徐 宸
?
時間序列在黃金價格預(yù)測中的應(yīng)用
徐宸
摘要:本文研究了時間序列分析的基本理論,通過Eviews軟件對2003~2012年上海黃金交易所各月最后一個交易日的收盤價進(jìn)行統(tǒng)計分析,建立了二次曲線擬合模型并以此對其進(jìn)行短期預(yù)測,為投資者進(jìn)行黃金投資提供參考依據(jù)。
關(guān)鍵詞:時間序列;黃金價格;預(yù)測
黃金是可以作為財富的一種度量標(biāo)準(zhǔn)和保值手段。在非常多的方面產(chǎn)生各種各樣的影響,都會使黃金價格產(chǎn)生一定的變化。對黃金價格波動需要有一個詳細(xì),系統(tǒng)的考量的分析以及對其價格行情進(jìn)行專業(yè)的預(yù)測都能有效指導(dǎo)黃金投資者對于黃金的投資。
一、各個影響黃金價格的因素
1、美元對黃金價格的影響
首先,美元作為一個主要貨幣是國際支付和外匯交易中必不可少的部分,支撐著當(dāng)前國際貨幣體系。而黃金所具有的貨幣職能也讓它和美元一同成為重要的儲備資產(chǎn),當(dāng)美元升值并在國際上處于穩(wěn)定的地位時,就削弱了黃金作為儲備資產(chǎn)和保值功能的地位。其次,國際黃金市場一般以美元作為標(biāo)價貨幣,這就導(dǎo)致了當(dāng)美元貶值時金價會出現(xiàn)上漲的情形。
因此,當(dāng)美元走強(qiáng),購買黃金只需要支付少量的美元,這就導(dǎo)致了金價的下跌,反之,就會引起金價的上漲。
2、地勢局勢對黃金價格的影響
地緣局勢的動蕩必然引起市場的恐慌,而人們珍藏黃金的很大一部分原因還是出自于黃金規(guī)避風(fēng)險的功能。如果有細(xì)心的讀者,可以發(fā)現(xiàn)在戰(zhàn)爭或者政治動蕩時都會促進(jìn)黃金價格在短期內(nèi)的上漲,這就是由黃金的保值屬性所決定的。
3、利率對黃金價格的影響
實際利率是銀行名義利率,指扣除通貨膨脹率后的真實利率,它是影響金價的一個重要因素。當(dāng)實際利率為負(fù)時,顯然拿錢去存銀行不如買黃金來得劃算。
4、股市與商品市場對金價的影響
歷史角度來說曾經(jīng)出現(xiàn)過三個的較大的牛市,它們分別在1906年-1923年、1933年-1953年、1968年-1982年。與此同時,美國股市也出現(xiàn)了長期熊市和加速的通貨膨脹階段。
股票與黃金雖然是兩個不同的投資市場,但是兩者依然有著千絲萬縷的聯(lián)系。股市對金價的影響主要體現(xiàn)在投資者對打的經(jīng)濟(jì)發(fā)展方向以及前景的一種預(yù)期,如果大部分投資者對經(jīng)濟(jì)前景是看好的,那么將會有大量資金流向股市市場,這樣黃金市場的投資就會相對減弱,金價就會下跌。反之,就會引起金價的上漲。當(dāng)然,這樣的一種關(guān)系并非一成不變的。有時甚至?xí)幸欢ǖ恼蜿P(guān)系。
5、商品價格指數(shù)對金價的影響
在商品市場中,價格趨勢對黃金價格也有著一定的影響,因此要研究黃金價格的波動就要對商品的價格做一定的分析。CRB(商品價格指數(shù))能反應(yīng)不同時期商品價格水平的變化,是研究價格動態(tài)變化的一種工具。由于黃金占CRB價格指數(shù)權(quán)重很高,可以達(dá)到了近18%,因此,其價格指數(shù)對黃金價格的影響也是很大的。
6、黃金市場指數(shù)對金價的影響
美國股票交易所交易的‘金甲蟲’指數(shù)和在費(fèi)城股票交易所交易的費(fèi)城金銀指數(shù)是代表黃金市場的兩個重要指數(shù)。兩者的主要區(qū)別在于金甲蟲是由從事對沖交易不足一年半時間的公司構(gòu)成。
黃金價格上漲是,金甲蟲便是一種跟蹤金價走勢的工具,與現(xiàn)貨金價保持了高度的正相關(guān)性。而當(dāng)黃金價格呈下跌趨勢時,金甲蟲就缺少了避險的保護(hù),因此它的下跌幅度往往會比費(fèi)城金銀指數(shù)更大。
二、時間序列分析的基本理論
如果時間序列[X(t),t=0,±1,±2,…]滿足以下三個條件,則稱該時間序列為寬平穩(wěn)時間序列。
(2)時間序列的均值函數(shù)恒為常數(shù),即對任意t∈T=0,±1,±2,…,有E[X(t)]=μ
