【摘 要】小學(xué)數(shù)學(xué),是一門抽象性的學(xué)科,要求學(xué)生有著較強(qiáng)的邏輯思維能力和空間想象能力。由于小學(xué)生的智力水平還未完全發(fā)展成熟,一些數(shù)學(xué)的知識(shí)點(diǎn)和理論在理解上還不是很全面,這樣就對(duì)小學(xué)數(shù)學(xué)學(xué)科的教師來說提出了不小的挑戰(zhàn)。數(shù)形結(jié)合的方法恰好能夠解決這一問題,其利用數(shù)量與空間圖形的關(guān)系,將一些抽象的問題具體化,把一些難懂的概念通過圖形進(jìn)行表達(dá),這對(duì)于學(xué)生解決具體問題有著重要的作用。本文通過分析數(shù)形思想結(jié)合的重要性,以期探索出在具體的小學(xué)數(shù)學(xué)的教學(xué)過程中將數(shù)形結(jié)合思想有效結(jié)合的對(duì)策與建議,進(jìn)而提高學(xué)生的數(shù)學(xué)學(xué)習(xí)水平與能力。
【關(guān)鍵詞】小學(xué);數(shù)學(xué);教學(xué);數(shù)形結(jié)合;對(duì)策
一、數(shù)形結(jié)合思想的重要性
1.便于簡(jiǎn)化數(shù)學(xué)問題,提高教學(xué)質(zhì)量
一般來說,數(shù)學(xué)問題具有著復(fù)雜化的特點(diǎn),這對(duì)于智力尚未發(fā)展完全的學(xué)生來說,在理解和解決數(shù)學(xué)問題上有著不小的難度。對(duì)于小學(xué)數(shù)學(xué)學(xué)科的教師來說,應(yīng)當(dāng)采取數(shù)形結(jié)合的教學(xué)思想,使得數(shù)學(xué)問題中的數(shù)量關(guān)系從復(fù)雜化變?yōu)楹?jiǎn)單化,易于學(xué)生進(jìn)行理解,這在解決數(shù)學(xué)問題上起到事半功倍的效果,同時(shí)還能夠提高數(shù)學(xué)課堂的教學(xué)質(zhì)量。比如,在講解路程問題時(shí),有效將距離和方位相結(jié)合,能夠給予學(xué)生直觀的印象,這樣就使得學(xué)生能夠更加清楚的明白題意,能夠有效的解決數(shù)學(xué)問題,同時(shí)也提高了教學(xué)的效率和質(zhì)量。
2.便于使數(shù)學(xué)問題形象化,有效解決問題
眾所周知,數(shù)學(xué)問題有很多都具有抽象性,這對(duì)于小學(xué)階段的學(xué)生來說有著一定的難度。那么,要是能夠把抽象的數(shù)學(xué)問題形象化,就能夠使得學(xué)生更易理解數(shù)學(xué)問題,并進(jìn)行有效的解決數(shù)學(xué)問題。作為小學(xué)數(shù)學(xué)學(xué)科的教師來說,要意識(shí)到數(shù)形結(jié)合思想融入到具體的教學(xué)過程中的優(yōu)勢(shì)與重要性,充分發(fā)揮好數(shù)形結(jié)合思想的有效作用。比如說,拿雞兔同籠問題說明,對(duì)于這樣復(fù)雜、抽象的數(shù)學(xué)問題,應(yīng)當(dāng)在具體的教學(xué)過程中以圖形的方式表現(xiàn)出來。一方面,通過這樣的教學(xué)形式符合了小學(xué)生的興趣點(diǎn),使得問題更加形象化;另一方面,數(shù)形結(jié)合的教學(xué)思想突破了小學(xué)生思維的障礙,便于幫助學(xué)生理順數(shù)量關(guān)系,進(jìn)而有效的解決具體的數(shù)學(xué)問題。