張 娜丁艷平王建林邵寶平?(.蘭州大學(xué)生命科學(xué)學(xué)院動(dòng)物學(xué)與發(fā)育生物學(xué)研究所,蘭州730000;.西北師范大學(xué)生命科學(xué)學(xué)院,蘭州730070)
?
饑餓激素與能量代謝
張 娜1丁艷平2王建林1邵寶平1?
(1.蘭州大學(xué)生命科學(xué)學(xué)院動(dòng)物學(xué)與發(fā)育生物學(xué)研究所,蘭州730000;2.西北師范大學(xué)生命科學(xué)學(xué)院,蘭州730070)
摘 要:饑餓激素(ghrelin)是生長(zhǎng)激素促分泌素受體的唯一內(nèi)源性配體,也是唯一可以在外周刺激食欲的激素。ghrelin在機(jī)體食欲、體重、胃腸功能、脂肪代謝、葡萄糖代謝及脂類代謝等生理活動(dòng)的調(diào)節(jié)中發(fā)揮著重要作用。ghrelin的?;桥c其受體結(jié)合產(chǎn)生相應(yīng)生物學(xué)效應(yīng)的前提。本文系統(tǒng)綜述了ghrelin在能量代謝中的作用模式與分子機(jī)制。
關(guān)鍵詞:能量代謝;ghrelin;?;环肿訖C(jī)制
1996年發(fā)現(xiàn)并成功克隆出能與生長(zhǎng)激素促分泌素(GHS)反應(yīng)的G蛋白偶聯(lián)受體,即生長(zhǎng)激素促分泌素受體(growth hormone secretagogue recep?tor,GHSR)[1]。這種受體蛋白有2種天然形式,一種是具有功能的7次跨膜蛋白受體,即GHSR1a;另一種是縮短的無(wú)功能受體,即GHSR1b。Kojima 于1999年首次從胃組織中發(fā)現(xiàn)了饑餓激素(ghre?lin),并證明它是GHSR的唯一內(nèi)源性配體[2]。ghrelin是一種28個(gè)氨基酸多肽,在肽鏈的第3個(gè)絲氨酸位點(diǎn)有1個(gè)8碳脂肪酸側(cè)鏈,即?;瘋?cè)鏈[2],該側(cè)鏈的添加使得該位點(diǎn)能夠被ghrelin?O-乙?;D(zhuǎn)移酶(ghrelin O?acyltransferase,GOAT)酰基化[3]。一般而言,ghrelin有1個(gè)?;瘋?cè)鏈,而沒(méi)有該酰基化側(cè)鏈的28個(gè)氨基酸肽鏈被稱為非?;痝hrelin(unacylated ghrelin,UAG)[2]。ghre?lin在機(jī)體食欲、體重和脂肪代謝、胃腸功能及葡萄糖和脂類代謝等生理活動(dòng)的調(diào)節(jié)中發(fā)揮著重要作用。因此,本文系統(tǒng)綜述了ghrelin的結(jié)構(gòu)、定位及其在能量代謝中的作用模式與分子機(jī)制。
人類的ghrelin基因位于第3號(hào)染色體(3p25? 26),長(zhǎng)約5 kb,由4個(gè)編碼外顯子(exon 1~4)和1個(gè)長(zhǎng)為20 bp的第1外顯子exon 0組成[4-5]。exon 1~4編碼117個(gè)氨基酸的ghrelin前體(pre?proghrelin),其中,exon 1編碼preproghrelin信號(hào)肽,exon 1和2編碼28個(gè)氨基酸的ghrelin多肽激素;exon 3編碼23個(gè)氨基酸的肥胖抑制素(obesta?tin)[6];exon 2、3和4編碼66個(gè)氨基酸的C?ghre?lin,該多肽完全包含23個(gè)氨基酸的obestatin多肽序列[6-7]。此外,進(jìn)一步研究表明在ghrelin基因中還存在1個(gè)末端外顯子(exon1)[4]。綜上所述,如圖1所示,人類ghrelin基因的結(jié)構(gòu),是由exon?1、0、1、2、3和4組成。
ghrelin基因的核心啟動(dòng)子約長(zhǎng)200 bp,exon 1和內(nèi)含子1(intron 1)參與轉(zhuǎn)錄調(diào)控,輔助核心啟動(dòng)子發(fā)揮功能。除此之外,在人和大鼠中,該基因N端還存在不同的調(diào)控區(qū)域,其中含一個(gè)具有活性的TATA盒子(TATA盒子)序列以及E盒子(E?box)序列。TATA box的缺失會(huì)降低人類gh?relin基因的轉(zhuǎn)錄活性,3個(gè)E?box序列可以結(jié)合上游刺激因子-1/2(upstream stimulatory factor?1/2,USF?1/USF?2),進(jìn)而增強(qiáng)其轉(zhuǎn)錄活性[9]。上游調(diào)控序列還存在其他轉(zhuǎn)錄因子的結(jié)合位點(diǎn),如核轉(zhuǎn)錄因子激活蛋白-1(activator protein?1,AP?1)、CCAAT增強(qiáng)子結(jié)合蛋白(CCAAT enhancer bind?ing proteins,C/EBP)及cAMP反應(yīng)元件結(jié)合蛋白(cAMP response elements binding protein,CREB)等[4]。人類ghrelin基因啟動(dòng)子區(qū)域包含的結(jié)合位點(diǎn)也能夠結(jié)合轉(zhuǎn)錄組因子,該類轉(zhuǎn)錄組因子主要有轉(zhuǎn)錄因子激活蛋白-2(AP?2)、核轉(zhuǎn)錄因子-白細(xì)胞介素6(NF?IL6)、核轉(zhuǎn)錄因子-κB(NF?κB)、雌性激素及糖皮質(zhì)激素結(jié)合元件的半結(jié)合位點(diǎn)因子[4,10-11]。且ghrelin基因存在多態(tài)性,但其與血液ghrelin的濃度改變無(wú)關(guān)[12]。
圖1 人ghrelin基因的結(jié)構(gòu)Fig.1 Structure of the human ghrelin gene[8]
如圖2所示,ghrelin基因有2個(gè)轉(zhuǎn)錄起始位點(diǎn),轉(zhuǎn)錄2種不同的轉(zhuǎn)錄組本,即轉(zhuǎn)錄本A和轉(zhuǎn)錄本B,其中轉(zhuǎn)錄本A是該基因的主要轉(zhuǎn)錄形式,轉(zhuǎn)錄mRNA,該mRNA進(jìn)一步翻譯合成preproghre?lin,該前體分子由117個(gè)氨基酸組成,該氨基酸序列在哺乳動(dòng)物中具有較高的保守性[4]。另外,大鼠和小鼠的ghrelin非常相似,且與人類的相比也僅有2個(gè)氨基酸的差異,即人類ghrelin中為Arg11 和Val12,而在鼠中卻為L(zhǎng)ys11和Ala12[6]。牛和羊ghrelin為27個(gè)氨基酸的形式,只有17位的1個(gè)氨基酸不同(羊?yàn)楦彼幔榫彼幔?3]。
