李敏,羅德強(qiáng),江學(xué)海,周維佳,姬廣梅,王學(xué)鴻,李樹(shù)杏(貴州省水稻研究所,貴陽(yáng)550006)
低溫寡日照條件下不同類(lèi)型雜交稻品種的生態(tài)適應(yīng)性
李敏,羅德強(qiáng),江學(xué)海,周維佳*,姬廣梅,王學(xué)鴻,李樹(shù)杏
(貴州省水稻研究所,貴陽(yáng)550006)
摘要探討雜交水稻品種的生態(tài)適應(yīng)性,為超高產(chǎn)雜交水稻品種合理選用提供依據(jù).在低溫寡日照生態(tài)區(qū),以生態(tài)適應(yīng)型品種(筑優(yōu)606和黔優(yōu)108)及生態(tài)敏感型品種(Y兩優(yōu)2號(hào)和Y兩優(yōu)302)為試驗(yàn)材料,比較研究了2種類(lèi)型水稻品種的產(chǎn)量形成、氮素吸收與利用、根系特性的差異.結(jié)果表明:與生態(tài)適應(yīng)型品種相比,生態(tài)敏感型品種的產(chǎn)量平均降低了13.8%,其中結(jié)實(shí)率和千粒質(zhì)量分別降低了9.9%和15.5%;較生態(tài)適應(yīng)型品種,生態(tài)敏感型品種在分蘗中期、抽穗期和成熟期的氮素積累量分別降低18.8%、10.8%和14.5%,氮肥吸收利用率降低了17.9%,生態(tài)敏感型品種在抽穗期的莖葉含氮量呈降低趨勢(shì),成熟期的莖葉含氮量及比例均呈增加趨勢(shì),氮素轉(zhuǎn)運(yùn)量和氮素轉(zhuǎn)運(yùn)率分別降低了24.6%和19.4%;生態(tài)敏感型水稻品種在抽穗抽穗期和成熟期根系傷流強(qiáng)度分別降低了8.8%和21.6%.籽粒庫(kù)容充實(shí)差是低溫寡日照地區(qū)雜交水稻品種適應(yīng)性的主要產(chǎn)量特征,而生育中后期氮素營(yíng)養(yǎng)積累少、轉(zhuǎn)運(yùn)率不高是影響產(chǎn)量的重要生理原因.
關(guān)鍵詞水稻;生態(tài)適應(yīng)性;產(chǎn)量;氮素;積累
浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版) 42(1):47~52,2016
JournalofZhejiangUniversity(Agric.&LifeSci.)
http://www.journals.zju.edu.cn/agr
E-mail:zdxbnsb@zju.edu.cn
第一作者聯(lián)系方式:李敏(http://orcid.org/0000-0001-6544-0937),E-mail:limin-good@sohu.com
URL:http://www.cnki.net/kcms/detail/33.1247.S.20160119.1927.004.html
Ecologicaladaptabilityofricecultivarswithdifferenttypesunderthelowtemperatureandweak sunshinecondition.JournalofZhejiangUniversity(Agric.&LifeSci.),2016,42(1):47-52
LIMin,LUO Deqiang,JIANG Xuehai,ZHOU Weijia*,GIGuangmei,WANG Xuehong,LIShuxing(Rice ResearchInstituteofGuizhouProvince,Guiyang550006,China)
Summary Besidesthegeneticcultivarcharacteristicandcultivationstrategy,theenvironmentalconditionis consideredasanotherimportantfactoraffectingthegrainyieldinrice.Previousstudieswerecarriedoutonyield formationofriceunderthelowtemperatureandweaksunshinecondition,however,theecologicaladaptabilitysuch asyieldformation,nitrogenaccumulationandutilizationofdifferentthermos-photoperiodsensitivericecultivarsto thelowtemperatureandweaksunshineisstillobscure,aswellastheresponsemechanism.