值得一體的是,抽象化、復(fù)雜化的問題變得更加簡(jiǎn)單,學(xué)生對(duì)于學(xué)習(xí)數(shù)學(xué)學(xué)科有了更多的信心,這在一定程度上激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)學(xué)科的積極性。另外,小學(xué)的數(shù)學(xué)學(xué)科對(duì)于學(xué)生思維能力的培養(yǎng)有著重要的基礎(chǔ)作用,在此階段養(yǎng)成的邏輯習(xí)慣對(duì)于今后各個(gè)學(xué)科的學(xué)習(xí)和思考問題、解決問題方面都有著至關(guān)重要的作用。因此,采用數(shù)形結(jié)合的思想進(jìn)行具體的教學(xué)活動(dòng),是有效提高教學(xué)質(zhì)量、增加學(xué)生數(shù)學(xué)能力的有效途徑。
二、在具體的教學(xué)過程中有效融合數(shù)形結(jié)合思想的途徑
1.在理解過程中融合數(shù)形結(jié)合思想
小學(xué)數(shù)學(xué)學(xué)科,在實(shí)用上來說,是以培養(yǎng)學(xué)生獲得相應(yīng)的運(yùn)算能力為目標(biāo)的。但是,作為小學(xué)數(shù)學(xué)學(xué)科的教師來說,應(yīng)當(dāng)首先明確,運(yùn)算能力的獲得是以理解能力為重要基礎(chǔ)的。具體來說,教師在具體的教學(xué)過程中,應(yīng)當(dāng)著重加強(qiáng)學(xué)生理解能力的培養(yǎng),而不是讓學(xué)生只是單純的使用數(shù)學(xué)公式去解決問題。隨著新課程改革的不斷推進(jìn),小學(xué)數(shù)學(xué)教師應(yīng)當(dāng)不斷更新教學(xué)方式,在教學(xué)方法上有所創(chuàng)新,并在教學(xué)的具體過程中有效的融合數(shù)形結(jié)合思想,重點(diǎn)在理解環(huán)節(jié)過程中融合數(shù)形結(jié)合思想,最終提高學(xué)生的數(shù)學(xué)理解能力。這樣,在理解的過程中融入數(shù)形結(jié)合思想,能夠使得學(xué)生在思考問題時(shí),對(duì)于題目有一個(gè)清楚的認(rèn)識(shí),并及時(shí)能夠聯(lián)想到圖形,對(duì)于具體的運(yùn)算也有著很大的幫助??梢姡诶斫膺^程中運(yùn)用數(shù)形結(jié)合思想,能夠幫助學(xué)生有著更加直觀的理解,在一定程度上提升了學(xué)生的形象思維能力。
2.在概念教學(xué)中滲透數(shù)形結(jié)合思想
數(shù)學(xué)學(xué)科的教學(xué)內(nèi)容涵蓋多個(gè)方面,其中之一就是對(duì)于概念的學(xué)習(xí)。作為小學(xué)數(shù)學(xué)學(xué)科的教師,不僅要教會(huì)學(xué)生基本的概念,而且還需要幫助學(xué)生理順概念的產(chǎn)生及具體的運(yùn)算方法,以期加深學(xué)生對(duì)于相關(guān)概念的理解。鑒于小學(xué)生具有很強(qiáng)的圖形辨識(shí)能力的特點(diǎn),教師就可以采用數(shù)形結(jié)合的思想來進(jìn)行教學(xué)活動(dòng),進(jìn)而使得學(xué)生通過形象的教學(xué)形式理解較為復(fù)雜的概念。值得注意的是,在這個(gè)教學(xué)的過程中,教師應(yīng)當(dāng)對(duì)學(xué)生做好積極的引導(dǎo),充分利用直觀的圖形激發(fā)起學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,幫助學(xué)生將抽象的數(shù)學(xué)概念具體化、具體化。另外,小學(xué)數(shù)學(xué)學(xué)科的教師還可以營(yíng)造生動(dòng)、有趣的教學(xué)氛圍,使得學(xué)生們能夠在輕松的環(huán)境下學(xué)習(xí),提高學(xué)習(xí)數(shù)學(xué)概念的主觀能動(dòng)性,進(jìn)而能夠理解數(shù)學(xué)概念,最終做到靈活運(yùn)用數(shù)學(xué)概念解決具體的數(shù)學(xué)問題,提高整體的概念應(yīng)用能力。