圖2 人ghrelin基因不同轉(zhuǎn)錄本Fig.2 Different transcripts of human ghrelin gene[4]
此外,如圖3所示,ghrelin基因經(jīng)過(guò)“轉(zhuǎn)錄—剪接—翻譯”3個(gè)階段的加工后最終形成具有活性的preproghrelin[14]。
2.1 ghrelin在下丘腦和垂體的定位
免疫組化定位分析顯示,ghrelin免疫陽(yáng)性神經(jīng)元主要分布于下丘腦弓狀核,且該陽(yáng)性神經(jīng)元在弓狀核腹側(cè)部的分布尤其豐富[15]。免疫電鏡進(jìn)一步分析顯示,在免疫陽(yáng)性神經(jīng)元胞體、突觸及軸突末端ghrelin免疫陽(yáng)性產(chǎn)物主要分布在直徑約110 nm的密集顆粒小泡中,該結(jié)果表明,在弓狀核中g(shù)hrelin可能作用于下丘腦或者被轉(zhuǎn)運(yùn)到下丘腦其他調(diào)節(jié)食欲的肽能神經(jīng)元和垂體前葉的生長(zhǎng)激素(GH)分泌細(xì)胞而發(fā)揮其作用[16]。而且,在下丘腦弓狀核中g(shù)hrelin神經(jīng)元是通過(guò)其復(fù)雜的神經(jīng)元回路和其他相關(guān)神經(jīng)元調(diào)控將信息傳遞到外周相關(guān)靶組織或靶器官來(lái)影響攝食行為和誘導(dǎo)GH釋放的[17]。此外,通過(guò)反向液相色譜結(jié)合放射免疫和定量PCR分析進(jìn)一步證實(shí),在下丘腦中g(shù)hre?lin主要來(lái)源并分布于弓狀核[18-19]。但是,有研究報(bào)道,ghrelin除了主要分布于弓狀核神經(jīng)元外,在下丘腦外側(cè)區(qū)、弓狀核、腹正中核、背內(nèi)側(cè)核、室旁核以及第三腦室室管膜層之間的一個(gè)連續(xù)體中均有表達(dá)[20]。而且,王琳等[21]通過(guò)免疫組化和原位雜交分析,進(jìn)一步證實(shí)ghrelin的蛋白及其mR?NA在下丘腦弓狀核、腹內(nèi)側(cè)核、正中隆起及室旁核中均有表達(dá),其陽(yáng)性神經(jīng)纖維均投射至神經(jīng)肽Y(NPY)及刺鼠基因相關(guān)蛋白(AgRP)神經(jīng)元,且該蛋白在各核團(tuán)細(xì)胞中的表達(dá)水平存在一定的差異。
圖3 人ghrelin基因加工成活性多肽Fig.3 From human ghrelin gene to an active peptide[14]
在腺垂體中也有大量ghrelin陽(yáng)性細(xì)胞的分布,但在神經(jīng)垂體中尚未見(jiàn)到該陽(yáng)性細(xì)胞的存在[21]。另有研究表明ghrelin在出生后的垂體中是持續(xù)高水平表達(dá)的,直到青春期該表達(dá)才開(kāi)始下降[14]。此外,ghrelin在腦垂體中,以自分泌或旁分泌的形式也影響著GH的分泌[22-23]。
2.2 ghrelin在外周組織的定位
ghrelin產(chǎn)生于胃X/A樣細(xì)胞,是血漿ghrelin的主要來(lái)源,并參與了攝食信號(hào)從胃部到大腦的反饋傳遞與交流[24-26]。在胃黏膜中,產(chǎn)生ghrelin的細(xì)胞呈封閉式卵圓形,盡管其表達(dá)位置靠近毛細(xì)血管網(wǎng),但與胃的吸收功能無(wú)關(guān)[26]。在腸道中,ghrelin免疫陽(yáng)性細(xì)胞在十二指腸、空腸、回腸及結(jié)腸中均有分布,但其表達(dá)水平從十二指腸到結(jié)腸是逐漸下降的[26-28]。
除此之外,在外周器官胰腺、睪丸、卵巢及腎臟等器官中也均有g(shù)hrelin的表達(dá)。例如,大鼠胰島中有一類細(xì)胞能夠分泌ghrelin[29-31],且在大鼠胰島A細(xì)胞和B細(xì)胞中也均有GHSR的表達(dá)[32-33];在人和大鼠睪丸間質(zhì)細(xì)胞和支持細(xì)胞中也有g(shù)hrelin的表達(dá)[34-35],且在睪丸粗線期精母細(xì)胞、支持細(xì)胞及間質(zhì)細(xì)胞中也均有GHSR的存在[36];而且,在人卵巢成熟和未成熟黃體及門(mén)間質(zhì)細(xì)胞中也均有g(shù)hrelin的表達(dá)[37]。此外,ghrelin mRNA也在腎臟中表達(dá),尤其是在腎小球中[38-39]。
ghrelin的?;桥c其受體結(jié)合產(chǎn)生相應(yīng)生物學(xué)效應(yīng)的前提。從1999年發(fā)現(xiàn)ghrelin以來(lái),人們一直高度關(guān)注著ghrelin激活酶的研究。到目前為止,人們發(fā)現(xiàn)了大量膜結(jié)合O型?;D(zhuǎn)移酶(membrane?bound O?acyl transferases,MBOAT)蛋白家族成員,主要包括MBOAT1?a/b、MBOAT2?a/b、MBOAT4、MBOAT5及LRC4等,但其中大多數(shù)的功能還是未知的,僅MBOAT4是目前功能已知的可?;痝hrelin的MBOAT;而GOAT屬于MBOAT4蛋白,GOAT除了能夠?;痝hrelin,還能夠?;渌舅幔绲獗诫嫘了狨ズ腿舛罐⑺岬?,且ghrelin?;男揎棸l(fā)生在C7和C12之間;該研究進(jìn)一步分析表明,在脊椎動(dòng)物中,即使在斑馬魚(yú)這樣的低等物種中,GOAT也是高度保守的,且斑馬魚(yú)GOAT 60%的氨基酸與人的相同,均具有?;揎椬饔茫辉诓煌锓N的?;饔弥?,ghrelin N端序列均含有7個(gè)高度保守的?;被嵝蛄校碐SSFLSP),斑馬魚(yú)的GOAT能夠辛?;说膅hrelin;且辛酰基化和癸?;莋hrelin受體激活的最佳的配體[40]。另外,在小鼠中進(jìn)一步研究表明,GOAT是ghrelin?;匦璧模?]。綜上所述,ghrelin基因的結(jié)構(gòu)保守性是GOAT?;幕A(chǔ)。
