莊志海,張建強(qiáng),劉殿華
?
聚甲氧基二甲醚+水+正己烷三元體系的液液相平衡
莊志海,張建強(qiáng),劉殿華
(華東理工大學(xué)化學(xué)工程聯(lián)合國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200237)
聚甲氧基二甲醚(PODE)是一種極具應(yīng)用前景的清潔柴油調(diào)和組分。研究了293.15 K、常壓下PODE1+水+正己烷、PODE2+水+正己烷、PODE3+水+正己烷、PODE4+水+正己烷這4組三元體系的液液相平衡。PODE1-4組分的萃取選擇性系數(shù)遠(yuǎn)大于1,表明正己烷作為萃取劑從水溶液中萃取PODE1-4是可行的;經(jīng)Hand結(jié)線關(guān)聯(lián)檢驗(yàn),各體系的相平衡數(shù)據(jù)具有較高的一致性;采用NRTL和UNIQUAC熱力學(xué)模型對(duì)相平衡數(shù)據(jù)進(jìn)行擬合,均方根差計(jì)算(RMSD)結(jié)果和三元相圖分析結(jié)果表明NRTL和UNIQUAC都能較好地描述三元體系的液液相平衡。
萃?。徽和椋痪奂籽趸酌?;水溶液;相平衡
引 言
聚甲氧基二甲醚(polyoxymethylene dimethyl ethers,PODE)[1-2]是一種新型清潔柴油調(diào)和組分,其化學(xué)簡(jiǎn)式表示為CH3O(CH2O)CH3(其中≥1,一般取值小于10),十六烷值平均高達(dá)76,并且具有較高的含氧量(42%~51%)。PODE3-4與柴油理化性質(zhì)相近,互溶性好且穩(wěn)定,適合用作柴油調(diào)和組分,據(jù)報(bào)道[3-8]在柴油中添加5%~30%的PODE3-4可以在不改動(dòng)發(fā)動(dòng)機(jī)結(jié)構(gòu)的基礎(chǔ)上大幅度降低尾氣中NO和顆粒污染物的排放,并且提高燃油效率;低聚合度組分PODE1和PODE2可以循環(huán)至反應(yīng)器,提高PODE3-4的反應(yīng)選擇性。以甲醛溶液和甲醇為原料的酸催化合成PODE的反應(yīng)工藝[9-16]流程簡(jiǎn)單,原料價(jià)廉易得,具有良好的發(fā)展前景,但產(chǎn)物組成中含有水和原料甲醇、甲醛,直接采用精餾分離[17]不僅能耗高,而且會(huì)導(dǎo)致產(chǎn)物中甲醛發(fā)生自聚反應(yīng)堵塞管道。采用萃取工藝能夠有效避免水對(duì)聚甲氧基二甲醚體系分離的不利影響。目前關(guān)于PODE萃取分離的文獻(xiàn)較少,而且基本是分離工藝流程的概念設(shè)計(jì)[18-19],因此需要補(bǔ)充大量的相平衡研究數(shù)據(jù)。
關(guān)于聚甲氧基二甲醚的多元系統(tǒng)液液相平衡,除了PODE1、PODE2-4外尚未見(jiàn)到相關(guān)文獻(xiàn)報(bào)道。Albert 等[20]對(duì)甲縮醛(PODE1)+水二元系統(tǒng)和甲縮醛+水+甲醇三元系統(tǒng)常壓下的液液相平衡數(shù)據(jù)進(jìn)行測(cè)定,并且采用UNIQUAC模型對(duì)液液相平衡數(shù)據(jù)進(jìn)行擬合,得到了較好的擬合效果。Kuhnert等[21]采用改進(jìn)的UNIFAC對(duì)PODE1+甲醛+水三元體系進(jìn)行擬合,得到了相應(yīng)的二元交互作用參數(shù)。
本研究采用正己烷作為萃取劑,測(cè)定了常壓、溫度為293.15 K下PODE1+水+正己烷、PODE2+水+正己烷、PODE3+水+正己烷、PODE4+水+正己烷這4組三元體系的液液相平衡數(shù)據(jù),并分別采用活度系數(shù)模型NRTL(non-random two liquids,非隨機(jī)雙液體)模型[22]和UNIQUAC(universal quasi chemical,通用似化學(xué))模型[23]進(jìn)行關(guān)聯(lián),回歸出二元交互作用參數(shù),為分離含水PODE體系的萃取設(shè)備模型建立和設(shè)計(jì)提供必要的液液相平衡數(shù)據(jù)。
1 實(shí)驗(yàn)材料和方法
1.1 材料
