劉洋之,楊承虎,朱亞先,張 勇, 3*
1. 近海海洋環(huán)境科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室(廈門(mén)大學(xué)),廈門(mén)大學(xué)環(huán)境與生態(tài)學(xué)院,福建 廈門(mén) 361102
2. 廈門(mén)大學(xué)化學(xué)化工學(xué)院化學(xué)系,福建 廈門(mén) 361005
3. 漳州職業(yè)技術(shù)學(xué)院,福建 漳州 363000
激光誘導(dǎo)納秒時(shí)間分辨熒光猝滅法原位研究菲及烷基菲與腐植酸相互作用
劉洋之1,楊承虎1,朱亞先2,張 勇1, 3*
1. 近海海洋環(huán)境科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室(廈門(mén)大學(xué)),廈門(mén)大學(xué)環(huán)境與生態(tài)學(xué)院,福建 廈門(mén) 361102
2. 廈門(mén)大學(xué)化學(xué)化工學(xué)院化學(xué)系,福建 廈門(mén) 361005
3. 漳州職業(yè)技術(shù)學(xué)院,福建 漳州 363000
利用激光誘導(dǎo)納秒時(shí)間分辨熒光(laser-induced nanosecond time-resolved fluorescence, LITRF)猝滅法原位研究腐植酸(humic acid, HA)分別與母環(huán)多環(huán)芳烴(polycyclic aromatic hydrocarbons, PAHs)菲(phenanthrene, Phe)及烷基PAHs 9-乙基菲(9-Ethylphenanthrene, 9-EP)和惹稀(retene, Ret)相互作用,考察HA對(duì)母環(huán)及烷基PAHs結(jié)合特性差異與機(jī)制,對(duì)了解PAHs環(huán)境行為及生物有效性有重要意義。結(jié)果表明,通過(guò)改變延遲時(shí)間(50 ns)可有效消除HA熒光干擾,實(shí)現(xiàn)游離Phe,9-EP及Ret濃度直接測(cè)定。利用Freundlich非線性等溫吸附模型描述Phe, 9-EP和Ret與HA結(jié)合特性,LITRF猝滅法與傳統(tǒng)熒光法獲得的模型擬合參數(shù)及單點(diǎn)結(jié)合系數(shù)結(jié)果一致。其中,參數(shù)n小于1,表明Phe,9-EP及Ret與HA均以非線性形式結(jié)合,且9-EP和Ret非線性程度高于Phe;相同給定平衡濃度下,HA與9-EP和Ret單點(diǎn)結(jié)合系數(shù)KOC大于Phe,而9-EP和Ret結(jié)合能力相近,且PAHs與HA結(jié)合系數(shù)均隨給定濃度增加而降低。疏水性、取代基及與HA疏水空腔適應(yīng)能力決定特定PAHs與HA結(jié)合特性。通過(guò)熒光壽命分析,HA存在下Phe,9-EP和Ret壽命分別為36.90,35.34和35.13 ns,與未加入HA時(shí)的36.36,35.34和35.84 ns無(wú)明顯差異,表明Phe,9-EP和Ret與HA間的熒光猝滅以靜態(tài)過(guò)程為主。LITRF猝滅法可快速有效原位研究PAHs與HA相互作用,有助于實(shí)現(xiàn)PAHs生態(tài)風(fēng)險(xiǎn)原位評(píng)估。
激光誘導(dǎo)納秒時(shí)間分辨熒光;熒光猝滅法;腐植酸;菲;烷基菲