而且,通過(guò)GOAT基因敲除動(dòng)物模型研究進(jìn)一步證實(shí),GOAT是唯一的ghrelin?;福?1]。在人的胃和胰臟中,GOAT的mRNA大多數(shù)是冗余的,而在小鼠中,GOAT的mRNA大部分表達(dá)在ghrelin表達(dá)的細(xì)胞中[42],另外小部分表達(dá)在其他組織中,如心臟、肝臟和結(jié)腸等[3]。此外,生化水平分析表明,GOAT有2個(gè)非常重要的底物,即Proghrelin和短中鏈脂肪酸,GOAT對(duì)ghrelin進(jìn)行?;男揎椫饕l(fā)生在Ser3殘基上[3];后來(lái),發(fā)現(xiàn)在含有脂肪酸輔酶A和GOAT的情況下,去?;膅hrelin會(huì)被?;獹OAT激活其底物是需要輔酶A硫脂的存在,短氨基酸序列GXSFX 是GOAT?;R(shí)別位點(diǎn),G、X、S和F是一個(gè)識(shí)別模型,其順序分別是末端氨基酸甘氨酸(G),依次是任意氨基酸(X)、絲氨酸(S)和苯丙氨酸(F)[43-44]。通過(guò)上述識(shí)別序列與ghrelin高度保守的N端序列比對(duì),發(fā)現(xiàn)該識(shí)別序列對(duì)ghrelin具有極強(qiáng)的特異性,且ghrelin是GOAT唯一的多肽底物。而且,在胃和胰腺組織中GOAT和ghrelin是共表達(dá),GOAT對(duì)ghrelin表現(xiàn)出?;D(zhuǎn)移酶活性,胃是ghrelin酰基化最主要的場(chǎng)所,該?;a(chǎn)物的改變會(huì)引起機(jī)體的代謝適應(yīng)[45-46]。此外,有研究表明,在胰腺中GOAT催化產(chǎn)生?;痝hrelin (acyl?ghrelin,AG),其進(jìn)一步調(diào)節(jié)胰島素(insulin)的分泌[3]。
大量研究表明,ghrelin在機(jī)體食欲、體重和脂肪代謝、胃腸功能、葡萄糖及脂類代謝等生理活動(dòng)的調(diào)節(jié)中發(fā)揮著重要作用。
4.1 參與食欲調(diào)控
在機(jī)體食欲的調(diào)控中,ghrelin對(duì)進(jìn)食頻率的調(diào)節(jié)發(fā)揮著非常重要的作用。在嚙齒動(dòng)物中,神經(jīng)中樞注射ghrelin會(huì)誘發(fā)進(jìn)食效應(yīng),其具有與NPY引起促食欲效應(yīng)相同的功能[47];外周器官注射ghrelin,無(wú)論是在瘦人、胖人、健康人還是營(yíng)養(yǎng)失調(diào)的人群中,都會(huì)增強(qiáng)饑餓感進(jìn)而增加進(jìn)食量,且在能量負(fù)平衡的條件下,體內(nèi)循環(huán)的ghrelin水平均會(huì)上升[48]。然而,AG對(duì)進(jìn)食的調(diào)控與代謝狀態(tài)密切相關(guān)。例如,外源性AG能導(dǎo)致自由進(jìn)食動(dòng)物攝食過(guò)量,而對(duì)禁食或者長(zhǎng)期限制進(jìn)食的動(dòng)物則沒(méi)有產(chǎn)生影響[49]。但是,AG通過(guò)刺激能量攝入的促食欲效應(yīng)主要發(fā)生在下丘腦[50-51]。在下丘腦中,AG可能是通過(guò)哺乳動(dòng)物雷帕霉素靶蛋白復(fù)合物1(mTORC1)/核糖體S6激酶1(S6K1)通路調(diào)控激活弓狀核神經(jīng)元的,尤其是其中NPY和AgRP神經(jīng)元[52-53]。下丘腦AG的主要來(lái)源:第一,通過(guò)體循環(huán)穿越血腦屏障到達(dá)下丘腦;第二,通過(guò)迷走神經(jīng)的傳入神經(jīng)到達(dá)下丘腦;第三,下丘腦中直接被合成,通過(guò)旁分泌而發(fā)揮其作用[54]。此外,通過(guò)AgRP和NPY基因敲除鼠表現(xiàn)出對(duì)外周ghrelin的促食欲效應(yīng)不敏感表明,ghrelin參與攝食和能量平衡的作用是由AgRP神經(jīng)元介導(dǎo)的[55-56];ghrelin還能增加AgRP和NPY mRNA的表達(dá)量[52,57];且在前阿片黑素細(xì)胞皮質(zhì)激素(POMC)神經(jīng)元上能增加γ-氨基丁酸(GABA)能(GABAergic)抑制性突觸而使AgRP神經(jīng)元去極化[58-59]。另外,大量研究已證實(shí),在能量平衡調(diào)節(jié)中,ghrelin結(jié)合AgRP在γ-氨基丁酸功能的調(diào)控中發(fā)揮著重要作用[60-62]。此外,AgRP和NPY能使POMC神經(jīng)元直接超極化并減少α-黑素細(xì)胞刺激素(α?MSH)的合成和釋放,進(jìn)一步抑制該類神經(jīng)元的活性[63-65]。因此,AgRP神經(jīng)元能夠通過(guò)直接機(jī)制(γ-氨基丁酸能突觸)和間接機(jī)制(MCR拮抗劑)負(fù)調(diào)節(jié)POMC的厭食效應(yīng),而ghrelin僅能夠增加進(jìn)食頻率,但不會(huì)影響食量[47,66-67]。
然而,ghrelin也參與了有關(guān)食物線索激勵(lì)機(jī)制的調(diào)控[68]。例如,給健康受試者靜脈注射ghre?lin,功能磁共振成像顯示受試者觀看食物圖片時(shí),腦中杏仁核、前額葉皮質(zhì)、前腦島及紋狀體中部分神經(jīng)元的應(yīng)答反應(yīng)增強(qiáng),而這些部位與編碼食物線索的激勵(lì)價(jià)值有關(guān)聯(lián),其意味著ghrelin不僅參與能量均衡攝食的調(diào)節(jié),也會(huì)通過(guò)增強(qiáng)對(duì)食物相關(guān)線索的刺激反應(yīng)而尋求進(jìn)食快樂(lè)的感受[68]。此外,ghrelin調(diào)節(jié)的進(jìn)食享樂(lè)機(jī)制涉及其對(duì)多巴胺神經(jīng)元活性的調(diào)控[69]。與其對(duì)NPY/AgRP神經(jīng)元的影響相似,ghrelin通過(guò)解偶聯(lián)蛋白2(uncoup?ling protein 2,UCP2)依賴的線粒體呼吸作用和擴(kuò)散的升高以及活性氧(reactive oxygen species,ROS)產(chǎn)量的下降直接激活多巴胺神經(jīng)元[70]。除了直接影響?yīng)剟?lì)系統(tǒng),ghrelin還能通過(guò)調(diào)節(jié)AgRP神經(jīng)元活性間接調(diào)控多巴胺神經(jīng)元。另一方面,發(fā)現(xiàn)預(yù)期進(jìn)食前ghrelin的分泌量達(dá)到最高[67],進(jìn)食后攝入的營(yíng)養(yǎng)素會(huì)抑制ghrelin的水平[71];但食物攝入量對(duì)ghrelin水平降低的影響與攝入的熱量和營(yíng)養(yǎng)素含量成比例,而攝入的脂質(zhì)對(duì)ghrelin的抑制作用卻很?。?2-73]。