甲縮醛(PODE1),上海錦悅化工有限公司提供,實(shí)驗(yàn)室精餾塔分餾提純,純度為99.8%(質(zhì)量分?jǐn)?shù));正己烷(-hexane),上海凌峰化學(xué)試劑有限公司提供,純度為99.5%(質(zhì)量分?jǐn)?shù));乙醇,上海凌峰化學(xué)試劑有限公司提供,純度為99.5%(質(zhì)量分?jǐn)?shù));PODE2-4,實(shí)驗(yàn)室精餾塔分餾制備,純度為98.5%(質(zhì)量分?jǐn)?shù))。以上試劑均采用4A沸石分子篩進(jìn)行干燥。單組分卡爾費(fèi)休滴定液,國(guó)藥集團(tuán)化學(xué)試劑有限公司提供;去離子水,華東理工大學(xué)提供,經(jīng)過(guò)實(shí)驗(yàn)室3次蒸餾后使用。
1.2 液液相平衡裝置
液液相平衡裝置如圖1所示。裝置接入恒溫循環(huán)水浴保證相平衡的等溫條件,溫控誤差為±0.1℃;裝置上、下接口都設(shè)置有氟橡膠密封的取樣口防止有機(jī)物質(zhì)揮發(fā),并且可以通過(guò)注射器分別抽取上、下層樣品,保證萃取液和萃余液樣品不相互污染。
為了測(cè)定相平衡時(shí)間,進(jìn)行了預(yù)實(shí)驗(yàn),不同體系攪拌2 h后靜置分層,每隔2 h進(jìn)行上、下層取樣分析,組成經(jīng)色譜至少分析3次求平均值,不同時(shí)間點(diǎn)樣品各組成質(zhì)量分?jǐn)?shù)波動(dòng)不超過(guò)0.1%,預(yù)實(shí)驗(yàn)結(jié)果表明靜置時(shí)間為2 h時(shí)體系已達(dá)到相平衡狀態(tài)。相平衡實(shí)驗(yàn)裝置具體操作方法如下:將液液相平衡溫度設(shè)置至293.15 K,溫度穩(wěn)定后,向瓶中加入萃取劑和原料液,開(kāi)啟磁力攪拌,攪拌2 h后停止,靜置分層2 h,萃取相和萃余相清澈透明,兩相界面清晰可見(jiàn),進(jìn)行上、下層取樣分析。
1.3 分析方法
水含量測(cè)定:采用卡爾費(fèi)休水分儀[梅特勒托利多(中國(guó))有限公司,V30]分析,滴定劑為單組分卡爾費(fèi)休試劑,每次滴定前用純水校正卡爾費(fèi)休試劑滴定度3次,取平均值。水含量測(cè)定誤差為0.05%(質(zhì)量分?jǐn)?shù))。
PODE1-4和正己烷含量測(cè)定:采用氣相色譜內(nèi)標(biāo)法定量,內(nèi)標(biāo)物為無(wú)水乙醇;氣相色譜(Perkin Elmer,Clarus 580)采用毛細(xì)管柱Elite-Wax(30 m× 0.32 mm×0.25mm);分析條件為進(jìn)樣器溫度250℃,檢測(cè)器溫度250℃,空氣流速400 ml·min-1,氫氣流速40 ml·min-1;柱箱升溫程序設(shè)置為45℃保持3 min,然后以20℃·min-1的升溫速率加熱到220℃并保持3 min。PODE1-4和正己烷含量測(cè)定誤差為0.1%(質(zhì)量分?jǐn)?shù))。
實(shí)驗(yàn)中對(duì)相平衡的樣品各組分分析至少3次,取平均值。
2 實(shí)驗(yàn)結(jié)果與討論
2.1 液液相平衡數(shù)據(jù)測(cè)定
常壓下,在液液相平衡裝置中設(shè)置溫度20℃,測(cè)定PODE1+ 水 + 正己烷、PODE2+水 +正己烷、PODE3+ 水 +正己烷、PODE4+水+正己烷這4組三元體系液液相平衡共軛相組成,實(shí)驗(yàn)數(shù)據(jù)見(jiàn)表1,并且計(jì)算了PODE的萃取選擇性。
計(jì)算公式[24]如下
由表1可知,在實(shí)驗(yàn)濃度范圍內(nèi)萃余相中只有少量正己烷,PODE1+ 水 +正己烷體系中正己烷質(zhì)量分?jǐn)?shù)最高3.5%,PODE2+ 水 +正己烷、PODE3+水 +正己烷、PODE4+ 水 +正己烷三體系中絕大多數(shù)萃余相中正己烷質(zhì)量分?jǐn)?shù)低于1%,說(shuō)明以正己烷為萃取劑從水溶液中提取PODE1-4過(guò)程中只有少量正己烷萃取劑損失在萃余相中,大部分正己烷萃取劑可以回收。由于PODE分子結(jié)構(gòu)中存在—CH2O—,與水有一定的互溶性,隨萃取相中PODE含量增加水含量有所增加;萃取相中的水含量遠(yuǎn)小于萃余相中的水含量,大大減小水對(duì)后續(xù)精餾過(guò)程的不利影響;所有PODE純組分的選擇性系數(shù)在23全組成濃度范圍內(nèi)遠(yuǎn)大于1,并且隨23減小而增大。