Themainobjectiveofthisstudywastodeterminetheecologicaladaptabilityofdifferentricecultivarsunderthe lowtemperatureand weaksunshineconditioninthe middleandlategrowthduration.Fieldexperimentswere conductedin2013and2014inGuiyang,wherewasregardedasarepresentativeeco-sitewithlowtemperatureand weaksunshine,35ricegenotypesincludingreleasedcultivarsandpotentialricecombinationswereusedasatested materials,andtwoecology-adaptivecultivars(Zhuyou606andQianyou108)andtwoecology-sensitivecultivars(YLiangyou2 and Y Liangyou302)were selected out as a tested materials to study the differences in grain yield and yield formation,nitrogen accumulation and distribution,root characteristics.
The results showed that:when values were averaged across cultivars and years,compared with the ecologyadaptive cultivars,the ecology-sensitive cultivars obtained a lower grain yield by 13.8%,which was mainly caused by a 9.9% lower filled grain ratio and 15.5% lower 1 000-grain mass.In comparison with the ecology-adaptive cultivars,the ecology-sensitive cultivars achieved 18.8%,10.8%,14.5%lower nitrogen accumulation amount at the mid-tillering(critical stage of productive tillering),heading,maturity stage,respectively,resulting in 17.9% lower nitrogen recovery efficiency(RE).Furthermore,a higher nitrogen accumulation amount in stem-leaves at the heading stage and a lower nitrogen accumulation amount in stem-leaves at the maturity stage were found in the ecology-sensitive cultivars,relative to the ecology-adaptive cultivars,and the nitrogen translocation amount from stems and leaves to panicle achieved 3.41 kg/667m2,which was 24.6% lower than that in the ecology-adaptive cultivars,the nitrogen translocation ratio from stems and leaves to panicle achieved 38.55%,which was 19.4% lower than that in the ecology-adaptive cultivars.The root bleeding intensity of ecology-adaptive cultivars achieved 20.2 kg/(h.667m2)at the heading stage and 4.55 kg/(h.667 m2)at the maturity stage,which were 8.8% and 21.6%lower than that in the ecology-adaptive cultivars,respectively.
According to the results,a strategy to increase the grain yield of the ecology-adaptive cultivars is suggested:keeping a higher filled grain ratio and a higher 1 000-grain mass,which are able to be accomplished by increasing nitrogen accumulation during the growth period from heading to maturity.Moreover,these methods such as cultivating strong roots and improving root activity are helpful to increase the amount of nitrogen absorption.
Key words rice;ecological adaptability;grain yield;nitrogen;accumulation
水稻是貴州最主要的糧食作物,近年來(lái),利用自育和引進(jìn)具有超高產(chǎn)潛力的雜交水稻新品種及栽培技術(shù)[1],使我省水稻單產(chǎn)水平不斷提高[2 3].但貴州地理?xiàng)l件較為復(fù)雜,低溫寡日照生態(tài)區(qū)域特點(diǎn)明顯,較多超高產(chǎn)雜交水稻品種存在生態(tài)適應(yīng)性較差和不同生態(tài)區(qū)產(chǎn)量表現(xiàn)差異較大的問(wèn)題[4],限制了超高產(chǎn)品種的大面積推廣應(yīng)用.因此,研究低溫寡日照條件下不同類(lèi)型雜交稻品種的生態(tài)適應(yīng)性具有重要意義.