另外,大量研究表明,胃源性ghrelin的促食欲效應(yīng)是通過(guò)GHSR1a介導(dǎo)的,但其與受體的作用可能也發(fā)生在下丘腦而影響食欲。例如,BIM?28163與GHSR1a的結(jié)合阻斷了轉(zhuǎn)染細(xì)胞中g(shù)hre?lin與GHSR1a的作用,同時(shí)也阻斷了ghrelin對(duì)GH分泌的刺激效應(yīng)[74]。然而,通過(guò)比較GHSR1a配體BIM?28163對(duì)GH釋放和食欲的影響表明,在下丘腦中可能還存在著與ghrelin結(jié)合的新型受體[74]。例如,相比之下,BIM?28163和ghrelin都能在下丘腦中共同刺激進(jìn)食[74]。但是,腦室內(nèi)的UAG,而非ghrelin,在野生型大鼠和GHSR基因敲除鼠中均能增加食物攝入量,表明在中樞食欲調(diào)控通路中有UAG受體[75]。例如,在禁食野生型雄鼠中,腦室內(nèi)或腹腔內(nèi)注射UAG(3 nmol)會(huì)導(dǎo)致該鼠的食物攝入量減少[76];然而,在禁食雄性C57B16鼠[77]或禁食DDY鼠腦室內(nèi)注射UAG (7.5 nmol)均未發(fā)現(xiàn)有抑制進(jìn)食的作用[75]。外周應(yīng)用ghrelin而不是UAG能夠增加攝食,但GHSR基因敲除鼠在外周注射ghrelin時(shí),而未呈現(xiàn)促食欲效應(yīng)[75,78]。由此表明,通過(guò)ghrelin引起食欲的受體可能不僅僅是GHSR1a。
4.2 參與體重和脂肪代謝調(diào)控
在機(jī)體體重和脂肪代謝的調(diào)控中,ghrelin在能量消耗的調(diào)節(jié)中發(fā)揮著非常重要的作用。在嚙齒動(dòng)物中,慢性注射ghrelin,在未改變進(jìn)食量的情況下,就可增加體重和導(dǎo)致肥胖[47,79]。ghrelin誘導(dǎo)的體重增加,主要體現(xiàn)在脂肪的積累,而縱向骨骼發(fā)育和去脂體重并不會(huì)發(fā)生變化[47]。這種效應(yīng)可以用能量分配來(lái)解釋,脂肪作為主要的能源物質(zhì),可以向碳水化合物轉(zhuǎn)變[80-81]。此外,在嚙齒動(dòng)物中,中樞注射ghrelin可以抑制下丘腦黑皮質(zhì)素系統(tǒng),來(lái)誘導(dǎo)白色脂肪組織生成脂肪[82-83]。在小鼠中,同時(shí)敲除ghrelin及其受體會(huì)增加能量消耗和運(yùn)動(dòng)量,其表明ghrelin對(duì)能量消耗和運(yùn)動(dòng)量會(huì)有一定的抑制作用[81]。綜上所述,ghrelin不僅參與飲食調(diào)節(jié),還在能量消耗調(diào)節(jié)中發(fā)揮著重要作用。
此外,在人體中,血液ghrelin水平與肥胖、胰島素抗性及體重增加成負(fù)相關(guān)性[84-85];相反,與體重下降、低熱量飲食及厭食性神經(jīng)衰弱或神經(jīng)萎縮等病理學(xué)特征成正相關(guān)性[86-87]。在肥胖個(gè)體中,ghrelin低水平主要表現(xiàn)在補(bǔ)償適應(yīng)機(jī)制,這種機(jī)制的目的是降低饑餓刺激,其表明ghrelin自身不是肥胖的關(guān)鍵因素。但是,患有Prader?Willi綜合征過(guò)量攝食的病人,其血液ghrelin水平較高[88]。此外,存在一些罕見(jiàn)的基因突變體,能夠?qū)е耮hrelin自身,Preproghrelin或者ghrelin受體發(fā)生改變,但是這些改變與人類肥胖的關(guān)系很微弱,其影響遠(yuǎn)低于已知肥胖相關(guān)基因突變體的[89-93]。綜上所述,盡管ghrelin不僅參與飲食調(diào)節(jié),還在能量消耗調(diào)節(jié)中發(fā)揮著重要作用,但是,與肥胖相關(guān)基因相比,其可能對(duì)肥胖疾病的發(fā)生影響甚微。
4.3 參與腸胃功能調(diào)控
在機(jī)體胃腸功能的調(diào)控中,ghrelin在進(jìn)食和胃排空的調(diào)節(jié)中發(fā)揮著非常重要的作用。食物攝入是由機(jī)體中樞平衡機(jī)制調(diào)控的,但該機(jī)制是由腸胃引起的飽腹感和饑餓信號(hào)觸發(fā)的。腸胃激素不僅影響大腦,且在腦中的表達(dá)水平遠(yuǎn)高于胃腸道[94]。腸胃激素對(duì)中樞神經(jīng)系統(tǒng)神經(jīng)元的影響或者是直接的或者是通過(guò)迷走神經(jīng)傳入介導(dǎo)的[95]。一些激素,如膽囊收縮素、瘦素、胰高血糖素樣肽-1(glucagon?like peptide?1,GLP?1)及多肽YY3?36等,均能刺激迷走神經(jīng)傳入和激活導(dǎo)致抑制進(jìn)食及胃排空的信號(hào)通路[96]。然而,ghrelin則是刺激進(jìn)食并加速胃排空。在人體[97]、大鼠[98-99]和小鼠[100-101]中,AG是胃排空效應(yīng)的強(qiáng)力促進(jìn)劑,也是胃腸蠕動(dòng)的刺激物。但該效應(yīng)在狗中并未觀察到[102]。GHSR缺失的小鼠中,胃排空確實(shí)存在延誤[103]。這些小鼠胃部肌肉中,GHSR顯著表達(dá),神經(jīng)細(xì)胞數(shù)量減少[103]。在胃腸道中,AG通過(guò)一種雙向機(jī)制,即中樞和外周機(jī)制,誘導(dǎo)肌動(dòng)活動(dòng)[104]。中樞機(jī)制通過(guò)弓狀核、迷走神經(jīng)或者側(cè)間隔中的NPY神經(jīng)元介導(dǎo)[105]。