表1 溫度293.15 K下PODEn+水+正己烷三元體系相平衡實(shí)驗(yàn)數(shù)據(jù) Table 1 Experimental liquid-liquid equilibrium data for ternary systems [PODEn(1) + water(2) + n-hexane(3)] at 293.15 K
2.2 液液相平衡數(shù)據(jù)一致性檢驗(yàn)
對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行一致性檢驗(yàn)是評(píng)價(jià)數(shù)據(jù)可靠性的一種重要方法。采用Hand結(jié)線關(guān)聯(lián)法[25]對(duì)所測(cè)數(shù)據(jù)進(jìn)行了一致性檢驗(yàn)。
Hand結(jié)線關(guān)聯(lián)式如下
式中,12和22分別是萃余相中PODE和水的質(zhì)量分?jǐn)?shù);13和33分別是萃取相中PODE和正己烷的質(zhì)量分?jǐn)?shù);和分別為Hand結(jié)線方程的截距和斜率,可以通過(guò)實(shí)驗(yàn)數(shù)據(jù)線性擬合得出。
Hand結(jié)線方程參數(shù)值和擬合的相關(guān)指數(shù)2見(jiàn)表2。圖2是4組三元體系的Hand結(jié)線的擬合圖像。擬合結(jié)果都呈現(xiàn)出明顯的線性關(guān)系,相關(guān)指數(shù)2接近1,殘差平方和較小,說(shuō)明所測(cè)的4組三元體系的液液相平衡數(shù)據(jù)符合Hand結(jié)線關(guān)聯(lián)式,具有較高的一致性。
表2 PODEi+水+正己烷(i=1,2,3,4) 4組三元體系Hand結(jié)線關(guān)聯(lián)擬合參數(shù) Table 2 Hand equations parameters for ternary systems[PODEi + water + n-hexane(i=1,2,3,4)]
2.3 液液相平衡數(shù)據(jù)擬合
2.3.1 活度系數(shù)模型
NRTL模型和UNIQUAC模型均能預(yù)測(cè)多元體系的液液相平衡。NRTL是基于局部組成概念的活度系數(shù)方程,該模型適用范圍廣,不僅適用于完全互溶物系,也適用于部分互溶物系;NRTL是一個(gè)三參數(shù)方程,參數(shù)包括組分和的二元交互作用參數(shù)和以及參數(shù)(=),根據(jù)Renon規(guī)則,正己烷-水的為0.2,正己烷-PODE的為0.3,水-PODE的為0.3。
UNIQUAC模型是在Guggenheim似化學(xué)溶液理論和Wilson局部組成概念理論基礎(chǔ)上建立的,該模型比NRTL模型復(fù)雜,可以應(yīng)用于非極性、各類極性組分的多元混合物和分子大小懸殊的聚合溶液,又稱為通用化學(xué)模型。該模型引入分子的形狀和大小對(duì)活度系數(shù)方程的影響,配位數(shù)=10。方程中的r和q是各分子結(jié)構(gòu)常數(shù),r是組分的量綱1體積分?jǐn)?shù),q是組分的量綱1表面積參數(shù),可以通過(guò)Bondi法計(jì)算出,結(jié)果見(jiàn)表3。
表3 UNIQUAC活度系數(shù)方程中r值和q值 Table 3 Values of UNIQUAC parameters r and q
2.3.2 液液相平衡數(shù)據(jù)關(guān)聯(lián)
在Aspen Plus軟件中輸入各二元交互作用初值和三元體系液液相平衡實(shí)驗(yàn)數(shù)據(jù),分別采用NRTL方程和UNIQUAC方程進(jìn)行擬合;采用NRTL活度系數(shù)方程擬合時(shí),需輸入值。
計(jì)算過(guò)程中采用最小二乘法,使目標(biāo)函數(shù)[26]式(5)最小。
式中,代表不同組分?jǐn)?shù),為相數(shù),為液液相平衡共軛組成結(jié)線數(shù);表示實(shí)驗(yàn)測(cè)得的組分含量,表示模型擬合得到的組分含量。
