王 雪 申甲梅 高 歌 段春禮 魯玲玲 楊 慧
(首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院神經(jīng)生物學(xué)系 北京腦重大疾病研究院 帕金森病研究所 教育部神經(jīng)變性病重點(diǎn)實(shí)驗(yàn)室, 北京 100069)
?
PINK1減輕α-突觸核蛋白引起的線粒體損傷
王雪申甲梅高歌段春禮魯玲玲楊慧*
(首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院神經(jīng)生物學(xué)系 北京腦重大疾病研究院 帕金森病研究所 教育部神經(jīng)變性病重點(diǎn)實(shí)驗(yàn)室, 北京 100069)
【摘要】目的證明PINK1對(duì)α-突觸核蛋白 (α-synuclein, α-syn) 引起的線粒體損傷的影響。方法將攜帶人源PINK1 和α-syn基因的質(zhì)粒共轉(zhuǎn)染MN9D多巴胺能神經(jīng)細(xì)胞,流式細(xì)胞術(shù)檢測(cè)細(xì)胞內(nèi)活性氧 (reactive oxygen species, ROS)、線粒體滲透性轉(zhuǎn)運(yùn)孔 (mitochondrial permeability pore, mPTP) 的開(kāi)放情況及線粒體膜電勢(shì) (ΔΨm) 變化;MTT和乳酸脫氫酶法檢測(cè)細(xì)胞活力及細(xì)胞損傷情況。 結(jié)果PINK1減少α-syn引起的ROS的生成、線粒體膜孔的開(kāi)放及線粒體膜電勢(shì)降低,并減輕α-syn所致細(xì)胞活力下降及和細(xì)胞損傷。結(jié)論P(yáng)INK1可以減輕α-syn引起的線粒體損傷。
【關(guān)鍵詞】PINK1; α-突觸核蛋白; 線粒體
帕金森病 (Parkinson’s disease, PD) 是一種常見(jiàn)于老年人的中樞神經(jīng)系統(tǒng)退行性疾病,其發(fā)病率僅次于阿爾茲海默癥,65歲以上人群患病率超過(guò)1 %[1]。其典型的病理特征為神經(jīng)元內(nèi)嗜酸性包涵體路易體 (Lewy bodies, LBs) 及路易神經(jīng)突的 (Lewy neurites, LNs) 形成[2]。PD的發(fā)病因素不僅涉及遺傳,還有環(huán)境和老化等因素,而線粒體功能障礙是各種致病因素導(dǎo)致神經(jīng)元退變的中心環(huán)節(jié)。α-突觸核蛋白 (α-synuclein, α-syn)過(guò)表達(dá)可以引起線粒體功能障礙[3-4]。過(guò)表達(dá)人源的α-syn可引起細(xì)胞內(nèi)反應(yīng)性氧自由基 (reactive oxygen species, ROS) 增高、線粒體孔的形成[5-7]。本實(shí)驗(yàn)室近期結(jié)果[8]也證明,α-syn主要通過(guò)其氨基端引起線粒體膜孔 (mitochondrial permeability transition pore, mPTP) 異常開(kāi)放及線粒體膜電勢(shì) (ΔΨm) 降低,引起線粒體形態(tài)的改變從而損傷線粒體。
PD致病基因PINK1可以直接定位到線粒體的蛋白,對(duì)維持線粒體的功能和形態(tài)有重要作用。PINK1蛋白由581個(gè)氨基酸組成,包括氨基端的線粒體靶向序列 (1~32 氨基酸),一個(gè)假定的跨膜區(qū),中間的絲蘇氨酸激酶結(jié)構(gòu)域 (156~509氨基酸) 以及羥基端的調(diào)節(jié)區(qū)[9-10]。PINK1的激酶活性對(duì)于它的神經(jīng)保護(hù)作用至關(guān)重要。PINK1功能喪失可以導(dǎo)致線粒體的形態(tài)缺陷[11-13]、膜電勢(shì)下降[14-16]以及ROS的產(chǎn)生增加[17],此外還可以通過(guò)減少細(xì)胞ATP的產(chǎn)生而對(duì)細(xì)胞起到損傷作用[18]。文獻(xiàn)[3-4]報(bào)道,突變的PINK1和α-syn 對(duì)線粒體功能的喪失有重要的影響。本實(shí)驗(yàn)室前期研究[19-20]證明,PINK1可能與α-syn發(fā)生直接相互作用。然而,兩者如何相互作用影響神經(jīng)元的線粒體功能進(jìn)而影響神經(jīng)元的退變尚不清楚。