溶解性有機(jī)質(zhì)(dissolved organic matter, DOM)是一類非均相的有機(jī)混合物,可顯著影響水環(huán)境中重金屬及有機(jī)污染物的遷移轉(zhuǎn)化及生物毒性效應(yīng)[1]。研究表明,腐殖酸(humic acid, HA)作為DOM重要組成部分,可改變有毒污染物歸趨和生物有效性[2-3]。多環(huán)芳烴(polycyclic aromatic hydrocarbon, PAHs)具有“三致”作用。目前有關(guān)PAHs環(huán)境行為研究主要針對(duì)母環(huán)PAHs開(kāi)展,烷基PAHs作為PAHs中重要組成關(guān)注較少[4-6]。烷基PAHs在海上溢油區(qū)域及水環(huán)境介質(zhì)如河流和沉積物中均有較高檢出量[7],且已有研究結(jié)果表明如果忽略烷基PAHs的存在而對(duì)PAHs進(jìn)行環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)將會(huì)顯著低估其值[8]。因此,為科學(xué)有效地認(rèn)識(shí)PAHs環(huán)境行為和生態(tài)風(fēng)險(xiǎn),有必要深入研究烷基PAHs與HA的相互作用。
熒光猝滅法靈敏度高、非破壞性、操作簡(jiǎn)便而被廣泛用于HA與PAHs結(jié)合特性研究[9-10]。然而,HA熒光干擾混合體系中PAHs的測(cè)定[11],傳統(tǒng)熒光法采用扣除法來(lái)消除HA的光譜干擾,費(fèi)時(shí)、費(fèi)力,且無(wú)法實(shí)現(xiàn)PAHs與HA相互作用的實(shí)時(shí)原位研究。時(shí)間分辨熒光技術(shù)已實(shí)現(xiàn)PAHs快速鑒別、分析,可有效避免拉曼散射、雜散光、短壽命組分熒光的干擾[12]。激光誘導(dǎo)納秒時(shí)間分辨熒光(laser induced nanosecond time-resolved fluorescence, LITRF)技術(shù)作為一種便攜、快速、靈敏度高的PAHs原位檢測(cè)手段,其實(shí)際應(yīng)用研究備受關(guān)注[13]。已知HA熒光壽命小于10 ns,多數(shù)PAHs熒光壽命大于10 ns[11]。據(jù)此,利用LITRF結(jié)合熒光猝滅法可實(shí)現(xiàn)PAHs與HA相互作用原位研究。本文利用LITRF猝滅法原位研究菲(phenanthrene, Phe)、9-乙基菲(9-Ethylphenanthrene, 9-EP)及惹稀(retene, Ret)與HA相互作用,考察HA對(duì)母環(huán)及烷基PAHs結(jié)合特性與機(jī)制差異,為烷基PAHs環(huán)境行為提供有意義的科學(xué)依據(jù)。
1.1 試劑與儀器
Phe(純度>98%, Aldrich)、9-EP(純度>99%, Aldrich)、Ret(純度>99%, Aldrich),部分理化參數(shù)見(jiàn)表1。HA(生化試劑,上海試劑二廠)。準(zhǔn)確稱取0.050 g Phe,9-EP和Ret分別配制成0.50 g·L-1乙醇儲(chǔ)備液,存于冰箱中。稱取約0.100 g HA,溶解于2.0 mL氫氧化鈉溶液(0.50 mol·L-1),次日與100 mL疊氮化鈉溶液(200.0 mg·L-1)混合,調(diào)節(jié)pH至7.0,過(guò)0.45 μm濾膜,測(cè)定TOC(TOC-L CPH, 島津),以有機(jī)碳含量表示HA濃度(mgOC·L-1)。采用元素分析儀(Elementar EL Cube, 德國(guó))測(cè)定元素C,O,H,N和S含量分別為38.7%,56.6%,3.5%,0.8%和0.4%。利用傅里葉變換紅外光譜儀(Nicolet 380, 美國(guó))測(cè)定HA官能團(tuán)。該HA具有明顯的羥基基團(tuán)(3 420 cm-1)、亞甲基基團(tuán)(2 920 cm-1)、羰基基團(tuán)(1 710 cm-1)、碳氧基團(tuán)(1 200 cm-1),及芳香基團(tuán)(796 cm-1)。LITRF系統(tǒng)(德國(guó)哥廷根激光實(shí)驗(yàn)室),具體儀器參數(shù)為:Timing shift: 1 ns, Lambda excitation: 266 nm, Laser energy: 30 μJ, Time Slices: 130, Cooler temperature:-1 ℃,以Timing Start: 75 ns作為樣品熒光測(cè)定0 ns延遲模式。
表1 Phe、9-EP及Ret理化屬性