前人就低溫和寡日照對(duì)水稻產(chǎn)量形成的影響已進(jìn)行了大量研究.據(jù)李健陵等[5]報(bào)道,孕穗期低溫使早稻葉綠素含量和光合速率下降,造成光合同化物減少且穎花受精率和可育率下降;傅泰露等[6]研究認(rèn)為水稻生育中后期低溫影響水稻物質(zhì)積累和籽粒灌漿充實(shí);朱萍等[7]對(duì)6個(gè)光敏感性不同的雜交稻組合在遮光處理?xiàng)l件下的產(chǎn)量形成進(jìn)行了研究,表明在遮光條件下產(chǎn)量顯著降低,主要原因是降低了結(jié)實(shí)率和實(shí)粒數(shù);秦建權(quán)等[8]的研究表明在弱光條件下3個(gè)雜交中稻植株對(duì)氮的吸收強(qiáng)度及累積量減少且氮素分配比例改變.雖然有關(guān)低溫和寡日照對(duì)水稻生長(zhǎng)的影響已各自進(jìn)行了大量的研究,但在水稻生育中后期低溫寡日照綜合條件下系統(tǒng)比較研究較少.此外,不同品種的生態(tài)適應(yīng)性存在較大差異,童平等[9]對(duì)12個(gè)雜交稻品種在2類(lèi)生態(tài)條件下的光合特性及干物質(zhì)積累進(jìn)行了研究,結(jié)果表明,水稻適應(yīng)環(huán)境的能力主要是由自身因素決定,且品種間存在較大差異.但有關(guān)不同溫光敏感類(lèi)型雜交水稻品種對(duì)低溫寡日照的生態(tài)適應(yīng)性差異卻鮮見(jiàn)報(bào)道,且差異機(jī)制尚不清楚.因此,本研究以貴州近年來(lái)選育和引進(jìn)的不同類(lèi)型雜交水稻品種為材料,在貴州中部水稻生長(zhǎng)中后期低溫寡日照生態(tài)條件下,研究各品種的產(chǎn)量形成、營(yíng)養(yǎng)吸收利用、根系生長(zhǎng)等特性,以便為超高產(chǎn)雜交水稻合理布局提供參考.
1.1供試材料
在前期研究的基礎(chǔ)上,選用生態(tài)適應(yīng)型雜交水稻品種(筑優(yōu)606和黔優(yōu)108),由貴州省水稻研究所供種;選用生態(tài)敏感型雜交水稻品種(Y兩優(yōu)2號(hào)和Y兩優(yōu)302),由國(guó)家雜交水稻工程技術(shù)研究中心供種.4個(gè)品種均是雜交秈稻品種(組合),詳細(xì)信息見(jiàn)表1.
1.2試驗(yàn)方法
試驗(yàn)于2013年在貴州省水稻研究所實(shí)驗(yàn)農(nóng)場(chǎng)進(jìn)行(試驗(yàn)地經(jīng)度為106°39′22″,緯度為26°30′36″,海拔高度為1139 m).采用隨機(jī)區(qū)組設(shè)計(jì),小區(qū)面積為15 m2,重復(fù)3次,主區(qū)間以塑料板材作梗隔離,高度為40 cm,保證各區(qū)間單獨(dú)排灌.4月22日播種,5月22日移栽,栽插規(guī)格為30 cm×16.7 cm,每穴栽1苗.施氮總量為15 kg/667 m2,N肥(尿素)分基肥、蘗肥、促花肥、?;ǚ?次施用,各施25%;P、K肥全部作底肥施用,分別施P2O5和K2O各10 kg/667 m2.試驗(yàn)中各水稻品種同時(shí)設(shè)置不施氮肥的對(duì)照處理,以計(jì)算水稻的氮利用率[10],其他管理措施統(tǒng)一按常規(guī)栽培要求實(shí)施.水稻生長(zhǎng)中后期(7—10月上旬)平均溫度、日照時(shí)數(shù)等氣象數(shù)據(jù)由貴州省水稻研究所農(nóng)業(yè)試驗(yàn)氣象觀測(cè)站提供(表2).水稻生育中后期平均氣溫較低,日照時(shí)數(shù)少,具有典型的低溫寡日照生態(tài)特點(diǎn).
1.3測(cè)定項(xiàng)目與分析方法
1.3.1植株氮素的測(cè)定
分別于分蘗中期、拔節(jié)期、抽穗期和成熟期每小區(qū)按平均莖蘗數(shù)取4穴為1個(gè)樣本,105℃下殺青,80℃下烘干后稱(chēng)量,并用半微量凱氏定氮法測(cè)定其含氮量.
1.3.2根系性狀
分別于拔節(jié)期、抽穗期和成熟期每小區(qū)按平均莖蘗數(shù)取4穴為1個(gè)樣本,按照楊建昌等[11]的方法測(cè)定根系傷流強(qiáng)度.