1材料和方法
1.1 材料
MN9D細(xì)胞系:小鼠神經(jīng)母細(xì)胞瘤細(xì)胞系N18TG2與原代C57BL/6J小鼠胚胎腹側(cè)中腦細(xì)胞融合形成的雜交瘤細(xì)胞 (Novartis公司Bastian Hengerer博士惠贈(zèng));F12培養(yǎng)基、胰蛋白酶購(gòu)自美國(guó)Gibco公司;胎牛血清 (fetal calf serum, FBS) 購(gòu)自美國(guó)Thermo公司;蛋白酶抑制劑、磷酸酶抑制劑、5, 5′, 6, 6′-四氯-1,1′,3,3′-甲基苯并咪唑氫碘化物 (tetrechloro-tetraethylbenzimidazol carbocyanine iodide, JC-1) 購(gòu)自美國(guó)Sigma公司;2′, 7′-二氯熒光素-二酯 (dichlorodihydrofluorescein diacetate, DCFH-DA) 購(gòu)自美國(guó)Sigma公司;MitoProbeTM Transition Pore Assay Kit 購(gòu)自美國(guó)Invitrogen 公司;MTT購(gòu)自美國(guó)Sigma公司,DMSO購(gòu)自美國(guó)Sigma公司;乳酸脫氫酶 (lactate dehydrogenase, LDH)試劑盒購(gòu)自瑞士Roche公司;人源PINK1及α-synuclein質(zhì)粒pcDNA3.1-3xFlag-hPINK1WT, pCMV-Myc-α-syn由本實(shí)驗(yàn)室已構(gòu)建。
1.2方法
1.2.1細(xì)胞培養(yǎng)及轉(zhuǎn)染
MN9D細(xì)胞采用含10%(體積分?jǐn)?shù))FBS、100 U/mL青霉素和 100 U/mL鏈霉素的DMEM /F12培養(yǎng)基,置于 37 ℃的5% (體積分?jǐn)?shù)) CO2培養(yǎng)箱中培養(yǎng)。質(zhì)粒轉(zhuǎn)染按照Lipofectamine 2000操作說(shuō)明書(shū)進(jìn)行。
1.2.2活性氧的測(cè)定
MN9D細(xì)胞分組轉(zhuǎn)染48 h后,將細(xì)胞消化收集,離心后,加入PBS洗2遍,5 min/次,1 000 r/min, 1 min離心。用F12培養(yǎng)基將DCFH-DA貯存液1∶1 000稀釋,稀釋成染色液,其工作終濃度是10 μg/mL;棄PBS后,加1 mL 10 μg/mL DCFH-DA染色液,37 ℃,5%(體積分?jǐn)?shù)) CO2培養(yǎng)箱內(nèi)孵育15 min;吸棄染色液,以PBS洗滌細(xì)胞5 min, 3次,以洗去非特異熒光;以0.2 mL的PBS重懸細(xì)胞,利用流式細(xì)胞儀進(jìn)行檢測(cè)。
1.2.3細(xì)胞線粒體膜滲透性轉(zhuǎn)運(yùn)孔開(kāi)放的檢測(cè)
轉(zhuǎn)染MN9D細(xì)胞48 h后,將各組細(xì)胞重懸在預(yù)熱的HBSS/Ca2+液中,細(xì)胞終密度為每毫升1 × 106個(gè)/細(xì)胞,將每組細(xì)胞再平均分為2個(gè)組,Calcein AM組與Calcein AM + CoCl2組;將1 mmol/L Calcein AM儲(chǔ)存液按1∶500 稀釋成2 μmol/L工作液;向Calcein AM組和Calcein AM + CoCl2組中分別加入5 μL Calcein AM工作液,混勻;向Calcein AM + CoCl2組中加入5 μL CoCl2,混勻;將每組樣品在 37 ℃條件下避光孵育15 min;加入約3 mL的HBSS/Ca2+到離心管中,1 000 r/min,5 min,離心收集細(xì)胞;向離心收集到的細(xì)胞中加入約400 μL PBS,1 h內(nèi)進(jìn)行流式細(xì)胞檢測(cè)。
1.2.4線粒體膜電位檢測(cè)