液液相平衡數(shù)據(jù)的關(guān)聯(lián)效果采用均方根偏差(RMSD)[27-28]進(jìn)行分析。均方根偏差是通過(guò)比較實(shí)驗(yàn)值和模型擬合值的差異得到的,公式如下
擬合得到的NRTL和UNIQUAC活度系數(shù)模型的二元交互作用參數(shù)以及均方根偏差值見(jiàn)表4。并且在一張三角相圖中繪制同一體系(PODE1-4+水 + 正己烷)實(shí)驗(yàn)數(shù)據(jù)和NRTL方程擬合數(shù)據(jù)結(jié)果以及UNIQUAC方程擬合數(shù)據(jù)結(jié)果,如圖3~圖6所示。
表4 NRTL模型參數(shù)τij、UNIQUAC模型參數(shù)bij和均方根偏差 Table 4 NRTL and UNIQUAC model interaction parameters and root-mean square deviation (RMSD) for ternary systems (PODEn + water + n-hexane)
根據(jù)圖3~圖6可知,在實(shí)驗(yàn)濃度范圍內(nèi)液液相平衡數(shù)據(jù)整體關(guān)聯(lián)較好。因此NRTL和UNIQUAC活度系數(shù)方程均能描述PODE1+ 水 +正己烷、PODE2+水 +正己烷、PODE3+水 +正己烷、PODE4+ 水 + 正己烷三元體系的液液相平衡。
由圖3和圖4可知,當(dāng)萃取相中PODE組分濃度較高(質(zhì)量分?jǐn)?shù)大于50%)時(shí)萃取相實(shí)驗(yàn)值與擬合結(jié)果有一定偏差。由圖5和圖6可知,PODE3+水 + 正己烷和PODE4+水 + 正己烷體系關(guān)聯(lián)結(jié)果較好,RMSD值低于0.015。
3 結(jié) 論
(1)在常壓、溫度為293.15 K條件下測(cè)量了PODE1+ 水 + 正己烷、PODE2+ 水 + 正己烷、PODE3+水 + 正己烷、PODE4+水 + 正己烷這4組三元體系的液液相平衡數(shù)據(jù)。根據(jù)相平衡數(shù)據(jù)分析,PODE1-4組分的選擇性系數(shù)遠(yuǎn)大于1,正己烷作為萃取劑從水溶液中萃取PODE1-4是可行的,并且大部分萃取劑可以回收,大幅度降低PODE體系中的水含量,避免水對(duì)后續(xù)精餾過(guò)程的不利影響。
(2)采用NRTL和UNIQUAC活度系數(shù)方程對(duì)相平衡數(shù)據(jù)進(jìn)行關(guān)聯(lián),并回歸出NRTL方程和UNIQUAC方程的二元交互作用參數(shù),結(jié)果表明,NRTL和UNIQUAC活度系數(shù)方程均能較好地描述PODE1-4+水 + 正己烷三元體系的液液相平衡。
致謝:感謝華東理工大學(xué)化學(xué)工程聯(lián)合國(guó)家重點(diǎn)實(shí)驗(yàn)室提供的Aspen Plus軟件授權(quán)。
符 號(hào) 說(shuō) 明
bij——組分i和組分j的UNIQUAC二元交互參數(shù),J·mol-1 DPODE, Dwater——分別為PODE和水的分配系數(shù) OF——目標(biāo)函數(shù) RMSD——均方根偏差 ri,qi——分別是組分i的量綱1體積分?jǐn)?shù)和量綱1表面積參數(shù) S——PODE的萃取選擇性系數(shù) W——質(zhì)量分?jǐn)?shù) aij——NRTL方程中的非隨意參數(shù) τij——組分i和組分j的NRTL二元交互參數(shù),J·mol-1 上角標(biāo) cal——計(jì)算值 exp——實(shí)驗(yàn)值 下角標(biāo) x——不同組分?jǐn)?shù) y——相數(shù) z——共軛組成
References
[1] BURGER J, Siegert M, Str?fer E,. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: properties, synthesis and purification concepts[J]. Fuel, 2010, 89(11): 3315-3319.