aCalculated by ECOSAR v1.11
1.2 方法
采用批次試驗(yàn)法研究HA與Phe,9-EP和Ret結(jié)合特性??偡磻?yīng)體系為10.0 mL,背景溶液為200.0 mg·L-1疊氮化鈉(pH 7.0)。為避免內(nèi)濾效應(yīng)影響,HA濃度為1.0 mg·L-1,Phe濃度范圍為0~30.0 μg·L-1,9-EP和Ret濃度范圍均為0~12.0 μg·L-1,乙醇濃度低于0.10%[14]。以不含HA的Phe,9-EP和Ret溶液為對(duì)照組。樣品于(25±1)℃避光靜置平衡24 h,LITRF系統(tǒng)掃描熒光光譜。
1.3 數(shù)據(jù)分析
采用Freundlich非線性等溫吸附模型擬合Phe、9-EP和Ret與HA等溫曲線,并計(jì)算給定平衡濃度(cfree)時(shí)單點(diǎn)結(jié)合系數(shù)KOC[10]。
2.1 Phe,9-EP,Ret及HA熒光光譜分析
由圖1可知,HA對(duì)三種PAHs熒光光譜存在干擾,傳統(tǒng)熒光法無(wú)法直接測(cè)定三種PAHs熒光強(qiáng)度。由圖2可知三種PAHs與HA熒光衰減趨勢(shì)不同,HA熒光衰減趨勢(shì)明顯快于PAHs,即HA熒光壽命比Phe,9-EP及Ret短。因此,通過(guò)改變延遲時(shí)間可扣除HA熒光影響。
圖1 HA(1.0 mg·L-1),Phe(30.0 μg·L-1),9-EP(12.0 μg·L-1)及Ret(12.0 μg·L-1)熒光發(fā)射光譜(0 ns 延遲)
Fig.1 Fluorescence emission spectra of HA (1.0 mg·L-1) and Phe (30.0 μg·L-1), 9-EP (12.0 μg·L-1), Ret (12.0 μg·L-1) at 0 ns delay
圖2 HA,Phe,9-EP及Ret歸一化熒光衰減曲線
圖3為延遲50 ns時(shí)HA及三種PAHs熒光發(fā)射光譜圖,HA在300~360 nm范圍內(nèi)熒光衰減至背景熒光強(qiáng)度,不影響混合體系中Phe的熒光測(cè)定。可見(jiàn),通過(guò)改變延遲時(shí)間,可去除HA熒光信號(hào),直接快速檢測(cè)溶液中游離PAHs含量。其中,Phe,9-EP和Ret選取發(fā)射波長(zhǎng)分別為350.47, 355.01和355.47 nm。
2.2 Phe,9-EP及Ret與HA等溫吸附曲線結(jié)果分析
利用對(duì)數(shù)形式Freundlich模型對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行擬合以描述Phe,9-EP和Ret與HA結(jié)合特性(圖4)。擬合結(jié)果及給定平衡濃度下Phe,9-EP和Ret單點(diǎn)結(jié)合系數(shù)KOC見(jiàn)表2。由表2可知,F(xiàn)reundlich非線性等溫吸附模型適合描述Phe,9-EP和Ret與HA結(jié)合特性。所有Freundlich模型參數(shù)n均小于1,表明Phe,9-EP和Ret與HA以非線性形式結(jié)合,即除了分子內(nèi)非極性環(huán)境中線性分配外,特異性位點(diǎn)結(jié)合在Phe,9-EP和Ret與HA間起重要作用[5, 15-16]。Phe的n大于9-EP和Ret,表明Phe與HA結(jié)合作用力中特異性位點(diǎn)結(jié)合所占比例更低,因?yàn)檎故境鼍€性程度較強(qiáng)的吸附形式[17-18]。
圖3 HA(1.0 mg·L-1),Phe(30.0 μg·L-1),9-EP(12.0 μg·L-1)及Ret(12.0 μg·L-1)熒光發(fā)射光譜(50 ns 延遲)
Fig.3 Fluorescence emission spectra of HA (1.0 mg·L-1) and Phe (30.0 μg·L-1), 9-EP(12.0 μg·L-1), Ret(12.0 μg·L-1) at 50 ns delay