MN9D細(xì)胞轉(zhuǎn)染48 h后收集,以F12培養(yǎng)基稀釋JC-1貯存液至工作終質(zhì)量濃度是10 μg/mL,37 ℃,5% (體積分?jǐn)?shù))CO2培養(yǎng)箱內(nèi)孵育10 min 利用流式細(xì)胞儀進(jìn)行檢測(cè)。
1.2.5MTT細(xì)胞活性測(cè)定
將各組的MN9D細(xì)胞用200 μL培養(yǎng)基按5×103個(gè)/孔的密度接種于96孔板。24 h后進(jìn)行轉(zhuǎn)染,轉(zhuǎn)染48 h后,向各孔加入MTT (5 mg/mL) 20 μL,37 ℃,5%(體積分?jǐn)?shù))CO2培養(yǎng)箱培養(yǎng)4 h。吸棄培養(yǎng)基,每孔加入100 μL DMSO,小心吹打混勻,不要有氣泡。將孔板置于酶標(biāo)儀中,讀取550 nm波長(zhǎng)處的吸光度值,統(tǒng)計(jì)作圖。
1.2.6LDH 法細(xì)胞損傷程度檢測(cè)
(1)工作液的制備: 250 μL催化液和 11.25 mL染色液混合成工作液,現(xiàn)配現(xiàn)用。
(2)細(xì)胞毒分析步驟: 收集細(xì)胞,用分析液在96孔板中分別制備下列樣本:①背景對(duì)照:每孔加入200 μL正常培養(yǎng)液,復(fù)孔3個(gè)。計(jì)算結(jié)果時(shí),用其他值減去背景值。低對(duì)照:向每孔加入分析液200 μL,細(xì)胞量約為1×104~2 × 104個(gè),復(fù)孔3個(gè)。高對(duì)照:向每孔加入含1 %(體積分?jǐn)?shù))Triton X-100的分析液200 μL,細(xì)胞量約為1×104~2 × 104個(gè),復(fù)孔3個(gè)。檢測(cè)樣本:向每孔加入含檢測(cè)物質(zhì)的分析液200 μL,細(xì)胞量約為1×104~2 ×104個(gè),復(fù)孔3個(gè);在37 ℃,5% (體積分?jǐn)?shù)) CO2培養(yǎng)箱中孵育細(xì)胞,孵育時(shí)間為檢測(cè)物質(zhì)的適當(dāng)處理時(shí)間;將細(xì)胞上清小心轉(zhuǎn)移到相應(yīng)的新96孔板中,每孔100 μL;每孔加入100 μL現(xiàn)用現(xiàn)配的反應(yīng)混合液,室溫避光孵育30 min。孵育完畢后,每孔加入50 μL終止液混勻終止反應(yīng)。用微孔讀板儀在490 nm檢測(cè)樣本的吸光度值,后進(jìn)行計(jì)算分析。
1.3 統(tǒng)計(jì)學(xué)方法
2結(jié)果
2.1PINK1抑制α-syn引起的細(xì)胞ROS增加
MN9D細(xì)胞接種于6孔板,分別過(guò)表達(dá)PINK1質(zhì)?;颚?syn、空載質(zhì)粒48 h后,DCFH-DA孵育,進(jìn)行流式細(xì)胞術(shù)檢測(cè)細(xì)胞ROS。結(jié)果顯示,過(guò)表達(dá)α-syn組綠色熒光強(qiáng)度較空載組明顯升高,而同時(shí)過(guò)表達(dá)α-syn和PINK1組的綠色熒光強(qiáng)度與單獨(dú)表達(dá)α-syn組相比明顯減少,說(shuō)明過(guò)表達(dá)PINK1挽救了α-syn引起的ROS明顯增加。上述結(jié)果提示,在 MN9D 細(xì)胞中,過(guò)表達(dá)PINK1可能緩解 α-syn引起MN9D細(xì)胞mPTP異常開(kāi)放,線粒體膜的通透性異常增加(圖1)。
2.2PINK1抑制α-syn引起的mPTP開(kāi)放
在MN9D細(xì)胞分別轉(zhuǎn)染及共轉(zhuǎn)染PINK1與α-syn質(zhì)粒及其空載組,48 h后對(duì)各組不同細(xì)胞經(jīng)流式細(xì)胞術(shù)檢測(cè)細(xì)胞mPTP的開(kāi)放程度。結(jié)果顯示,各組細(xì)胞Calcein AM組熒光強(qiáng)度均相對(duì)一致,過(guò)表達(dá)α-syn 的MN9D細(xì)胞較空載組的Calcein AM + CoCl2組熒光強(qiáng)度明顯左移,而共轉(zhuǎn)染α-syn和PINK1的MN9D細(xì)胞Calcein AM + CoCl2組熒光強(qiáng)度與單獨(dú)表達(dá)α-syn峰值沒(méi)有明顯的左移,提示在 MN9D細(xì)胞中,過(guò)表達(dá)PINK1能夠抑制α-syn引起的MN9D細(xì)胞mPTP異常開(kāi)放(圖2)。