[2] Zhao Y P, XU Z, Chen H,. Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers[J]. Journal of Energy Chemistry, 2013, 22(6): 833-836.
[3] Liu H Y, Wang Z, Wang J X,. Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEblends[J]. Energy, 2016, 97: 105-112.
[4] Liu H Y, Wang Z, Zhang J,. Study on combustion and emission characteristics of polyoxymethylene dimethyl ethers/diesel blends in light-duty and heavy-duty diesel engines[J]. Applied Energy, 2015(in press). doi: 10.1016/j.apenergy.2015. 10. 183.
[5] Liu J L, Wang H, Li Y,. Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine[J]. Fuel, 2016, 177: 206-216.
[6] Knippenberg S, Hajgató B, Fran?ois J P,. Theoretical study of the fragmentation pathways of norbornane in its doubly ionized ground state[J]. Journal of Physical Chemistry A, 2007, 111(42): 10834-10848.
[7] Boyd R H. Some physical properties of polyoxymethylene dimethyl ethers[J]. Journal of Polymer Science, 1961, 50(153): 133-141.
[8] Iannuzzi S E, Barro C, Boulouchos K,. Combustion behavior and soot formation/oxidation of oxygenated fuels in a cylindrical constant volume chamber[J]. Fuel, 2016, 167: 49-59.
[9] Li H J, Song H L, Xia C G,. Designed SO42-/Fe2O3-SiO2solid acids for polyoxymethylene dimethyl ethers synthesis: the acid sites control and reaction pathways[J]. Applied Catalysis B: Environmental, 2015, 165: 466-476.
[10] Wu Y J, Li Z, Xia C G. Silica-gel-supported dual acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dimethyl ethers[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 1859-1865.
[11] Wu J B, Zhu H Q, Qin Z F,. High Si/Al ratio HZSM-5 zeolite: an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chemistry, 2015, 17(4): 2353-2357.
[12] Wang F, Zhu G L, Xia C G,. Mechanistic study for the formation of polyoxymethylene dimethyl ethers promoted by sulfonic acid-functionalized ionic liquids[J]. Journal of Molecular Catalysis A: Chemical, 2015, 408: 228-236.
[13] 施敏浩, 劉殿華, 趙光, 等. 甲醇和甲醛催化合成聚甲氧基二甲醚[J]. 化工學(xué)報(bào), 2013, 64(3): 931-935.
Shi M H, Liu D H, Zhao G,. Catalytic synthesis of polyoxymethylene dimethyl ethers from methanol and formaldehyde [J]. CIESC Journal, 2013, 64(3): 931-935.
[14] Zhang J Q, Fang D Y, Liu D H. Evaluation of Zr-alumina in production of polyoxymethylene dimethyl ethers from methanol and formaldehyde: performance tests and kinetic investigations[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13589-13597.
[15] Zheng Y Y, Tang Q, Wang J F,. Synthesis of a green fuel additive over cation resins[J]. Chemical Engineering & Technology, 2013, 36(11): 1951-1956.
[16] Zheng Y Y, Tang Q, Wang J F,. Molecular size distribution in synthesis of polyoxymethylene dimethyl ethers and process optimization using response surface methodology[J]. Chemical Engineering Journal, 2015, 278: 183-189.
[17] 苗劍, 史高峰, 王國(guó)英, 等. 基于Aspen Plus的聚甲氧基二甲醚精餾過(guò)程模擬分析[J]. 計(jì)算機(jī)與應(yīng)用化學(xué), 2015, 32(1): 119-123.
Miao J, Shi G F, Wang G Y,. Simulation of distillation process for polyoxymethylene dimethyl ethers by Aspen Plus[J]. Computers and Applied Chemistry, 2015, 32(1): 119-123.
[18] Burger J, Str?fer E, Hasse H. Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth[J]. Chemical Engineering Research and Design, 2013, 91(12): 2648-2662.