膈下迷走神經(jīng)切斷術(shù)或者辣椒素治療能夠完全消除進(jìn)食與ghrelin作用的生長(zhǎng)激素釋放,說(shuō)明上述作用受迷走神經(jīng)的調(diào)控[106]。此外,腸胃源性ghrelin的促食欲信號(hào)通過(guò)血液被傳輸?shù)焦瓲詈松窠?jīng)元上[107],或者通過(guò)迷走神經(jīng)傳入被傳遞到孤束核[106]。弓狀核中,促食欲神經(jīng)元表達(dá)NPY和AgRP[108],厭食神經(jīng)元表達(dá)POMC、α?MSH和可卡因-苯丙胺調(diào)控轉(zhuǎn)錄肽(CART)[109-110]。94%NPY神經(jīng)元上檢測(cè)到AgRP[108]并且它們的活化均能夠啟動(dòng)進(jìn)食[67]。在94%的NPY神經(jīng)元中存在GHSR1a,與此同時(shí)90%的NPY細(xì)胞會(huì)被腹腔注射的ghrelin激活,其說(shuō)明ghrelin對(duì)以上三者有直接作用[111]。雖然,ghrelin能直接激活促食欲的NPY/AgRP,但是它并不能通過(guò)同樣來(lái)自NPY/AgRP的GABA直接抑制使食欲減退的POMC[20]。ghrelin能夠增加POMC神經(jīng)元上抑制性突觸的數(shù)量,從而通過(guò)降低厭食信號(hào)來(lái)增加食物攝入量[112]。綜上所述,ghrelin是通過(guò)血液傳輸和迷走神經(jīng)傳輸厭食信號(hào)來(lái)調(diào)節(jié)進(jìn)食和胃排空功能。
除此之外,AG通過(guò)一氧化氮(NO)依賴途徑[113],利用劑量依賴的方式,誘導(dǎo)大鼠的胃酸分泌[114]。而且,與進(jìn)食調(diào)控較為相似,UAG與AG的功能是相反的。在胃竇中,UAG抑制胃排空是一種間接的介導(dǎo)效應(yīng),即通過(guò)下丘腦激活厭食的CART和尿皮質(zhì)激素基因的表達(dá)來(lái)調(diào)節(jié)的[76]。
4.4 參與葡萄糖和脂類代謝調(diào)控
在機(jī)體葡萄糖和脂類代謝的調(diào)控中,ghrelin在胰島素敏感性、肉堿軟脂酰轉(zhuǎn)移酶活性及NPY/AgRP神經(jīng)元生物學(xué)功能的調(diào)節(jié)中發(fā)揮著非常重要的作用。此外,最近研究表明,弓狀核AgRP神經(jīng)元可通過(guò)ghrelin調(diào)節(jié)血糖的生物效應(yīng)[115]。用GHS治療老年人和肥胖受試者,發(fā)現(xiàn)能夠誘導(dǎo)高血糖癥和胰島素耐受性,其說(shuō)明ghrelin能微調(diào)胰島素分泌和葡萄糖代謝[116]。有趣的是,靜脈注射AG時(shí)胰島素敏感度降低,AG與UAG合并注射能非常有效地改善這種狀況[117]。AG直接以胰島作為目標(biāo)并且通過(guò)生長(zhǎng)素依賴的通路[118]。與AG不同,UAG能夠引起負(fù)能量平衡[76]。外周注射UAG可以阻斷AG的促食欲效應(yīng),改善胰島素敏感度并減少脂肪[119]。因此,?;头酋;?種形式ghrelin都能發(fā)揮急性和長(zhǎng)期的對(duì)葡萄糖代謝和胰島素敏感度的調(diào)節(jié)[120]。AG能單獨(dú)與GHSR作用而導(dǎo)致肥胖[121],因此,ghrelin參與控制AG/UAG有利于調(diào)控脂肪生成和脂類降解之間的平衡,并且有利于避免胰島素耐受性的發(fā)展[118]。此外,ghrelin活化的分子機(jī)制與線粒體介導(dǎo)的G蛋白偶聯(lián)受體對(duì)神經(jīng)元的功能相關(guān)聯(lián)[109]。ghrelin能刺激下丘腦腺苷酸活化蛋白激酶來(lái)抑制脂肪酸的生物合成、降低下丘腦中丙二酰輔酶A的濃度,從而激活肉堿軟脂酰轉(zhuǎn)移酶[122]。而且,腺苷酸活化蛋白激酶(AMPK)-棕櫚酰轉(zhuǎn)移酶1 (CPT1)軸的激活能改善線粒體的呼吸作用并通過(guò)UCP2減少ROS的生成,且UCP2能緩沖過(guò)多的ROS[112,123]。因此,ghrelin不僅能調(diào)控中樞及外周的脂類代謝[122],而且,通過(guò)激活A(yù)MPK?CPT1?UCP2通路,還能維持NPY/AgRP神經(jīng)元的生物學(xué)功能并增加其活性。綜上所述,ghrelin不僅通過(guò)影響胰島素敏感度參與葡萄糖的代謝,而且還通過(guò)影響肉堿軟脂酰轉(zhuǎn)移酶的活性及NPY/AgRP神經(jīng)元的生物學(xué)功能參與脂類代謝。
綜上所述,在“下丘腦—垂體—消化道”能量代謝系統(tǒng)中,ghrelin作為“脂質(zhì)傳感器”,以“外分泌、自分泌和旁分泌”的分泌方式,通過(guò)“神經(jīng)元突觸、迷走神經(jīng)或/和血液循環(huán)”傳導(dǎo),參與機(jī)體進(jìn)食、體重、腸胃功能及脂肪、葡萄糖及脂類代謝等多項(xiàng)任務(wù)的調(diào)節(jié),進(jìn)一步在下丘腦中協(xié)同調(diào)控機(jī)體的能量代謝。在全球范圍內(nèi),代謝性疾病患者與日俱增,嚴(yán)重影響著人類的健康與發(fā)展。到目前為止,盡管在該系統(tǒng)中g(shù)hrelin參與能量代謝調(diào)控的研究方面已取得巨大突破,但其具體的作用機(jī)理還需進(jìn)一步深究。因此,本綜述將為相關(guān)代謝性疾病病理研究及治療藥物的研發(fā)提供必要的信息與新思路。
參考文獻(xiàn):
[1] HOWARD A D,F(xiàn)EIGHNER S D,CULLY D F,et al.A receptor in pituitary and hypothalamus that functions in growth hormone release[J].Science,1996,273 (5277):974-977.
[2] KOJIMA M,HOSODA H,DATE Y,et al.Ghrelin is a growth?hormone?releasing acylated peptide from stom?ach[J].Nature,1999,402(6762):656-660.
