武淑平, 劉玉忠
(沈陽師范大學(xué) 數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院, 沈陽 110034)
?
運(yùn)籌學(xué)與控制論
時(shí)變時(shí)滯切換系統(tǒng)的指數(shù)穩(wěn)定性及L2增益分析
武淑平, 劉玉忠
(沈陽師范大學(xué) 數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院, 沈陽 110034)
研究時(shí)變時(shí)滯切換系統(tǒng)的指數(shù)穩(wěn)定性及相應(yīng)的L2增益分析問題。構(gòu)建了一類限定時(shí)滯上界和下界的特殊分段Lyapunov-Krasovskii函數(shù),通過時(shí)滯分解方法及Jensen積分不等式與倒數(shù)凸組合相結(jié)合的技術(shù)處理了分段Lyapunov-Krasovskii函數(shù)中的積分項(xiàng)。更進(jìn)一步,在估計(jì)泛函微分的上界過程中,一方面,未引入加權(quán)矩陣,從而涉及較少的決策變量,降低了計(jì)算復(fù)雜性;另一方面,未忽略任何有效信息,因此獲得了具有更小保守性的穩(wěn)定性結(jié)論。此外,利用平均駐留時(shí)間的方法給出了時(shí)變時(shí)滯切換系統(tǒng)的指數(shù)穩(wěn)定性及L2增益的充分條件,同時(shí)也給出了切換律的設(shè)計(jì)方案。最后,將時(shí)變時(shí)滯切換系統(tǒng)的穩(wěn)定性及L2增益分析問題歸結(jié)為線性矩陣不等式的求解問題,這樣便于利用Matlab工具箱求解并驗(yàn)證結(jié)論有效性。
切換系統(tǒng); 指數(shù)穩(wěn)定性;L2增益; 倒數(shù)凸組合
切換系統(tǒng)是一類重要的混雜動態(tài)系統(tǒng),一般由一族連續(xù)(離散)的子系統(tǒng)以及一個(gè)決定子系統(tǒng)間切換作用的切換律組成。文獻(xiàn)[1]闡述了切換系統(tǒng)的穩(wěn)定性設(shè)計(jì)的3個(gè)基本問題。眾所周知,如果切換系統(tǒng)存在一個(gè)共同的Lyapunov函數(shù),則它在任意切換律下都是穩(wěn)定的。然而,大多數(shù)的切換系統(tǒng)并不存在共同的Lyapunov函數(shù),對于這類切換系統(tǒng)可以利用平均駐留時(shí)間的方法得到其穩(wěn)定性。
另一方面,時(shí)滯現(xiàn)象在實(shí)際工程中普遍存在。例如通訊網(wǎng)絡(luò)系統(tǒng)、化學(xué)過程系統(tǒng)、電力系統(tǒng)等。時(shí)滯現(xiàn)象通常影響系統(tǒng)的穩(wěn)定性且使系統(tǒng)的性能變差[2],當(dāng)切換系統(tǒng)帶有時(shí)滯時(shí),系統(tǒng)的分析和控制設(shè)計(jì)都會變得更為復(fù)雜[3],盡管如此,這樣的系統(tǒng)卻更能準(zhǔn)確地描述實(shí)際的工程系統(tǒng),所以研究時(shí)滯切換系統(tǒng)具有更重要的理論意義和實(shí)際價(jià)值。
近些年來,對于時(shí)滯切換系統(tǒng)的研究引起了專家學(xué)者的重視。在分析時(shí)滯切換系統(tǒng)的穩(wěn)定性時(shí),通常采取L-K函數(shù)技術(shù)[4-5]以及LMIs方法[6-10]。在文獻(xiàn)[8-12]中,分別將切換系統(tǒng)的穩(wěn)定性和指數(shù)穩(wěn)定性等轉(zhuǎn)化為LMI問題。另一方面,在減少保守性上,Jensen積分不等式方法[9-13]是非常有效的工具。特別地,文獻(xiàn)[9]提出一種新的方法稱為倒數(shù)凸組合方法,可以直接處理Lyapunov函數(shù)導(dǎo)數(shù)中出現(xiàn)的積分項(xiàng)。近期在Lyapunov函數(shù)中又出現(xiàn)三重積分項(xiàng),文獻(xiàn)[10]將倒數(shù)凸組合方法擴(kuò)展為二重倒數(shù)凸組合方法,從而可以有效地處理三重積分項(xiàng)。這2種方法通過涉及較少的決策變量從而獲得更小的保守性。