3.在解決問題中使用數(shù)形結(jié)合思想
按照新課程改革的具體要求,小學(xué)數(shù)學(xué)學(xué)科在培養(yǎng)目標(biāo)上是這樣界定的,即要著重培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力,也就是說培養(yǎng)學(xué)生分析問題及解決問題的能力。在數(shù)學(xué)科目的學(xué)習(xí)中,具體題目中大多有著大量的文字,并且具備一定的抽象性,使得學(xué)生難以準(zhǔn)確把握題目的含義。鑒于此,作為小學(xué)數(shù)學(xué)學(xué)科的教師,應(yīng)當(dāng)采用數(shù)形結(jié)合的思想,通過圖形將文字信息簡(jiǎn)易化,使得學(xué)生能夠更加清楚、明白題意。這種將“數(shù)”與“形”進(jìn)行有效轉(zhuǎn)化,使抽象的應(yīng)用題具體化,在很大程度上降低解數(shù)學(xué)題目的難度。可見,數(shù)學(xué)教師將數(shù)形結(jié)合的思想融入到解決問題的應(yīng)用教學(xué)過程中,可以更加簡(jiǎn)易的通過利用數(shù)量關(guān)系表達(dá)出形象圖片中的含義,在一定程度上化簡(jiǎn)了數(shù)學(xué)題目的難度。這種數(shù)形結(jié)合的思想,能夠幫助學(xué)生加強(qiáng)對(duì)于數(shù)字的運(yùn)用能力,在整體上提升了學(xué)生的形象思維能力。
三、結(jié)語
小學(xué)數(shù)學(xué)學(xué)科對(duì)于學(xué)生的成長(zhǎng)成才來說有著至關(guān)重要的作用,能夠充分培養(yǎng)學(xué)生具有較強(qiáng)的邏輯思維能力。因此,作為小學(xué)數(shù)學(xué)學(xué)科的教師來說,應(yīng)當(dāng)有效的運(yùn)用好數(shù)形結(jié)合這一思想,以數(shù)學(xué)教材的課本內(nèi)容為根本,并結(jié)合學(xué)生的學(xué)習(xí)特點(diǎn),努力培養(yǎng)學(xué)生解決實(shí)際問題的能力。通過將數(shù)相結(jié)合的思想融入到具體教學(xué)過程的教學(xué)方式,不僅提高了教學(xué)質(zhì)量和教學(xué)效率,而且還能夠進(jìn)一步提高學(xué)生的邏輯思維能力。
參考文獻(xiàn):
[1]易玲.例談小學(xué)數(shù)學(xué)教學(xué)中數(shù)形結(jié)合思想的滲透[J].教學(xué)月刊小學(xué)版(數(shù)學(xué)),2015(01).
[2]化鑾紅.探討小學(xué)數(shù)學(xué)教學(xué)中“數(shù)形結(jié)合”思想的有效滲透[J].考試與評(píng)價(jià),2016(01).
[3]連作鵬.小學(xué)數(shù)學(xué)教學(xué)中數(shù)形結(jié)合思想教學(xué)模式初探[J].中學(xué)課程輔導(dǎo)(教師教育),2016(06).
作者簡(jiǎn)介:
彭登賢(1964~)性別:女,籍貫:貴州省遵義市,工作單位:遵義市播州區(qū)龍坪鎮(zhèn)中心幼兒園,學(xué)歷:大專,職稱:小學(xué)高級(jí)教師,研究方向:小學(xué)數(shù)學(xué)。