2.3PINK1抑制α-syn引起的ΔΨm下降
MN9D細(xì)胞轉(zhuǎn)染各組質(zhì)粒48 h后用JC-1孵育,然后用流式細(xì)胞儀檢測(cè)ΔΨm。膜電勢(shì)正常時(shí),JC-1呈現(xiàn)紅色熒光;膜電勢(shì)下降時(shí),JC-1呈現(xiàn)綠色熒光。結(jié)果顯示,過(guò)表達(dá)α-syn使ΔΨm明顯降低,與對(duì)照組相比較差異有統(tǒng)計(jì)學(xué)意義。在同時(shí)過(guò)表達(dá)PINK1和α-syn的細(xì)胞,ΔΨm下降程度明顯小于單純過(guò)表達(dá)α-syn的細(xì)胞,提示PINK1對(duì)α-syn引起的ΔΨm下降有抑制作用(圖3)。
圖1 過(guò)表達(dá)PINK1可以抑制α-syn過(guò)表達(dá)引起的細(xì)胞ROS增加
ROS levels were detected with dichlorofluorescein diacetate in MN9D dopaminergic cells transfected with plasmid of vector, hPINK1 wild type, or α-syn. Cells were harvested at 48 h after transfection. The fluorescent was determined by flow cytometry and signals were acquired for 20 000 events.**P<0.01vsvector group;#P<0.05vsα-syn group;n=3; α-syn:α-synuclein; ROS:reactive oxygen species.
圖2 PINK1抑制α-syn引起的線粒體膜孔異常開(kāi)放
Fluorescence intensity was measured when loaded with Calcein AM with CoCl2in MN9D cell line transiently transfected with vector, α-syn, PINK1, α-syn + PINK1. Quantification of the fluorescence intensity was based on triplicates of three independent experiments and signals were acquired for 20 000 events.*P<0.05vsvector group;#P<0.05vsα-syn group;n=3;α-syn:α-synuclein; mPTP:mitochondrial permeability pore.
圖3 PINK1抑制α-syn引起的膜電位降低
Plasmids of vector, hPINK1 wild type or α-syn in MN9D cells. Cells were harvested at 48 h after transfection. Δψm was visualized by treating the transfected with the probe tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1). Normal Δψm was detected as orange fluorescence from the aggregation of JC-1 monomers, while green fluorescence was associated with reduced Δψm as determined by flow cytometry. Signals were acquired for 20 000 events.*P<0.05vsvector group;#P<0.05vsα-syn group;n=3; α-syn:α-synuclein.