[3] GUTIERREZ J A,SOLENBERG P J,PERKINS D R,et al.Ghrelin octanoylation mediated by an orphan lip?id transferase[J].Proceedings of the National Acade?my of Sciences of the United States of America,2008,105(17):6320-6325.
[4] KANAMOTO N,AKAMIZU T,TAGAMI T,et al.Genomic structure and characterization of the 5’?flan?king region of the human ghrelin gene[J].Endocrinol?ogy,2004,145(9):4144-4153.
[5] NAKAI N,KANEKO M,NAKAO N,et al.Identifica?tion of promoter region of ghrelin gene in human me?dullary thyroid carcinoma cell line[J].Life Sciences,2004,75(18):2193-2201.
[6] ZHANG J V,REN P G,AVSIAN?KRETCHMER O,et al.Obestatin,a peptide encoded by the ghrelin gene,opposes ghrelin’s effects on food intake[J].Science,2005,310(5750):996-999.
[7] BANG A S,SOULE S G,YANDLE T G,et al.Char?acterisation of proghrelin peptides in mammalian tissue and plasma[J].Journal of Endocrinology,2007,192 (2):313-323.
[8] SEIM I,COLLET C,HERINGTON A C,et al.Re?vised genomic structure of the human ghrelin gene and identification of novel exons,alternative splice variants and natural antisense transcripts[J].BMC Genomics,2007,8(1):298.
[9] WEI W,WANG G Y,QI X,et al.Characterization and regulation of the rat and human ghrelin promoters[J].Endocrinology,2005,146(3):1611-1625.
[10] KISHIMOTO M,OKIMURA Y,NAKATA H,et al.Cloning and characterization of the 5′?flanking region of the human ghrelin gene[J].Biochemical and Bio?physical Research Communications,2003,305(1):186-192.
[11] TANAKA M,HAYASHIDA Y,IGUCHI T,et al.Or?ganization of the mouse ghrelin gene and promoter:occurrence of a short noncoding first exon[J].Endo?crinology,2001,142(8):3697-3700.
[12] VIVENZA D,RAPA A,CASTELLINO N,et al.G hrelin gene polymorphisms and ghrelin,insulin,IGF?Ⅰ,leptin and anthropometric data in children and ado?lescents[J].European Journal of Endocrinology,2004,151(1):127-133.
[13] 劉璐,夏利寧,姚剛,等.反芻動(dòng)物Ghrelin研究進(jìn)展[J].動(dòng)物醫(yī)學(xué)進(jìn)展,2013,34(6):149-153.
[14] KOJIMA M,KANGAWA K.Ghrelin:structure and function[J].Physiological Reviews,2005,85(2):495-522.
[15] HORI Y,KAGEYAMA H,GUAN J L,et al.Synaptic interaction between ghrelin?and ghrelin?containing neurons in the rat hypothalamus[J].Regulatory Pep?tides,2008,145(1/2/3):122-127.
[16] LU S,GUAN J L,WANG Q P,et al.Immunocyto?chemical observation of ghrelin?containing neurons in the rat arcuate nucleus[J].Neuroscience Letters,2001,321(3):157-160.
[17] KAGEYAMA H,TAKENOYA F,SHIBA K,et al.Neuronal circuits involving ghrelin in the hypothala?mus?mediated regulation of feeding[J].Neuropep?tides,2010,44(2):133-138.
[18] KAGEYAMA H,KITAMURA Y,HOSONO T,et al.Visualization of ghrelin?producing neurons in the hy?pothalamic arcuate nucleus using ghrelin?EGFP trans?genic mice[J].Regulatory Peptides,2008,145(1/2/3):116-121.
[19] MONDAL M S,DATE Y,YAMAGUCHI H,et al.I?dentification of ghrelin and its receptor in neurons of the rat arcuate nucleus[J].Regulatory Peptides,2005,126(1/2):55-59.
[20] COWLEY M A,SMITH R G,DIANO S,et al.The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regu?lating energy homeostasis[J].Neuron,2003,37(4):649-661.
[21] 王琳,方富貴,章孝榮,等.Ghrelin及其mRNA在大鼠下丘腦和垂體上的定位[J].畜牧獸醫(yī)學(xué)報(bào),2011,42(1):131-135.
[22] KORBONITS M,BUSTIN S A,KOJIMA M,et al.The Expression of the growth hormone secretagogue receptor ligand ghrelin in normal and abnormal human pituitary and other neuroendocrine tumors[J].The Journal of Clinical Endocrinology&Metabolism,2001,86(2):881-887.
[23] KORBONITS M,KOJIMA M,KANGAWA K,et al.Presence of ghrelin in normal and adenomatous human pituitary[J].Endocrine,2001,14(1):101-104.
[24] ARIYASU H,TAKAYA K,TAGAMI T,et al.Stom?ach is a major source of circulating ghrelin,and feed?ing state determines plasma ghrelin?like immunoreac?tivity levels in humans[J].The Journal of Clinical En?docrinology&Metabolism,2001,86(10):4753-4758.
[25] DORNONVILLE DE LA COUR C,BJ?RKQVIST M,SANDVIK A K,et al.A?like cells in the rat stom?ach contain ghrelin and do not operate under gastrin control[J].Regulatory Peptides,2001,99(2/3):141-150.
[26] DATE Y,KOJIMA M,HOSODA H,et al.Ghrelin,a novel growth hormone?releasing acylated peptide,is synthesized in a distinct endocrine cell type in the gas?trointestinal tracts of rats and humans[J].Endocrinolo?gy,2000,141(11):4255-4261.
[27] HOSODA H,KOJIMA M,MATSUO H,et al.Ghrelin and des?acyl ghrelin:two major forms of rat ghrelin peptide in gastrointestinal tissue[J].Biochemical and Biophysical Research Communications,2000,279 (3):909-913.
[28] SAKATA I,NAKAMURA K,YAMAZAKI M,et al.Ghrelin?producing cells exist as two types of cells,closed?and opened?type cells,in the rat gastrointesti?nal tract[J].Peptides,2002,23(3):531-536.
[29] IWAKURA H,HOSODA K,SON C,et al.Analysis of rat insulin II promoter?ghrelin transgenic mice and rat glucagon promoter?ghrelin transgenic mice[J].Journal of Biological Chemistry,2005,280(15):15247-15256.
[30] KOJIMA M,HOSODA H,KANGAWA K.Purifica?tion and distribution of ghrelin:the natural endogenous ligand for the growth hormone secretagogue receptor [J].Hormone Research in Paediatrics,2004,56(Sup?pl.1):93-97.
[31] PRADO C L,PUGH?BERNARD A E,ELGHAZI L,et al.Ghrelin cells replace insulin?producing β cells in two mouse models of pancreas development[J].Pro?ceedings of the National Academy of Sciences of the United States of America,2004,101(9):2924-2929.