Phe的logKOW較9-EP和Ret小,導(dǎo)致Phe與HA間疏水作用弱[5],且甲基、乙基、異丙基均為供電子基團(tuán),可增加PAHs與HA間π—π相互作用,因此,給定平衡濃度下,Phe單點(diǎn)結(jié)合系數(shù)KOC小于9-EP和Ret。Ret的logKOW比9-EP大,且異丙基較乙基有更強(qiáng)供電子能力使得Ret與HA有更強(qiáng)π—π作用,理論上Ret與HA結(jié)合能力應(yīng)大于9-EP。然而,實(shí)驗(yàn)結(jié)果顯示9-EP和Ret單點(diǎn)結(jié)合系數(shù)KOC相近。Mark A. Schlautma研究表明特定PAHs與HA結(jié)合能力不僅與PAHs疏水性有關(guān),且與其分子量及與HA疏水區(qū)域適應(yīng)能力有關(guān)[19]。Ret分子量較9-EP大,且甲基和異丙基分別在1位和7位上,可能導(dǎo)致Ret與HA之間空間位阻效應(yīng)增加,不利于其與HA特異位點(diǎn)結(jié)合。Ret的n值大于9-EP,進(jìn)一步表明Ret與HA特異位點(diǎn)結(jié)合能力比9-EP小。
如表2所示,Phe,9-EP和Ret給定平衡濃度越小,對(duì)應(yīng)KOC越大,與邢寶山等報(bào)道母環(huán)PAHs與HA結(jié)合研究結(jié)果一致[16]。邢寶山等提出的“雙模式吸附模型”可解釋疏水性有機(jī)污染物吸附于HA的非線性現(xiàn)象。KOC隨PAHs濃度增加而降低表明HA吸附區(qū)擁有的高能結(jié)合位點(diǎn)數(shù)有限,低濃度PAHs較高濃度PAHs吸附于特定位點(diǎn)有更高比例,即PAHs傾向于低濃度時(shí)占據(jù)這些特異性位點(diǎn)[4, 16]。
表3為傳統(tǒng)熒光法所得Phe,9-EP和Ret與HA結(jié)合的Freundlich非線性等溫吸附模型擬合結(jié)果,各參數(shù)及單點(diǎn)結(jié)合系數(shù)KOC與時(shí)間分辨熒光猝滅法結(jié)果一致。且Phe與HA結(jié)合系數(shù)介于以往研究不同來(lái)源DOM與Phe結(jié)合能力之間[4, 20],而有關(guān)烷基PAHs研究未見(jiàn)報(bào)道,因此未能進(jìn)行相關(guān)比較分析。
圖4 Phe,9-EP及Ret與HA等溫吸附曲線
表2 LITRF熒光猝滅法Freundlich等溫吸附曲線擬合結(jié)果
Table 2 The fitting results of the Freundlich parameters by LITRF quenching method
PAHsnlogKFOCR2logKOC(L·kgC-1)cfree=20μg·L-1cfree=5μg·L-1Phe0 705 410 9831047131584899?EP0 555 910 978208930398107Ret0 585 880 995213796389045
表3 傳統(tǒng)熒光猝滅法Freundlich等溫吸附曲線擬合結(jié)果
2.3 熒光壽命分析
已有文獻(xiàn)表明熒光壽命分析是判斷熒光靜態(tài)猝滅與動(dòng)態(tài)猝滅最有效方法[15, 21]。然而,PAHs與HA混合時(shí)其熒光衰減曲線往往受到HA影響,尤其在前10 ns快衰減階段。忽視HA對(duì)PAHs熒光衰減曲線影響,將干擾PAHs實(shí)際熒光壽命測(cè)定。HA存在下母環(huán)PAHs熒光壽命未改變,表明母環(huán)PAHs與HA間的熒光猝滅以靜態(tài)過(guò)程為主[21-22],而有關(guān)取代基PAHs與HA間熒光猝滅形式報(bào)道較少[7]。
表4為Phe,9-EP和Ret在0 ns延遲(扣除前10 ns)及50 ns延遲條件下HA加入前后對(duì)熒光衰減曲線進(jìn)行單指數(shù)擬合壽命結(jié)果。由表4可知0 ns延遲時(shí),受HA熒光衰減曲線干擾,直接測(cè)定Phe,9-EP和Ret壽命小于未加入HA條件下。延遲50 ns扣除HA熒光衰減曲線影響,結(jié)果顯示Phe,9-EP和Ret熒光壽命在HA加入前后沒(méi)有差異,表明三種PAHs與HA間的熒光猝滅以靜態(tài)過(guò)程為主[21]。
