,蛋白水平表達(dá)下降;另一方面通過上調(diào)STAT5磷酸化、叉狀螺旋轉(zhuǎn)錄子(FOXp3)基因表達(dá)增加,使得調(diào)節(jié)性T淋巴細(xì)胞抑制能力增強(qiáng),最終導(dǎo)致IL-17及IL-21分泌降低。
同樣,Isgro 等[11]也證實(shí)了CD4+T淋巴細(xì)胞在Th17偏移情況下,ROCK信號通路活化,引起IL-17、IL-21產(chǎn)生增多。具體機(jī)制涉及到Rho信號轉(zhuǎn)導(dǎo)通路調(diào)節(jié)基因(Def6)。Def6-自身免疫性疾病中,RhoA信號通路特異性轉(zhuǎn)錄因子可以無限制的結(jié)合在IL-17、IL-21基因調(diào)節(jié)位點(diǎn),使IL-17、IL-21的產(chǎn)生降低[12]。以上說明,ROCK異常活化影響T淋巴細(xì)胞的效應(yīng),在自身免疫疾病中發(fā)揮重要作用。
此外有研究證實(shí),ROCK通路還可以上調(diào)轉(zhuǎn)錄因子,如核因子-κB表達(dá),進(jìn)而活化T淋巴細(xì)胞介導(dǎo)的免疫反應(yīng)。而且,RhoA/ROCK信號通路活化后可以激活p38絲裂原活化蛋白激酶,后者可以上調(diào)IL-4、IL-10、干擾素(IFN)-γ的產(chǎn)生,進(jìn)一步影響T淋巴細(xì)胞的分化和免疫反應(yīng)[13]。
3.1 系統(tǒng)性紅斑狼瘡
系統(tǒng)性紅斑狼瘡(systemic lupus eythematosus,SLE)是T淋巴細(xì)胞參與的、以自身抗體產(chǎn)生和多臟器受累為主要特征的自身免疫性疾病。最新研究表明,SLE患者血清中由Th17細(xì)胞分泌的IL-17、IL-21水平增加[14]。Biswas等[15]利用經(jīng)典MRL/lpr狼瘡鼠動物模型,給予ROCK抑制劑后發(fā)現(xiàn)IL-17、IL-21減少,自身抗體及免疫復(fù)合物的沉積減少,蛋白尿的癥狀得到改善,狼瘡鼠腎臟受累得到改善。鑒于SLE是由多基因和多信號轉(zhuǎn)導(dǎo)引發(fā)的疾病,尚無任何單一的小鼠模型可以模擬人類SLE的復(fù)雜性,Stirzake等[16]利用NZB/W F1雌性狼瘡鼠進(jìn)行動物實(shí)驗(yàn),給予實(shí)驗(yàn)鼠法舒地爾(ROCK抑制劑),對照組不做處理,20周后,實(shí)驗(yàn)組狼瘡鼠的存活率提高,狼瘡腎炎的癥狀明顯改善,同時,脾臟效應(yīng)/記憶CD4+T淋巴細(xì)胞降低。進(jìn)一步說明了ROCK參與了SLE的發(fā)病。此外,Crispin等[17]還發(fā)現(xiàn)SLE患者T淋巴細(xì)胞表達(dá)CD44增加,CD44涉及到T淋巴細(xì)胞的黏附和遷移,參與狼瘡腎炎的發(fā)病。增加的CD44導(dǎo)致ROCK活化[18],使IL-17產(chǎn)生增多。
3.2 白塞病
白塞?。╞echet's disease,BD)是一種慢性復(fù)發(fā)性系統(tǒng)性血管炎,發(fā)病涉及到復(fù)雜的遺傳背景[19]。BD病的全基因分析已確定了疾病易感基因位點(diǎn)。Oguz等[20]進(jìn)行了一項(xiàng)大樣本病例對照研究,該實(shí)驗(yàn)納入194例BD患者,276例健康對照組,使用BioMark體系動態(tài)系統(tǒng)評估基因多態(tài)性,利用rt-PCR方法檢測ROCK的基因表達(dá)。結(jié)果表明BD患者中ROCK mRNA表達(dá)水平增加,編碼ROCK基因位點(diǎn)(rs35768389、rs1515219)的基因多態(tài)性和BD發(fā)病相關(guān),這兩個基因位點(diǎn)可能是發(fā)展到BD的高風(fēng)險因素。ROCK基因多態(tài)性可以作為早期BD患者的預(yù)測指標(biāo)。
3.3 黑素瘤
黑素瘤是免疫原性腫瘤,可以表達(dá)腫瘤抗原和效應(yīng)分子,后者通過影響機(jī)體識別機(jī)制導(dǎo)致腫瘤的免疫逃逸,具體機(jī)制為腫瘤細(xì)胞表達(dá)Fas配體異位,免受Fas+淋巴細(xì)胞殺傷,造成免疫逃逸[21]。既往研究表明RhoGTPase/ROCK信號通路可使黑素瘤B16F10細(xì)胞Fas配體表達(dá)下調(diào)。Teiti等[22]通過體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn),ROCK抑制劑作用于B16F10細(xì)胞,造成Fas配體膜表面過表達(dá)而延緩黑素瘤的生長,組織病理學(xué)分析表明,實(shí)驗(yàn)組CD8+T淋巴細(xì)胞在腫瘤細(xì)胞內(nèi)浸潤增強(qiáng)。
此外,Kedziora等[23]證實(shí)了Rho GTPase/ ROCK信號通路可以減弱肌動蛋白富集區(qū)的形成,延緩腫瘤入侵。肌動蛋白富集區(qū)膜突組裝成花環(huán)樣結(jié)構(gòu),可以降解細(xì)胞外基質(zhì),驅(qū)動腫瘤細(xì)胞的入侵。不同的G蛋白偶聯(lián)受體激動劑如溶血磷脂酸和內(nèi)皮素可以加快黑素瘤細(xì)胞的花環(huán)樣結(jié)構(gòu)。Rho GTPase/ROCK通過減弱溶血磷脂酸及內(nèi)皮素的形成,拮抗該富集區(qū)的結(jié)構(gòu),使用通路抑制劑后加快了花環(huán)樣結(jié)構(gòu)形成。以上表明,Rho GTPase/ ROCK信號通路在黑素瘤發(fā)病中起到重要作用。