[32] DATE Y,NAKAZATO M,HASHIGUCHI S,et al.Ghrelin is present in pancreatic α?cells of humans and rats and stimulates insulin secretion[J].Diabetes,2002,51(1):124-129.
[33] KAGEYAMA H,F(xiàn)UNAHASHI H,HIRAYAMA M,et al.Morphological analysis of ghrelin and its receptor distribution in the rat pancreas[J].Regulatory Pep?tides,2005,126(1/2):67-71.
[34] TENA?SEMPERE M,BARREIRO M L,GONZáLEZ L C,et al.Novel expression and functional role of gh?relin in rat testis[J].Endocrinology,2002,143(2):717-725.
[35] BARREIRO M L,GAYTáN F,CAMINOS J E,et al.Cellular location and hormonal regulation of ghrelin expression in rat testis[J].Biology of Reproduction,2002,67(6):1768-1776.
[36] GAYTAN F,BARREIRO M L,CAMINOS J E,et al.Expression of ghrelin and its functional receptor,the type 1a growth hormone secretagogue receptor,in nor?mal human testis and testicular tumors[J].The Journal of Clinical Endocrinology&Metabolism,2004,89 (1):400-409.
[37] CAMINOS J E,TENA?SEMPERE M,GAYTáN F,et al.Expression of ghrelin in the cyclic and pregnant rat ovary[J].Endocrinology,2003,144(4):1594-1602.
[38] GNANAPAVAN S,KOLA B,BUSTIN S A,et al.The tissue distribution of the mRNA of ghrelin and sub?types of its receptor,GHS?R,in humans[J].The Jour?nal of Clinical Endocrinology&Metabolism,2002,87 (6):2988-2988.
[39] MORI K,YOSHIMOTO A,TAKAYA K,et al.Kid?ney produces a novel acylated peptide,ghrelin[J].FEBS Letters,2000,486(3):213-216.
[40] YANG J,BROWN M S,LIANG G S,et al.Identifica?tion of the acyltransferase that octanoylates ghrelin,an appetite?stimulating peptide hormone[J].Cell,2008,132(3):387-396.
[41] KIRCHNER H,GUTIERREZ J A,SOLENBERG P J,et al.GOAT links dietary lipids with the endocrine control of energy balance[J].Nature Medicine,2009,15(7):741-745.
[42] SAKATA I,YANG J,LEE C E,et al.Colocalization of ghrelin O?acyltransferase and ghrelin in gastric mu?cosal cells[J].American Journal of Physiology?Endo?crinology and Metabolism,2009,297(1):E134-E141.
[43] OHGUSU H,SHIROUZU K,NAKAMURA Y,et al.Ghrelin O?acyltransferase(GOAT)has a preference for n?hexanoyl?CoA over n?octanoyl?CoA as an acyl donor[J].Biochemical and Biophysical Research Communications,2009,386(1):153-158.
[44] YANG J,ZHAO T J,GOLDSTEIN J L,et al.Inhibi?tion of ghrelin O?acyltransferase(GOAT)by oc?tanoylated pentapeptides[J].Proceedings of the Na?tional Academy of Sciences of the United States of A?merica,2008,105(31):10750-10755.
[45] MARTOS?MORENO G á,BARRIOS V,SORIANO?GUILLéN L,et al.Relationship between adiponectin levels,acylated ghrelin levels,and short?term body mass index changes in children with diabetes mellitus type 1 at diagnosis and after insulin therapy[J].Euro?pean Journal of Endocrinology,2006,155(5):757-761.
[46] WORTLEY K E,DEL RINCON J?P,MURRAY J D,et al.Absence of ghrelin protects against early?onset o?besity[J].The Journal of Clinical Investigation,2005,115(12):3573-3578.
[47] TSCH?P M,SMILEY D L,HEIMAN M L.Ghrelin induces adiposity in rodents[J].Nature,2000,407 (6806):908-913.
[48] WREN A M,SEAL L J,COHEN M A,et al.Ghrelin enhances appetite and increases food intake in humans [J].The Journal of Clinical Endocrinology&Metabo?lism,2001,86(12):5992.
[49] ALEN F,CRESPO I,RAMíREZ?LóPEZ M T,et al.Ghrelin?induced orexigenic effect in rats depends on the metabolic status and is counteracted by peripheral CB1 receptor antagonism[J].PLoS One,2013,8(4):e60918.
[50] WREN A M,SMALL C J,WARD H L,et al.The no?vel hypothalamic peptide ghrelin stimulates food in?take and growth hormone secretion[J].Endocrinolo?gy,2000,141(11):4325-4328.
[51] J?NSSON E.The role of ghrelin in energy balance regulation in fish[J].General and Comparative Endo?crinology,2013,187:79-85.
[52] NAKAZATO M,MURAKAMI N,DATE Y,et al.A role for ghrelin in the central regulation of feeding[J].Nature,2001,409(6817):194-198.
[53] STEVANOVIC D,TRAJKOVIC V,MüLLER?LüHLHOFF S,et al.Ghrelin?induced food intake and adiposity depend on central mTORC1/S6K1 signaling [J].Molecular and Cellular Endocrinology,2013,381 (1/2):280-290.
[54] LIM C T,KOLA B,KORBONITS M.The ghrelin/GOAT/GHS?R system and energy metabolism[J].Reviews in Endocrine and Metabolic Disorders,2011,12(3):173-186.
[55] CHEN H Y,TRUMBAUER M E,CHEN A S,et al.Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti?related protein[J].Endocri?nology,2004,145(6):2607-2612.
[56] LUQUET S,PHILLIPS C T,PALMITER R D.NPY/AgRP neurons are not essential for feeding responses to glucoprivation[J].Peptides,2007,28(2):214-225.
[57] KAMEGAI J,TAMURA H,SHIMIZU T,et al.Chron?ic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti?related protein mRNA lev?els and body weight in rats[J].Diabetes,2001,50 (11):2438-2443.
[58] YANG Y L,ATASOY D,SU H H,et al.Hunger states switch a flip?flop memory circuit via a synaptic AMPK?dependent positive feedback loop[J].Cell,2011,146(6):992-1003.
[59] ATASOY D,BETLEY J N,SU H H,et al.Decon?struction of a neural circuit for hunger[J].Nature,2012,488(7410):172-177.
[60] WU Q,BOYLE M P,PALMITER R D.Loss of GABAergic signaling by AgRP neurons to the para?brachial nucleus leads to starvation[J].Cell,2009,137 (7):1225-1234.
[61] WU Q,CLARK M S,PALMITER R D.Deciphering a neuronal circuit that mediates appetite[J].Nature,2012,483(7391):594-597.
[62] WU Q,PALMITER R D.GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin?independent mechanism[J].European Journal of Phar?macology,2011,660(1):21-27.