表4 有無(wú)HA條件下Phe,9-EP及Ret熒光壽命(ns)分析
與傳統(tǒng)熒光法相比,時(shí)間分辨熒光猝滅法靈敏度高,為原位在線研究PAHs與HA相互作用提供新的技術(shù)支持。該方法無(wú)需額外配制HA單組分水溶液,省時(shí)、省力。并為烷基PAHs環(huán)境行為及生物有效性研究提供了新依據(jù),Phe,9-EP和Ret與HA結(jié)合特性(結(jié)合能力及等溫吸附非線性程度)與它們自身理化屬性有關(guān),烷基取代基及分子空間構(gòu)象對(duì)其與HA的相互作用有影響。熒光壽命分析表明Phe,9-EP和Ret與HA間的熒光猝滅以靜態(tài)過(guò)程為主。然而,該方法對(duì)熒光壽命較短PAHs(如蒽、芴)無(wú)法直接去除HA熒光信號(hào)干擾。如引入化學(xué)計(jì)量學(xué)方法(如:平行因子分析)解析HA與PAHs混合體系各自熒光光譜,將來(lái)有望實(shí)現(xiàn)多組分PAHs共存時(shí)與HA相互作用在線原位研究。
[1] Perrichon P, LeB F, Bustamante P, et al. Environ. Sci. Pollut. Res. Int., 2014, 21(24): 13703.
[2] Kim J Y, Kim K T, Lee B G, et al. Ecotoxicol. Environ. Saf., 2013, 92: 57.
[3] Chen S, Ke R H, Zha J M, et al. Environ. Sci. Technol., 2008, 42: 9431.
[4] Mei Y, Wu F, Wang L, et al. J. Environ. Sci., 2009, 21(4): 414.
[5] Plaza C, Xing B, Fernandez J M, et al. Environ. Pollut., 2009, 157(1): 257.
[6] Wang H B, Zhang Y J. J. Environ. Sci. Health., Part A, 2014, 49(1): 78.
[7] Billiard S M, Meyer J N, Wassenberg D M, et al. Toxicol. Sci., 2008, 105(1): 5.
[8] Barron M G, Holder E. Hum. Ecol. Risk Assess., 2003, 9(6):1533.
[9] Lu R, Sheng G P, Liang Y, et al. Environ. Sci. Pollut. Res. Int., 2013, 20(4): 2220.
[10] Liu W X, Xu S S, Xing B S, et al. Environ. Pollut., 2010, 158(2): 566.
[11] Karlitschek P, Lewitzka F, Bunting U, et al. Appl. Phys. B, 1998, 67(4): 497.
[12] Rudnick S M, Chen R F. Talanta, 1998, 47(4): 907.
[13] Clark C D, Morais J J, Jones II G, et al. Mar. Chem., 2002, 78: 121.
[14] Peuravuori J. Anal. Chim. Acta, 2001, 429(1): 65.
[15] Laor Y, Rebhun M. Environ. Sci. Technol., 2002, 36(5): 955.
[16] Pan B, Ghosh S, Xing B S. Environ. Sci. Technol., 2007, 41(18): 6472.
[17] Huang W, Schlautman M A, Weber W J. Environ. Sci. Technol., 1996, 30(10): 2993.