1.3.3產(chǎn)量的測(cè)定
成熟期每小區(qū)按平均有效穗數(shù)取4穴考察穗粒數(shù)、每穗穎花數(shù)、千粒質(zhì)量和結(jié)實(shí)率,并實(shí)割100穴測(cè)定實(shí)際產(chǎn)量.
1.4數(shù)據(jù)處理
氮肥吸收利用率/%=(施氮區(qū)水稻含氮量-空白區(qū)水稻含氮量)/施氮量×100;
氮素轉(zhuǎn)運(yùn)量=抽穗期莖葉含氮量-成熟期莖葉含氮量;
氮素轉(zhuǎn)運(yùn)率/%=(抽穗期莖葉含氮量-成熟期莖葉含氮量)/抽穗期莖葉含氮量×100.
運(yùn)用Excel 2007和SPSS 13.0進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析.
2.1不同類(lèi)型水稻品種的產(chǎn)量
表3為不同類(lèi)型雜交稻品種在貴陽(yáng)點(diǎn)的產(chǎn)量表現(xiàn),生態(tài)敏感型品種的平均產(chǎn)量為719.5 kg/667 m2,生態(tài)適應(yīng)型品種的平均產(chǎn)量為834.2 kg/667 m2,不同類(lèi)型間差異達(dá)顯著水平.生態(tài)敏感型品種的有效穗數(shù)和穗粒數(shù)與生態(tài)適應(yīng)型品種差異較小,而結(jié)實(shí)率和千粒質(zhì)量分別比生態(tài)適應(yīng)型品種降低了9.9%和15.5%,表明在本試驗(yàn)條件下,生態(tài)敏感型品種的產(chǎn)量限制因子是結(jié)實(shí)率和千粒質(zhì)量.
2.2不同類(lèi)型水稻品種氮素積累量及氮肥吸收利用率
表4為各生育期2種類(lèi)型水稻品種的氮素積累量.生態(tài)敏感型品種在夠苗期、抽穗期和成熟期的氮素積累量分別為2.08 kg/667 m2、9.53 kg/667 m2和10.87 kg/667 m2,與生態(tài)適應(yīng)型品種比較,分別降低了18.8%、10.8%和14.5%,差異均達(dá)顯著水平,但拔節(jié)期的氮素積累量差異較小;生態(tài)敏感型品種的氮肥吸收利用率平均為36.0%,較生態(tài)適應(yīng)型品種降低了17.9%,差異達(dá)顯著水平.
2.3不同類(lèi)型水稻品種氮素轉(zhuǎn)運(yùn)特性
表5為各生育期2種類(lèi)型水稻品種的氮素轉(zhuǎn)運(yùn)特性.與生態(tài)適應(yīng)型品種相比,生態(tài)敏感型品種抽穗期莖葉含氮量顯著降低,抽穗期莖葉含氮量比例有所增加,成熟期的莖葉含氮量和含氮量比例均呈增加趨勢(shì).生態(tài)敏感型品種的氮素轉(zhuǎn)運(yùn)量為3.41 kg/667m2,較生態(tài)適應(yīng)型品種降低了24.6%,氮素轉(zhuǎn)運(yùn)率為38.55%,較生態(tài)適應(yīng)型品種降低了19.4%,差異均達(dá)顯著水平.
2.4不同類(lèi)型水稻品種根系傷流強(qiáng)度
表6為主要生育期不同水稻品種的根系傷流強(qiáng)度.與生態(tài)適應(yīng)型品種相比,生態(tài)敏感型水稻品種的根系傷流強(qiáng)度在拔節(jié)期基本相當(dāng),抽穗期和成熟期分別為20.2 kg/(h.667 m2)和4.55 kg/(h.667 m2),較生態(tài)適應(yīng)型品種分別降低8.8%和21.6%,且差異均達(dá)顯著水平.說(shuō)明抽穗后較低的根系活力是其產(chǎn)量潛力未能充分發(fā)揮的重要生理原因.