2.4PINK1抑制α-syn引起的細(xì)胞損傷
在MN9D 細(xì)胞轉(zhuǎn)染各組質(zhì)粒48 h后,通過(guò)酶標(biāo)儀測(cè)定轉(zhuǎn)α-syn質(zhì)粒和空載體對(duì)細(xì)胞活力的影響。把各組的吸光度值所占百分比與空載組的比值進(jìn)行統(tǒng)計(jì),過(guò)表達(dá)α-syn細(xì)胞活力顯著降低;同時(shí)過(guò)表達(dá)PINK1和α-syn則明顯抑制了α-syn過(guò)表達(dá)引起的細(xì)胞活力下降。檢測(cè)細(xì)胞培養(yǎng)上清中LDH的活性判斷細(xì)胞受損的程度,通過(guò)LDH 試劑盒結(jié)合多標(biāo)記微孔板檢測(cè)儀把各組的吸光度值所占百分比與空載組的比值進(jìn)行統(tǒng)計(jì),過(guò)表達(dá)α-syn組LDH顯著升高30 %;同時(shí)過(guò)表達(dá)PINK1和α-syn則明顯抑制α-syn過(guò)表達(dá)引起的LDH的增加,結(jié)果說(shuō)明PINK1可以緩解α-syn引起的細(xì)胞毒性(圖4)。
圖4 PINK1抑制α-syn 引起的細(xì)胞活力的降低和LDH的釋放
MN9D cells were-transfected with vector, α-syn or hPINK1 wild type. Cell viability was assessed by MTT assay and the cell injury was evaluated by LDH release after 48 h transfected.**P<0.01vsvector group;#P<0.05;##P<0.01vsα-syn group;n=6;α-syn:α-synuclein; LDH: lactate dehydrogenase.
3討論
本研究發(fā)現(xiàn),在MN9D多巴胺能神經(jīng)細(xì)胞系中單純過(guò)表達(dá)人源性α-syn可以引起細(xì)胞ROS增加,從而引起線粒體損傷。其可能的機(jī)制有如下幾個(gè)方面:首先,α-syn基因轉(zhuǎn)染多巴胺能神經(jīng)元可以同時(shí)增加胞質(zhì)及線粒體的α-syn[10];其次,文獻(xiàn)[21]報(bào)道α-syn可以降低線粒體氧化呼吸鏈complex Ⅰ的活性,而complex Ⅰ的功能降低使活性氧增加,這些活性氧誘發(fā)氧應(yīng)激,從而損傷細(xì)胞;最后,α-syn的過(guò)表達(dá)可以導(dǎo)致細(xì)胞胞質(zhì)內(nèi)谷胱甘肽、谷胱甘肽過(guò)氧化物酶和過(guò)氧化氫酶的下降,以及線粒體內(nèi)氧化型谷胱甘肽升高,這也可以導(dǎo)致細(xì)胞ROS增加[22]。文獻(xiàn)[21,23]表明,細(xì)胞活性氧增高主要是由于線粒體損傷導(dǎo)致。所以進(jìn)一步檢測(cè)α-syn是否導(dǎo)致線粒體損傷,結(jié)果表明α-syn的過(guò)表達(dá)可導(dǎo)致線粒體膜孔開(kāi)放以及線粒體膜電位下降,其機(jī)制可能是由于α-syn包含可以與脂質(zhì)結(jié)合的α-螺旋結(jié)構(gòu),而這個(gè)結(jié)構(gòu)與膜定位密切相關(guān),并且文獻(xiàn)[8]表明α-syn與線粒體心磷脂降低密切相關(guān),并且和線粒體膜蛋白電壓依賴陰離子通道、腺嘌呤核苷酸轉(zhuǎn)運(yùn)體之間具有相互作用。這可能是α-syn導(dǎo)致線粒體膜孔開(kāi)放及膜電勢(shì)下降的原因。
本實(shí)驗(yàn)結(jié)果表明,共表達(dá)PINK1和α-syn,通過(guò)檢測(cè)線粒體膜穩(wěn)定性,發(fā)現(xiàn)PINK1可以挽救α-syn引起的ROS增高、膜電勢(shì)下降。本實(shí)驗(yàn)室以往的研究[20]分別用免疫共沉淀、GST-pull-down和熒光共振能量轉(zhuǎn)移等方法發(fā)現(xiàn)α-syn和PINK1之間存在相互作用和胞質(zhì)及線粒體內(nèi)共定位。而通過(guò)PINK1與α-syn復(fù)合物的形成,可以有效地緩解單純?chǔ)?syn在線粒體及胞質(zhì)的濃度,進(jìn)而可以有效地降低α-syn所致的ROS增高,并阻止α-syn與線粒體膜蛋白的共定位,最終發(fā)揮保護(hù)作用;同時(shí)文獻(xiàn)[24]報(bào)道PINK1可以直接定位于線粒體,具有穩(wěn)定線粒體功能,維持線粒體Complex Ⅰ活性,緩解線粒體細(xì)胞色素C的釋放,從而對(duì)細(xì)胞起到保護(hù)作用[25-26]。
本實(shí)驗(yàn)進(jìn)一步證實(shí),單純過(guò)表達(dá)α-syn可以引起細(xì)胞活力下降,可能與α-syn可以增加線粒體膜通透性、損傷線粒體功能、增加細(xì)胞內(nèi)ROS[7-8,23]相關(guān),而同時(shí)過(guò)表達(dá)PINK1后,可以發(fā)現(xiàn)PINK1明顯逆轉(zhuǎn)α-syn致細(xì)胞活力降低。
通過(guò)本實(shí)驗(yàn),本課題組深入研究了PINK1有效緩解α-syn致細(xì)胞損傷的作用,并且討論了其內(nèi)在機(jī)制,即與線粒體功能、ROS的變化密切相關(guān),這一結(jié)果可能為研究PD的致病機(jī)制提供新線索,并為未來(lái)開(kāi)發(fā)新藥提供了潛在的科學(xué)依據(jù)。
4參考文獻(xiàn)
[1]Fearnley J M, Lees A J. Ageing and Parkinson’s disease: substantia nigra regional selectivity [J]. Brain,1991, 114 (Pt 5): 2283-2301.