[18] Yang K, Xing B S. Environ. Pollut., 2009, 157(4): 1095.
[19] Schlautman M A, Morgan J J. Environ. Sci. Technol., 1993, 27(5): 961.
[20] Sun K, Gao B, Zhang Z, et al. Environ. Pollut. , 2010, 158(12): 566.
[21] Chen S J, Inskeep W P, Willams S A, et al. Environ. Sci. Technol., 1994, 28(9): 1582.
[22] Gauthler T D, Shane E C, Guerln W F, et al. Environ. Sci. Technol., 1986, 20(11): 1162.
InSituInvestigating of the Interaction of Phenanthrene and Alkyl
(Received Jun. 20, 2015; accepted Oct. 15, 2015)
*Corresponding author
Phenanthrene with Humic Acid with Laser Induced Nanoseconds Time Resolved Fluorescence Quenching Method
LIU Yang-zhi1, YANG Cheng-hu1, ZHU Ya-xian2, ZHANG Yong1,3*
1. State Key Laboratory of Marine Environmental Science (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
2. Department of Chemistry, Xiamen University, Xiamen 361005, China
3. Zhangzhou Institute of Technology, Zhangzhou 363000, China
Investigations both on the binding properties and mechanisms of parent polycyclic aromatic hydrocarbons (PAHs) and alkyl PAHs with humic acid (HA) are crucial to understand the environment behavior and bioavailability of PAHs in aquatic ecosystems. Thus, a novel approach for in situ investigation of the interactions between parent PAHs and alkyl PAHs, exemplified by Phenanthrene (Phe), 9-Ethylphenanthrene (9-EP) and Retene (Ret), and HA was established by using fluorescence quenching method with laser-induced nanosecond time-resolved fluorescence (LITRF). By changing the delay time of 50 ns, the fluorescent interference of HA can be eliminated effectively and the concentrations of free Phe, 9-EP and Ret can be determined directly. The binding characteristics of the dissolved HA and Phe, 9-EP and Ret were described by Freundlich nonlinear isothermal model. The results of the model parameters and the single point binding coefficientsKOCof Phe, 9-EP and Ret with HA by LITRF quenching method were consistent with those of the conventional fluorescence quenching method. Nonlinear bindings of Phe, 9-EP and Ret to HA were also observed because of the parameter n values below 1, and the degree of nonlinearity of Phe was lower than 9-EP and Ret duo to the n value of Phe larger than 9-EP and Ret. At a same given equilibrium concentration, theKOCof Phe was lower than 9-EP and Ret, and that of 9-EP was near to Ret. The binding affinity of the three PAHs increased with decreasing the equilibrium concentration. The binding characteristics of PAHs with HA largely depends on their hydrophobicity, substituent groups and its ability to fit into hydrophobic cavities in HA. The fluorescence lifetimes of Phe, 9-EP and Ret in presence of HA were 36.90, 35.34 and 35.13 ns, meanwhile the fluorescence lifetimes of Phe, 9-EP and Ret in absence of HA were 36.36, 35.34 and 35.84 ns. There was no significant difference of three PAHs fluorescence lifetime with or without HA, indicating the quenching mechanism for Phe, 9-EP and Ret with HA were primarily static quenching. The LITRF quenching method could be used to in situ explore the interactions between PAHs and HA, which could be contribute to realize the PAHs risk assessment in real time.
Laser-induced nanosecond time-resolved fluorescence; Fluorescence quenching method; Humic acid; Phenanthrene; Alkyl Phenanthrene
2015-06-20,
2015-10-15
國(guó)家自然科學(xué)基金項(xiàng)目(21177102,21075102)和國(guó)家海洋局海洋溢油鑒別與損害評(píng)估技術(shù)重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(201405)資助
劉洋之,1991年生,廈門(mén)大學(xué)近海海洋環(huán)境科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室碩士研究生 e-mail:missliu90@126.com *通訊聯(lián)系人 e-mail:yzhang@xmu.edu.cn
X522
A
10.3964/j.issn.1000-0593(2016)10-3332-05