Y27632 和法舒地爾均是ROCK抑制劑,越來越多的證據(jù)表明ROCK抑制劑在皮膚創(chuàng)傷愈合和瘢痕攣縮中起重要作用。Gandham等[24]在體外實(shí)驗(yàn)發(fā)現(xiàn)Y27632可以促進(jìn)角質(zhì)形成細(xì)胞(keratinocyte,KC)的增生,加快傷口的愈合。此外,Y27632還抑制成纖維細(xì)胞介導(dǎo)的膠原收縮[25],影響瘢痕形成,對于瘢痕疙瘩的治療提供了可能。此外Bond等[26]還證實(shí),在體外情況下,瘢痕組織在修復(fù)的重塑期RhoA表達(dá)增加,法舒地爾可以抑制成纖維細(xì)胞的收縮、肌成纖維細(xì)胞的形成,進(jìn)而影響瘢痕的形成和收縮。
Rho GTPase/ROCK信號通路在皮膚血管炎和皮膚腫瘤的發(fā)病機(jī)制中起重要作用。主要通過影響T淋巴細(xì)胞游走、遷移、活化及效應(yīng)等方面影響免疫反應(yīng)的發(fā)生。該通路的抑制劑如Y27632、法舒地爾除了在上述疾病治療方面起到一定作用,還可以促進(jìn)皮膚傷口愈合、抑制瘢痕形成。但由于Rho GTPase/ROCK通路的分子機(jī)制尚未完全闡明,并且動物模型和人皮膚組織存在差異,因此該通路抑制劑對于人皮膚疾病的治療仍需進(jìn)一步完善。
[1] Byrne KM, Monsefi N, Dawson JC, et al. Bistability in the Rac1, PAK,and Rho A signaling network drives actin cytoskeleton dynamics and cell motility switches [J]. Cell Syst, 2016, 2(1):38-48.
[2] Reichman M, Schabdach A, Kumar M, et al. A High-throughput assay for Rho guanine nucleotide exchange factors based on the transcreener GDP assay [J]. J Biomol Screen, 2015, 20(10):1294-1299.
[3] Heasman SJ, Carlin LM, Cox S, et al. Coordinated RhoA signaling at the leading edge and uropod is required for T cell transendothelial migration [J]. J Cell Bio, 2010, 190(4):553-563.
[4] Heasman SJ, Ridley AJ. Multiple roles for Rhoa during T cell transendothelial migration [J]. Small GTPase, 2010, 1(3):174-179.
[5] Pernis AB. Rho GTPase-mediated pathways in mature CD4+T cells [J]. Autoimmun Rev, 2009, 8(3):199-203.
[6] Malinova D, Fritzsche M, Nowosad CR, et al. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts [J]. J Leukoc Biol, 2016,99(5):699-710.
[7] Markey KA, Gartlan KH, Kuns RD, et al. Imaging the immunological synapse between dendritic cells and T cells [J]. J Immunol Methods, 2015,423:40-44.
[8] Xu Y, Pektor S, Balkow S, et al. Dendritic cell motility and T cell activation requires regulation of Rho-cofilin signaling by the Rho-GTPase activating protein myosin IXb [J]. J Immunol, 2014, 192(8):3559-3568.
[9] Zanin-Zhorov A, Waksal SD. ROCKing cytokine secretion balance in human T cells [J]. Cytokine, 2015, 72(2):224-225.
[10] Zanin-Zhorov A, Weiss JM, Nyuydzefe MS, et al. Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism [J]. Proc Nati Acad Sci USA, 2014,111(47):16814-16819.