Y兩優(yōu)2號(hào)和Y兩優(yōu)302是具有超高產(chǎn)潛力的雜交水稻品種,均通過(guò)國(guó)家品種審定委員會(huì)審定,前者更是袁隆平院士確定的第3期超級(jí)雜交稻攻關(guān)的首選品種與農(nóng)業(yè)部認(rèn)定的超級(jí)稻品種,在多地種植均表現(xiàn)出超高產(chǎn)[12 13].在本試驗(yàn)條件下,2個(gè)品種的產(chǎn)量顯著低于生態(tài)適應(yīng)型品種(筑優(yōu)606、黔優(yōu)108),其中有效穗數(shù)和穗粒數(shù)差異不大,而結(jié)實(shí)率(僅為73%)和千粒質(zhì)量(僅為24.5 g)均顯著降低,說(shuō)明該類(lèi)品種在低溫寡日照地區(qū)(貴陽(yáng))的生態(tài)適應(yīng)性不強(qiáng).據(jù)龔金龍等[14]的研究報(bào)道,日均溫<23℃會(huì)影響秈稻光合作用和養(yǎng)分輸送,灌漿期結(jié)實(shí)中途停止,水稻不能安全成熟.本試驗(yàn)條件下水稻灌漿期日平均氣溫低于20℃(表2),對(duì)水稻正常生長(zhǎng)產(chǎn)生了低溫脅迫,Y兩優(yōu)2號(hào)和Y兩優(yōu)302對(duì)低溫寡日照生態(tài)條件較為敏感,適宜在光熱條件較好的區(qū)域種植[12-13];而黔優(yōu)108和筑優(yōu)606由于具有較好的耐低溫特性故易在本區(qū)域獲得高產(chǎn)[15].
氮素是水稻最重要的營(yíng)養(yǎng)元素,水稻品種的氮素吸收利用與植株生長(zhǎng)發(fā)育狀況密切相關(guān),是影響產(chǎn)量的重要因素[16-17].本研究結(jié)果表明,與生態(tài)適應(yīng)型品種相比,生態(tài)敏感型品種產(chǎn)量降低的主要原因是各生育期的氮素積累量降低,這與殷春淵等[18]報(bào)道的高產(chǎn)水稻品種具有更高的氮素積累量的結(jié)果較為一致.此外,本研究還表明,生態(tài)敏感型水稻品種抽穗至成熟階段的氮素積累量和氮素轉(zhuǎn)運(yùn)量均顯著降低.據(jù)已有研究報(bào)道,水稻籽粒灌漿期的營(yíng)養(yǎng)物質(zhì)有80%以上來(lái)自抽穗后莖稈和葉片的轉(zhuǎn)運(yùn)[11],且高產(chǎn)水稻和氮高效水稻品種抽穗后均具有較高的氮素轉(zhuǎn)運(yùn)量[18-19],由此推測(cè),生態(tài)敏感型品種抽穗后氮素營(yíng)養(yǎng)積累較少,向籽粒轉(zhuǎn)運(yùn)的氮素營(yíng)養(yǎng)不足,影響了庫(kù)容建成和充實(shí),最終降低了產(chǎn)量.由于根系是水稻吸收氮素營(yíng)養(yǎng)的最重要器官,根系的生長(zhǎng)發(fā)育狀況直接關(guān)系水稻的營(yíng)養(yǎng)吸收和物質(zhì)積累[11],本結(jié)果表明,生態(tài)敏感型水稻品種在各生育期的根系傷流強(qiáng)度較低,其中抽穗期和成熟期差異達(dá)顯著水平,這與其較低的氮素積累量較為一致,說(shuō)明生育后期根系活力下降可能是影響氮素吸收的重要原因.