[19] 韋先慶, 王清洋, 黃小科, 等. 一種制備聚甲氧基二甲醚的系統(tǒng)裝置及工藝: 102701923A [P]. 2012-10-03.
Wei X Q, Wang Q Y, Huang X K,. System device and process for preparing polyoxymethylene dimethyl ethers: 102701923A [P]. 2012-10-03.
[20] Albert M, Hahnenstein I, Hasse H,. Vapor-liquid and liquid-liquid equilibria in binary and ternary mixtures of water, methanol, and methylal[J]. Journal of Chemical & Engineering Data, 2001, 46(4): 897-903.
[21] Kuhnert C, Albert M, Breyer S,. Phase equilibrium in formaldehyde containing multicomponent mixtures: experimental results for fluid phase equilibria of (formaldehyde+(water or methanol)+methylal)) and (formaldehyde+water+methanol+methyla) and comparison with predictions[J]. Industrial & Engineering Chemistry Research, 2006, 45(14): 5155-5164.
[22] Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144.
[23] Abrams D S, Prausnitz J M. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems[J]. AIChE Journal, 1975, 21(1): 116-128.
[24] Ince E, Kirbaslar S I, Sahin S. Liquid-liquid equilibria for ternary systems of water+formic acid+dibasic esters[J]. Journal of Chemical & Engineering Data, 2007, 52(5): 1889-1893.
[25] Gilani H G, Gilani A G, Shekarsaraee S,. Liquid phase equilibria of the system (water+phosphoric acid+1-octanol) at=(298.2, 308.2, and 318.2) K[J]. Fluid Phase Equilibria, 2012, 316: 109-116.
[26] Wang C, Guo J, Cheng K,. Ternary (liquid+liquid) equilibria for the extraction of ethanol, or 2-propanol from aqueous solutions with 1,1′-oxybis(butane) at different temperatures[J]. Journal of Chemical Thermodynamics, 2016, 94: 119-126.
[27] Beneti S C, Lanza M, Mazutti M A,. Experimental (liquid+liquid) equilibrium data for ternary and quaternary mixtures of fatty acid methyl and ethyl esters (FAME/FAEE) from soybean oil[J]. Journal of Chemical Thermodynamics, 2014, 68: 60-70.
[28] Bilgin M. (Liquid+liquid) equilibria of (heptane, or hexane, or cyclohexane+toluene+1,3-dimethyl-2-imidazolidinone) ternary systems at=298.15 K[J]. Journal of Chemical Thermodynamics, 2010, 42(4): 530-535.
Liquid-liquid equilibria for ternary systems polyoxymethylene dimethyl ethers + water +-hexane
ZHUANG Zhihai, ZHANG Jianqiang, LIU Dianhua
(State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China)
Polyoxymethylene dimethyl ethers (PODE) are promising diesel additive which can be synthesized from aqueous formaldehyde solutions and methanol. Formaldehyde+methanol has been found as an economical and feasible way for the production of PODEdue to the cheap raw materials. In this study the extraction process is chosen to obtain PODEfrom aqueous solution. A reliable thermodynamic model for a good system description is important for extraction equipment modeling, development and design. Liquid-liquid equilibria(LLE) data are valuable in studies of the applicability of thermodynamic model. In this work, LLE was analytically determined at 293.15 K for the following four systems: (PODE1+ water +-hexane), (PODE2+ water +-hexane), (PODE3+ water +-hexane) and (PODE4+ water +-hexane), respectively. Based on high selectivity of PODE1-4over water and the PODEmass fraction in the organic phase was much larger than that in aqueous phase, it was found that washing with-hexane was an effective way of extracting PODEfrom the aqueous phase without losing any significant amount of PODEto the extract phase. The isothermal experimental data were shown a good linear fit in Hand plots with2being approximately unity. The well-known NRTL and UNIQUAC thermodynamic models were applied to correlate the experimental data, and the results of root mean square deviation calculation (RMSD) and ternary phase diagram analysis indicated that NRTL and UNIQUAC models all shown good predictive capabilities.
extraction;-hexane; polyoxymethylene dimethyl ether; aqueous solution; phase equilibria
LIU Dianhua, dhliu@ecust.edu.cn
date: 2016-03-31.
TQ 013.1
A
0438—1157(2016)09—3545—07
10.11949/j.issn.0438-1157.20160391
2016-03-31收到初稿,2016-05-14收到修改稿。
聯(lián)系人:劉殿華。第一作者:莊志海(1990—),男,碩士研究生。