(3)時間序列的自協(xié)方差函數(shù)是時間間隔的函數(shù),即對任意t,s∈T=0,±1,±2,…,τ=s-t,有Cov(Xt,Xs)=E(Xt-μ)(Xs-μ)=c(τ)
白噪聲是一類典型的平穩(wěn)時間序列,其特點是:時刻t的隨機(jī)變量εt與另一個時刻s的隨機(jī)變量εs是互不相關(guān)的,不存在線性關(guān)系。
三、我國黃金現(xiàn)貨市場黃金價格預(yù)測實證分析
1、樣本數(shù)據(jù)的來源
本文選取2003年1月至2012年10月間,每個月最后一個交易日,上海黃金交易所Au9999的收盤價作為樣本數(shù)據(jù)進(jìn)行統(tǒng)計分析。
2、平穩(wěn)性檢驗
由時間序列分析的具體方法可知,應(yīng)先對選取的樣本數(shù)據(jù)進(jìn)行平穩(wěn)性檢驗,在根據(jù)其平穩(wěn)性建立相關(guān)模型。通過Eviews得到樣本數(shù)據(jù)的時間序列如下圖:
從上圖中可以看出,該序列具有一定的趨勢性。
時間序列的樣本自相關(guān)系數(shù)和樣本的偏自相關(guān)系數(shù)如下圖:
由圖可知,該時間序列的樣本自相關(guān)系數(shù)不具有明顯遞增,遞減的特征。從第14個樣本開始,“截尾”趨于0。
我們繼續(xù)進(jìn)行ADF檢驗,得到如下圖所示:
由圖知,在ADF檢驗中,P值<0.05,說明這是個平穩(wěn)過程。
3、平穩(wěn)時間序列的確定性分析
時間序列在較長持續(xù)時間內(nèi)由于受到某種因素的影響,其數(shù)據(jù)依時間變化而變化。應(yīng)對該樣本運(yùn)用趨勢擬合法通過建立序列值隨時間變化的回歸模型,來描述時間序列的趨勢性。
首先我們確定擬合的最優(yōu)階數(shù):
由上圖可知,在小樣本的情況下,我們確定lag的最優(yōu)的擬合階數(shù)為3階。ARMA模型可以更好的擬合數(shù)據(jù)。圖中AIC的最小值已經(jīng)用“*”標(biāo)記了出來,該值對應(yīng)的最優(yōu)階數(shù)也就是3階。
由此得出最優(yōu)擬合模型,即ARMA(3,3)。具體的表示型式為:
Mt=C+β1Mt-1+β2Mt-2+β3Mt-3+θ1Ut-1+θ2Ut-2+θ3Ut-3
使用該模型進(jìn)行擬合后,我們得到了如下圖所示的結(jié)果:
我們得到的結(jié)果是:
C=15048.69,β1=-0.402950,β2=0.405203,β3=0.997250,θ1=1.218279,θ2=0.608888,θ3=-0.235191
對應(yīng)的,我們繼續(xù)列舉出它們的標(biāo)準(zhǔn)誤差(S.E)與t統(tǒng)計量(t-S)。
由它們的t統(tǒng)計量可以知道對應(yīng)的P值滿足小于0.05。由此我們有理由拒絕等于0的原假設(shè)。同時,我們也可以看到R2=0.984256,相關(guān)系數(shù)很高,證明擬合得很好。有上述各個數(shù)據(jù)可以說明AMRA(3,3)模型可以很好的擬合這組數(shù)據(jù)。
最后,我們可以做一個殘差平方根的檢驗,殘差平方根都在單位元內(nèi)部,證明了模型是穩(wěn)定的。
4、利用擬合模型進(jìn)行預(yù)測
預(yù)測2013年1月上海黃金交易所Au9999的收盤價,將其對應(yīng)值代入擬合模型,得到預(yù)測值為350.03122。經(jīng)查證,實際值為335.68,誤差為14.35122。
由于時間序列模型只能用于短期預(yù)測,因此長期黃金投資的投資者要更多考慮現(xiàn)實因素。(作者單位:貴州財經(jīng)大學(xué))
參考文獻(xiàn):
[1]王祖?zhèn)ィ钫捉?世界黃金價格變動特點及未來趨勢[J].黃金,2000,21(2):54-57.
[2]葉慈南, 曹偉麗.應(yīng)用數(shù)理統(tǒng)計[M].北京:機(jī)械工業(yè)出版社,2009
[3]涂小龍.基于信息修正GM_1_1_模型的黃金價格行情預(yù)測,2012
作者簡介:徐宸(1990-),男,漢族,江西上饒人,在讀碩士研究生,貴州財經(jīng)大學(xué),應(yīng)用統(tǒng)計學(xué)經(jīng)濟(jì)社會統(tǒng)計與人口統(tǒng)計方向。