本文通過構(gòu)建一種新的分段Lyapunov-Krasovskii函數(shù),利用平均駐留時(shí)間的方法得到系統(tǒng)的指數(shù)穩(wěn)定性及相應(yīng)的L2增益的充分條件。利用Jensen積分不等式及倒數(shù)凸組合相結(jié)合的方法,直接處理Lyapunov函數(shù)中的積分項(xiàng),通過涉及較少決策變量的數(shù)量和計(jì)算的復(fù)雜程度來獲得更少的保守性。
考慮下面的時(shí)變時(shí)滯切換系統(tǒng)
其中:x(t)∈Rn,z(t)∈Rm分別代表著系統(tǒng)的狀態(tài)和控制輸出;ω(t)∈L2[0,+∞)是擾動輸入;切換信號σ(t):[0,+∞)→M={1,2,…,m},其中m是正整數(shù),表示子系統(tǒng)的個(gè)數(shù);Ai,Ei,Bi,Ci,Di(i∈M)是具有適當(dāng)維數(shù)的常數(shù)矩陣;連續(xù)向量函數(shù)φ(θ)∈[-h2,0];時(shí)變時(shí)滯函數(shù)d(t)滿足
‖A‖表示矩陣或向量A的歐幾里得范數(shù);P>0(≥0,<0,≤0)表示矩陣P為正定(半正定,負(fù)定,半負(fù)定)矩陣;λmax(R),λmin(R)分別表示矩陣R最大和最小特征值;矩陣中的“*”表示對稱矩陣中的對稱項(xiàng)。下面引入本文所需的引理。
引理1[9]令f1,f2,…,fN:Rm→Rn在開子集D∈Rm上有正值,則fi在D上的倒數(shù)凸組合滿足
且滿足如下條件
引理2[13]假設(shè)0≤h1
2.1 指數(shù)穩(wěn)定性分析
考慮如下時(shí)變時(shí)滯切換系統(tǒng)
證明 構(gòu)造分段Lyapunov-Krasovskii函數(shù)為
當(dāng)t∈[tk,tk+1),系統(tǒng)(3)切換到第i個(gè)子系統(tǒng),此時(shí)σ(t)=i,V(t)沿著系統(tǒng)(3)軌跡的導(dǎo)數(shù)為
利用引理1和引理2有
在ti時(shí)刻,分段Lyapunov-Krasovskii函數(shù)(6)在條件(5)下可以得到
當(dāng)k=Nσ(t0,t)≤(t-t0)/Ta時(shí),由式(10)、式(11)有
根據(jù)a,b及V(t)的定義知
a‖x(t)‖2≤V(xt),Vσ(t0)(xt0)≤b‖
結(jié)合式子(12)、(13)得
因此系統(tǒng)(3)是指數(shù)穩(wěn)定的。
2.2L2增益分析
接下來研究時(shí)變時(shí)滯切換系統(tǒng)(1)的L2增益。
證明 選取分段Lyapunov-Krasovskii函數(shù)(6),在式子(5)的條件下可以得到
結(jié)合式(15)和式(16)可以得到
本文研究了時(shí)變時(shí)滯切換系統(tǒng)的指數(shù)穩(wěn)定性及L2增益問題。通過時(shí)滯分解方法及Jensen積分不等式與倒數(shù)凸組合相結(jié)合的技術(shù)處理分段Lyapunov-Krasovskii函數(shù)導(dǎo)數(shù)中的積分項(xiàng),得到其導(dǎo)數(shù)的緊上界。本文涉及較少的決策變量,降低了計(jì)算復(fù)雜度,從而獲得更小的保守性。應(yīng)用平均駐留時(shí)間的方法獲得系統(tǒng)的指數(shù)穩(wěn)定性及L2增益的充分條件。最后,將時(shí)變時(shí)滯切換系統(tǒng)的穩(wěn)定性及L2增益分析問題歸結(jié)為線性矩陣不等式的求解問題,便于利用Matlab工具箱求解并驗(yàn)證結(jié)論的有效性。
[ 1 ]LIBERZON D, MORSE A S. Basic problems in stability and design of switching system[J]. IEEE Contr Syst Magazine, 1999,19(5):59-70.