參考文獻(xiàn)(References):
[1]周維佳,羅德強(qiáng),江學(xué)海,等.雜交水稻五五精確定量栽培技術(shù)規(guī)范.貴州農(nóng)業(yè)科學(xué),2012,40(6):55-56.ZHOU W J,LUO D Q,JIANG X H,et al.Rules for fivefive precise and quantitative cultivation of hybrid rice.Guizhou Agricultural Sciences,2012,40(6):55-56.(in Chinese with English abstract)
[2]張發(fā)麗,張恒棟,錢(qián)曉剛,等.不同雜交水稻品種高產(chǎn)潛力與主要經(jīng)濟(jì)性狀關(guān)系的研究.湖南農(nóng)業(yè)科學(xué),2013(1):4-6.ZHANG F L,ZHANG H D,QIAN X G,et al.Relationship between high yielding potential and main economic traits of different hybrid rice varieties.Hunan Agricultural Science,2013(1):4-6.(in Chinese with English abstract)
[3]周應(yīng)友,陳德珍.遵義縣水稻精確定量栽培高產(chǎn)攻關(guān)試驗(yàn)示范成效分析.耕作與栽培,2012(6):22-23.ZHOU Y Y,CHEN D Z.The high yield research and demonstration of rice precise and quantitative cultivation.Planting and Cultivation,2012(6):22-23.(in Chinese with English abstract)
[4]羅德強(qiáng),王紹華,江學(xué)海,等.精確定量施肥對(duì)貴州高原山區(qū)雜交秈稻產(chǎn)量與群體質(zhì)量的影響.中國(guó)農(nóng)業(yè)科學(xué),2014,47(11):2099-2108.LUO D Q,WANG S H,JIANG X H,et al.Effect of accurate fertilizer model on yield and population quality of hybrid indica rice cultivars in Guizhou highland area.Scientia Agricultura Sinica,2014,47(11):2099-2108.(in Chinese with English abstract)
[5]李健陵,霍治國(guó),吳麗姬,等.孕穗期低溫對(duì)水稻產(chǎn)量的影響及其生理機(jī)制.中國(guó)水稻科學(xué),2014,28(3):277-288.LI J L,HUO Z G,WU L J,et al.Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage.Chinese Journal of Rice Science,2014,28(3):277-288.(in Chinese with English abstract)
[6]傅泰露,馬均,王賀正,等.水稻開(kāi)花期耐冷性綜合評(píng)價(jià)及鑒定指標(biāo)的篩選.西南農(nóng)業(yè)學(xué)報(bào),2007,20(5):966-969.FU T L,MA J,WANG H Z,et al.Comprehensive evaluation and screening identification indexes of clod tolerance at flowering stage in rice.Southwest China Journal of Agricultural Sciences,2007,20(5):966-969.(in Chinese with English abstract)
[7]朱萍,楊世民,馬均,等.遮光對(duì)雜交水稻組合生育后期光合特性和產(chǎn)量的影響.作物學(xué)報(bào),2008,34(11):2003-2009.ZHU P,YANG S M,MA J,et al.Effect of shading on the photosynthetic characteristics and yield at later growth stage of hybrid rice combination.Acta Agronomica Sinica,2008,34(11):2003-2009.(in Chinese with English abstract)
[8]秦建權(quán),唐啟源,李迪秦,等.抽穗后光照強(qiáng)度對(duì)超級(jí)雜交稻干物質(zhì)生產(chǎn)及氮素吸收與分配的影響.四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,28(1):28-34.QIN J Q,TANG Q Y,LI T Q,et al.Effect of different light intensity after heading stage on dry matter accumulation and nitrogen uptake and distribution of super hybrid rice.Journal of Sichuan Agricultural University,2010,28(1):28-34.(in Chinese with English abstract)
[9]童平,楊世民,馬均,等.不同水稻品種在不同光照條件下的光和特性和干物質(zhì)積累.應(yīng)用生態(tài)學(xué)報(bào),2008,19(3):505-511.TONG P,YANG S M,MA J,et al.Photosynthetic characteristics and dry matter accumulation of hybrid rice varieties under different light conditions.Chinese Journal of Applied Ecology,2008,19(3):505-511.(in Chinese with English abstract)