[11] Isgro J, Gupta S, Jacek E, et al. Enhanced rho-associated protein kinase activation in patients with systemic lupus erythematosus [J]. Arthritis Rheum, 2013, 65(6):1592-1602.
[12] Chen Q, Yang W, Gupta S, et al.IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor [J]. Immunity, 2008, 29(6):899-911.
[13] Wang QM, Liao JK. ROCKs as immunomodulators of stroke [J]. Expert Opin Ther Targets, 2012, 16(10):1013-1025.
[14] Brkic Z, Corneth OB, van Helden-Meeuwsen CG, et al. T-helper 17 cell cytokines and interferon type I: partners in crime in systemic lupus erythematosus? [J]. Arthritis Res Ther, 2014, 16(2):R62.
[15] Biswas PS, Gupta S, Chang E, et al. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice [J]. J Clin Invest, 2010, 120(9):3280-3295.
[16] Stirzaker RA, Biswas PS, Gupta S, et al. Administration of fasudil, a ROCK inhibitor, attenuates disease in lupus-prone NZB/WF1 female mice [J]. Lupus, 2012, 21(6):656-661.
[17] Crispin JC, Keenan BT, Finnell MD, et al. Expression of CD44 variant isoforms CD44v3 and CD44v6 is increased on T cells from patients with systemic lupus erythematosus and is correlated with disease activity [J]. Arthritis Rheum, 2010, 62(5):1431-1437.
[18] Rother N, van der Vlag J. Disturbed T Cell signaling and altered Th17 and regulatory T Cell subsets in the pathogenesis of systemic lupus erythematosus [J]. Front Immunol, 2015, 30(6):610.
[19] Mat MC, Sevim A, Fresko I, et al. Behcet's disease as a systemic disease [J]. Clin Dermatol, 2014, 32(3):435-442.
[20] Oguz E, Alasehirli B, Pehlivan Y, et al. Association between Rho-kinase (ROCK2) gene polymorphisms and Beh?et's disease [J]. Transl Res, 2012,160(6):428-434.
[21] Leisegang M, Kammertoens T, Uckert W, et al.Targeting human melanoma neoantigens by T cell receptor gene therapy [J]. J Clin Invest, 2016,126(3):854-858.
[22] Teiti I, Florie B, Pich C, et al. In vivo effects in melanoma of ROCK inhibition-induced fasl overexpression [J]. Front Oncol, 2015, 145(5):156.
[23] Kedziora KM, Leyton-Puig D, Argenzio E, et al. Rapid remodeling of invadosomes by Gi-coupled receptors: DISSECTING THE ROLE OF Rho GTPases [J]. J Biol Chem, 2016, 291(9):4323-4333.
[24] Gandham VD, Maddala RL, Rao V, et al. Effects of Y27632 on keratinocyte procurement and wound healing [J]. Clin Exp Dermatol, 2013,38(7):782-786.
[25] Piltti J, Varjosalo M, Qu C, et al. Rho-kinase inhibitor Y-27632 increases cellular proliferation and migration in human foreskin fibroblast cells [J]. Proteomics, 2015, 15(17):2953-2965.
[26] Bond JE, Kokosis G, Ren L, et al. Wound vontraction is attenuated by fasudil inhibition of Rho-associated kinase [J]. Plast Reconstr Surg, 2011,128(5):438e-450e.
Advances in the research of immunoregulation of Rho GTPase/ROCK signaling pathway in dermatosis
ZHANG Li-ping,HE Yan-ling
Department of Dermatology, Beijing Chao-yang Hospital Affiliated to Capital Medical University, Beijing 100020, China
In the immunoregulation of skin vasculitis and dermatoma, the effect of Rho GTPase/ROCK signaling pathway is receiving more attentions in view of its moderating role on T cells. The pathway mainly affects cytoskeletal rearrangement and cell movement. Recent studies have indicated that Rho GTPase/ROCK pathway can influence the adhesion, migration, stimulation and activation of T cells, and affect the immune response. Rho GTPase/ROCK pathway is involved in the pathogenesis of system lupus erythematosus, Behcet's disease and melanoma. Currently, Y27632 and Fasudil, the inhibitors of Rho GTPase/ROCK signaling pathway, have been put into clinical and basic research, which have achieved good results and may be the potential drugs in the treatment of the disease in the future. More and more evidences show that ROCK inhibitors play an important role in wound healing and scar contracture in recent years.
Rho GTPase/ROCK signal pathway;T cell;Vasculitis,dermal;Melanoma
R318
A
1674-1293(2016)04-0259-03
2016-04-16
2016-05-24)
(本文編輯 敖俊紅)
10.11786/sypfbxzz.1674-1293.20160411
北京市科委(Z151100003915129)
100020 北京,首都醫(yī)科大學(xué)附屬北京朝陽醫(yī)院(張利平,何焱玲)
張利平,碩士研究生,住院醫(yī)師,研究方向:皮膚血管炎,E-mail: zlp2015zlp@163.com
何焱玲,E-mail: heyldoc@163.com