[ 2 ]MOEZZI K, AGHDAM A G. Delay-dependent robust stabiliy analysis for switched time-delay sistems with polytopic uncertainties[J]. Robust Nonlinear Control, 2015,25:1623-1637.
[ 3 ]WANG L M, SHAO C. Robust stability analysis of switched uncertain systems with multiple time-varying delays and actuator failures[J]. Control Theory Appl, 2011,9(2):267-272.
[ 4 ]CHEN Z, GAO Y. On common linear copositive Lyapunov functions for pairs of stable positive linear systems[J]. Nonlinear Anal Hybird Syst, 2009,3:467-474.
[ 5 ]FORNASINI E, VALCHER M E. Stability and stabilizability criteria for discrete-time positive switched systems[J]. IEEE Trans Automat Control, 2011,57(5):1208-1221.
[ 6 ]DING X, SHU L, LIU X. On linear copositive Lyapunov functions for switched positive systems[J]. Franklin Inst, 2011,348:2099-2107.
[ 7 ]SUN X M, ZHAO J, HILL D J. Stability andL2gain analysis for switched delay system:A delay-dependent method[J]. Automatica, 2006,42:1769-1774.
[ 8 ]ZHANG Y, LIU Y Z. Exponential stability for switched systems with mutiple time-varing delay[J]. Natural Science, 2013,31(2):169-173.
[ 9 ]PARK P, KO J W, JEONG C. Reciprocally convex approach to stability of systems with time-varying delay[J]. Automatica, 2010,47:235-238.
[10]WON I L, PARK P. Second-order reciprocally convex approach to stibility of systems with interval time-varying delays[J]. Appl Math Comput, 2014,229:245-253.
[11]SHAOH Y. New delay-dependent stibility criteria for systems with interval delay[J]. Automatica, 2009,45(3):744-749.
[12]LIU D Y, LIU X W, XIAO G. Stability andL2gain analysis for switched systems with interval time-varying delay[J]. IET Control Theory Appl, 2015,9:1644-1652.
[13]HIEN L V, HA Q P, PHAT V N. Stability and stabilization of switched linear dynamic systems with time delay and uncertainties[J]. Appl Math Comput, 2009,210(1):223-231.
Exponential stability andL2gain analysis for switched systems with time-varying delay
WU Shuping, LIU Yuzhong
(College of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)
This article studies the problem of exponential stability andL2gain analysis of a kind of switched systems with time-varying delay. By using delay decomposition approach and the method of combining Jensen integral ineqaulity and reciprocally convex, the integer terms in the Lyapunov-Krasovskii function that taking both the lower bound and upper bound of delay into consideration are dealt. On the one hand, because of any free weighting matrix is not introduced, which can decrease decision variables and reduce the complexity of the operation. On the other hand,the information about the time-varing delay is not ignored to estimate the upper bound of the derivation of Lyapunov-Krasovskii function. So this method can develop a less conservative stability criterion. Moreover, the sufficient conditions of exponential stability andL2gain analysis of a kind of switched systems with time-varying delay are gained by the average dwell-time approach. In the meantime, the designing scheme of switching law is given. At last, the problem of exponential stability and L2gain analysis of a kind of switched systems with time-varying delay can be solved by linear matrix inequality technique, which is convenient to solve and prove to be valid by the LMIs tool box of Matlab.
switched systems; exponential stability;L2gain; reciprocally convex
2016-06-09。
國家自然科學(xué)基金資助項(xiàng)目(11201313)。
武淑平(1990-),女,遼寧朝陽人,沈陽師范大學(xué)碩士研究生; 通信作者: 劉玉忠(1963-),男,遼寧新賓人,沈陽師范大學(xué)教授,博士。
1673-5862(2016)03-0282-05
TP273
A
10.3969/ j.issn.1673-5862.2016.03.006