[2]Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease [J]. Nat Genet,1998, 18(2): 106-108.
[3]Polymeropoulos M H, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease [J]. Science,1997, 276(5321): 2045-2047.
[4]Li W W, Yang R, Guo J C, et al. Localization of alpha-synuclein to mitochondria within midbrain of mice [J]. Neuroreport, 2007, 18(15): 1543-1546.
[5]Spillantini M G, Schmidt M L, Lee V M, et al. Alpha-synuclein in Lewy bodies [J]. Nature,1997, 388(6645): 839-840.
[6]Feany M B. Studying human neurodegenerative diseases in flies and worms [J]. J Neuropathol Exp Neurol, 2000, 59(10): 847-856.
[7]Lo B C, Ridet J L, Schneider B L, et al. alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease [J]. Proc Natl Acad Sci U S A, 2002, 99(16): 10813-10818.
[8]Shen J, Du T, Wang X, et al. alpha-Synuclein amino terminus regulates mitochondrial membrane permeability [J]. Brain Res, 2014, 1591: 14-26.
[9]Arima K, Ueda K, Sunohara N, et al. NACP/alpha-synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy [J]. Acta Neuropathol, 1998, 96(5): 439-444.
[10]Hsu L J, Sagara Y, Arroyo A, et al. alpha-synuclein promotes mitochondrial deficit and oxidative stress [J]. Am J Pathol, 2000, 157(2): 401-410.
[11]Simon D K,Lin M T, Zheng L, et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson’s disease [J]. Neurobiol Aging, 2004, 25(1): 71-81.
[12]Tanner C M, Ottman R, Goldman S M, et al. Parkinson disease in twins: an etiologic study [J]. JAMA, 1999, 281(4): 341-346.
[13]Sakka N, Sawada H, Izumi Y, et al. Dopamine is involved in selectivity of dopaminergic neuronal death by rotenone [J]. Neuroreport,2003, 14(18): 2425-2428.
[14]Zhang J, Montine T J, Smith M A, et al. The mitochondrial common deletion in Parkinson’s disease and related movement disorders [J]. Parkinsonism Relat Disord,2002, 8(3): 165-170.
[15]Subramaniam S R, Vergnes L, Franich NR, et al. Region specific mitochondrial impairment in mice with widespread overexpression of alpha-synuclein [J]. Neurobiol Dis, 2014, 70: 204-213.
[16]Shimura-Miura H, Hattori N, Kang D, et al. Increased 8-oxo-dGTPase in the mitochondria of substantia nigral neurons in Parkinson’s disease [J]. Ann Neurol,1999, 46(6): 920-924.
[17]Terland O, Flatmark T, Tangeras A, et al. Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species [J]. J Mol Cell Cardiol,1997, 29(6): 1731-1738.
[18]Hastings T G, Lewis D A, Zigmond M J. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections [J]. Proc Natl Acad Sci U S A,1996, 93(5): 1956-1961.
[19]付越姣,段春禮, 龔普盛, 等. PINK1與α-synuclein相互作用結(jié)構(gòu)域鑒定 [J]. 中國(guó)生物工程雜志,2011(12): 10-14.