[10]李敏,張洪程,李國(guó)業(yè),等.水稻氮效率基因型差異及其機(jī)理研究進(jìn)展.核農(nóng)學(xué)報(bào),2011,25(5):1057-1063.LI M,ZHANG H C,LI G Y,et al.Genotypic difference in nitrogen use efficiency in rice and its morphological and physiological mechanisms.Journal of Nuclear Agricultural Sciences,2011,25(5):1057-1063.(in Chinese with English abstract)
[11]楊建昌.水稻根系形態(tài)生理與產(chǎn)量、品質(zhì)形成及養(yǎng)分吸收利用的關(guān)系.中國(guó)農(nóng)業(yè)科學(xué),2011,44(1):36-46.YANG J C.Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization.Scientia Agricultura Sinica,2011,44(1):36-46.(in Chinese with English abstract)
[12]李啟標(biāo),陳嗣建,胡偉民,等.雜交稻Y兩優(yōu)2號(hào)、Y兩優(yōu)302示范表現(xiàn)及栽培技術(shù).廣東農(nóng)業(yè)科學(xué),2012,39(9):18-19.LI Q B,CHEN S J,HU W M,et al.The high yield performance and cultivation technique of hybrid rice Y Liangyou2 and Y Liangyou302.Guangdong Agricultural Sciences,2012,39 (9):18-19.(in Chinese with English abstract)
[13]胡朝生,李蔚,李莉,等.強(qiáng)優(yōu)勢(shì)雜交中秈“Y兩優(yōu)2號(hào)”特性特征表現(xiàn).安徽科技,2011(6):2.HU Z S,LI W,LI L.et al.The traits and characteristics of hybrid rice“Y Liangyou2”with middle growth duration.Anhui Science&Technology,2011(6):2.(in Chinese)
[14]龔金龍,張洪程,胡雅杰,等.灌漿結(jié)實(shí)期溫度對(duì)水稻產(chǎn)量和品質(zhì)形成的影響.生態(tài)學(xué)雜志,2013,32(2):482-491.GONG J L,ZHANG H C,HU Y J.et al.Effects of air temperature during rice grain-filling period on the formation of rice grain yield and its quality.Chinese Journal of Ecology,2013,32(2):482-491.(in Chinese with English abstract)
[15]黃培英,王際鳳,朱速松,等.高產(chǎn)穩(wěn)產(chǎn)雜交水稻新組合汕優(yōu)108.雜交水稻,2014,168(5):81-82.HUANG P Y,WANG J F,ZHU S S,et al.Shanyou 108,a new high-yielding hybrid rice combination.Hybrid Rice,2014,168(5):81-82.(in Chinese with English abstract)
[16]SINGH U,LAGHA J K,CASTILLO E G,et al.Genotypic variation in nitrogen use efficiency in medium and long duration rice.Field Crops Research,1998,58:35-53.
[17]KOUTROUBASA S D,NTANOSB D A.Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions.Field Crops Research,2003,83:251-260.
[18]殷春淵,張慶,魏海燕,等.不同產(chǎn)量類(lèi)型水稻基因型氮素吸收、利用效率的差異.中國(guó)農(nóng)業(yè)科學(xué),2010,43(1):39-50.YIN C Y,ZHANG Q,WEI H Y,et al.Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance.Scientia Agricultura Sinica,2010,43(1):39-50.(in Chinese with English abstract)
[19]PENG S,BURESH R J,HUANG J,et al.Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China.Field Crops Research,2006,96:37-47.
收稿日期(Received):2015 07 31;接受日期(Accepted):2015 10 31;網(wǎng)絡(luò)出版日期(Publishedonline):2016-01-19
*通信作者(
Correspondingauthor):周維佳(http://orcid.org/0000-0002-2578-1144),E-mail:zhouweijiaa@163.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金(31360314);貴州省科技計(jì)劃項(xiàng)目(黔科合NY字[2012]3043);貴州省農(nóng)科院創(chuàng)新基金(黔農(nóng)科合(2011002);貴州省雜交水稻種三產(chǎn)四示范工程.
DOI:10.3785/j.issn.1008-9209.2015.07.312
中圖分類(lèi)號(hào)S511
文獻(xiàn)標(biāo)志碼A
浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)2016年1期