[20]范春香, 崔韜, 谷利, 等. 帕金森病相關(guān)蛋白PINK1和α-突觸核蛋白相互作用研究 [J]. 中國(guó)生物工程雜志,2008(12): 7-11.
[21]Sarafian T A, Ryan C M, Souda P, et al. Impairment of mitochondria in adult mouse brain overexpressing predominantly full-length, N-terminally acetylated human alpha-synuclein [J]. PLoS One,2013, 8(5): e63557.
[22]Dias V, Junn E, Mouradian M M. The role of oxidative stress in Parkinson’s disease [J]. J Parkinsons Dis, 2013, 3(4): 461-491.
[23]Banerjee K, Munshi S, Sen O, et al. Dopamine cytotoxicity involves both oxidative and nonoxidative pathways in SH-SY5Y cells: potential role of alpha-synuclein overexpression and proteasomal inhibition in the etiopathogenesis of parkinson’s disease [J]. Parkinsons Dis,2014, 2014: 878935.
[24]Beinlich F R, Drees C, Piehler J, et al. Shuttling of PINK1 between mitochondrial microcompartments resolved by triple-color superresolution microscopy [J]. Acs Chem Biol,2015, 10(9): 1970-1976.
[25]Han J Y, Kim J S, Son JH. Mitochondrial homeostasis molecules: regulation by a trio of recessive Parkinson’s disease genes [J]. Exp Neurobiol,2014, 23(4): 345-351.
[26]Morais V A, Haddad D, Craessaerts K, et al. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling [J]. Science,2014, 344(6180): 203-207.
編輯孫超淵
Study ofPINK1 rescuing the mitochondrial dysfunction induced by α-synuclein
Wang Xue, Shen Jiamei, Gao Ge, Duan Chunli, Lu Lingling, Yang Hui*
(DepartmentofNeurobiology,SchoolofBasicMedicalSciences,CapitalMedicalUniversity,CenterforParkinson’sDisease,BeijingInstituteforBrainDisorders,KeyLaboratoryforNeurodegenerativeDiseasesoftheMinistryofEducation,Beijing100069,China)
【Abstract】Objective To identify whether PINK1 could rescue the mitochondrial dysfunction induced by α-synuclein. MethodsMN9D cells were transfected with plasmid encoding human α-synuclein together with human wild type PINK1. The level of reactive oxygen species (ROS), mitochondrial permeability pore (mPTP) and mitochondrial membrane potential (ΔΨm) were examined by flow cytometry. The cell viability was observed by MTT assay and release of lactate dehydrogenase(LDH) respectively. ResultsWhile overexpression PINK1 could ease the opening of mPTP, reducing the generation of ROS, ΔΨm reduction percentage reduction by α-syn, reversed α-syn decreased cell viability and induced LDH release by α-syn induced. ConclusionPINK1 could alleviate α-syn-induced mitochondrial injury.
【Key words】PINK1; α-synuclein (α-syn); mitochondria
(收稿日期:2015-10-30)
【中圖分類號(hào)】R 741
[doi:10.3969/j.issn.1006-7795.2016.01.014]
*Corresponding author, E-mail:huiyang@ccmu.edu.cn
基金項(xiàng)目:國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(2011CB504102, 2012CB722407),國(guó)家自然科學(xué)基金(81371398),北京市自然科學(xué)基金(7131001),北京市創(chuàng)新團(tuán)隊(duì)建設(shè)提升計(jì)劃 (IDHT20140514),北京腦重大疾病研究院項(xiàng)目(BIBD-PXM2013 014226 07 000084),首都醫(yī)科大學(xué)校基金(2015JS21)。 This study was supported by Major State Basic Research Development Program of China (2011CB504102, 2012CB722407), National Natural Science Foundation of China (81371398),Natural Science Foundation of Beijing (7131001), The Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20140514),Beijing Institute for Brain Disorders-PXM (BIBD-PXM2013 014226 07 000084), Science Foundation of Capital Medical University(2015JS21).
網(wǎng)絡(luò)出版時(shí)間:2016-01-2718∶10網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.3662.R.20160127.1810.032.html
· 基礎(chǔ)研究 ·
首都醫(yī)科大學(xué)學(xué)報(bào)2016年1期