[63] ROSEBERRY A G,LIU H Y,JACKSON A C,et al.Neuropeptide Y?mediated inhibition of proopiomelano?cortin neurons in the arcuate nucleus shows enhanced desensitization in ob/ob mice[J].Neuron,2004,41 (5):711-722.
[64] SMITH M A,HISADOME K,AL?QASSAB H,et al.Melanocortins and agouti?related protein modulate the excitability of two arcuate nucleus neuron populations by alteration of resting potassium conductances[J].The Journal of physiology,2007,578(2):425-438.
[65] CYR N E,TOORIE A M,STEGER J S,et al.Mecha?nisms by which the orexigen NPY regulates anorexi?genic α?MSH and TRH[J].America Journal of Physi?ology?Endocrinology and Metabolism,2013,304(6):E640-E650.
[66] CUMMINGS D E,NALEID A M,F(xiàn)IGLEWICZ LAT? TEMANN D P.Editorial:ghrelin:a link between ener?gy homeostasis and drug abuse?[J].Addiction Biol?ogy,2007,12(1):1-5.
[67] CUMMINGS D E,PURNELL J Q,F(xiàn)RAYO R S,et al.A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans[J].Diabetes,2001,50(8):1714-1719.
[68] MALIK S,MCGLONE F,BEDROSSIAN D,et al.Ghrelin modulates brain activity in areas that control appetitive behavior[J].Cell Metabolism,2008,7(5):400-409.
[69] DIETRICH M O,BOBER J,F(xiàn)ERREIRA J G,et al.AgRP neurons regulate development of dopamine neu?ronal plasticity and nonfood?associated behaviors[J].Nature Neuroscience,2012,15(8):1108-1110.
[70] ANDREWS Z B,ERION D,BEILER R,et al.Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2?dependent mitochondrial mechanism[J].The Journal of Neuroscience,2009,29(45):14057-14065.
[71] TSCH?P M,WAWARTA R,RIEPL R L,et al.Post?prandial decrease of circulating human ghrelin levels [J].Journal of Endocrinological Investigation,2001,24(6):RC19-RC21.
[72] FOSTER?SCHUBERT K E,OVERDUIN J,PRU?DOM C E,et al.Acyl and total ghrelin are suppressed strongly by ingested proteins,weakly by lipids,and bi?phasically by carbohydrates[J].The Journal of Clini?cal Endocrinology&Metabolism,2008,93(5):1971-1979.
[73] MONTELEONE P,BENCIVENGA R,LONGOBAR?DI N,et al.Differential responses of circulating ghrelin to high?fat or high?carbohydrate meal in healthy women[J].The Journal of Clinical Endocrinology&Metabolism,2003,88(11):5510-5514.
[74] HALEM H A,TAYLOR J E,DONG J Z,et al.A no?vel growth hormone secretagogue?1a receptor antago?nist that blocks ghrelin?induced growth hormone secre?tion but induces increased body weight gain[J].Neu?roendocrinology,2005,81(5):339-349.
[75] TOSHINAI K,YAMAGUCHI H,SUN Y X,et al.Des?acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue re?ceptor[J].Endocrinology,2006,147(5):2306-2314.
[76] ASAKAWA A,INUI A,F(xiàn)UJIMIYA M,et al.Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin[J].Gut,2005,54(1):18-24.
[77] NEARY N M,DRUCE M R,SMALL C J,et al.Acy?lated ghrelin stimulates food intake in the fed and fas?ted states but desacylated ghrelin has no effect[J].Gut,2006,55(1):135.
[78] SUN Y X,WANG P,ZHENG H,et al.Ghrelin stimu?lation of growth hormone release and appetite is medi?ated through the growth hormone secretagogue recep?tor[J].Proceedings of the National Academy of Sci?ences of the United States of America,2004,101 (13):4679-4684.
[79] THEANDER?CARRILLO C,WIEDMER P,CET?TOUR?ROSE P,et al.Ghrelin action in the brain con?trols adipocyte metabolism[J].The Journal of Clinical Investigation,2006,116(7):1983-1993.
[80] LONGO K A,CHAROENTHONGTRAKUL S,GIULIANA D J,et al.Improved insulin sensitivity and metabolic flexibility in ghrelin receptor knockout mice [J].Regulatory Peptides,2008,150(1/2/3):55-61.
[81] PFLUGER P T,KIRCHNER H,GüNNEL S,et al.Simultaneous deletion of ghrelin and its receptor in?creases motor activity and energy expenditure[J].A?merican Journal of Physiology?Gastrointestinal and Liver Physiology,2008,294(3):G610-G618.
[82] NOGUEIRAS R,WIEDMER P,PEREZ?TILVE D,et al.The central melanocortin system directly controls peripheral lipid metabolism[J].The Journal of Clinical Investigation,2007,117(11):3475-3488.
[83] SANGIAO?ALVARELLOS S,VáZQUEZ M J,VA?RELA L,et al.Central ghrelin regulates peripheral lip?id metabolism in a growth hormone?independent fash?ion[J].Endocrinology,2009,150(10):4562-4574.
[84] MCLAUGHLIN T,ABBASI F,LAMENDOLA C,et al.Plasma ghrelin concentrations are decreased in insu?lin?resistant obese adults relative to equally obese insu?lin?sensitive controls[J].The Journal of Clinical En?docrinology&Metabolism,2004,89(4):1630-1635.
[85] TSCH?P M,WEYER C,TATARANNI P A,et al.Circulating ghrelin levels are decreased in human obe?sity[J].Diabetes,2001,50(4):707-709.
[86] CUMMINGS D E,WEIGLE D S,F(xiàn)RAYO R S,et al.Plasma ghrelin levels after diet?induced weight loss or gastric bypass surgery[J].New England Journal of Medicine,2002,346(21):1623-1630.
[87] NAGAYA N,UEMATSU M,KOJIMA M,et al.Ele?vated circulating level of ghrelin in cachexia associated with chronic heart failure:relationships between ghre?lin and anabolic/catabolic factors[J].Circulation, 2001,104(17):2034-2038.
[88] DELPARIGI A,TSCH?P M,HEIMAN M L,et al.High circulating ghrelin:a potential cause for hy?perphagia and obesity in prader?willi syndrome[J].The Journal of Clinical Endocrinology&Metabolism,2002,87(12):5461-5464.
[89] HINNEY A,HOCH A,GELLER F,et al.Ghrelin gene:identification of missense variants and a frame?shift mutation in extremely obese children and adoles?cents and healthy normal weight students[J].The Journal of Clinical Endocrinology&Metabolism,2002,87(6):2716-2716.
[90] KORBONITS M,GUEORGUIEV M,O’GRADY E,et al.A variation in the ghrelin gene increases weight and decreases insulin secretion in tall,obese children [J].The Journal of Clinical Endocrinology&Metabo?lism,2002,87(8):4005-4008.
[91] PANTEL J,LEGENDRE M,CABROL S,et al.Loss of constitutive activity of the growth hormone secreta?gogue receptor in familial short stature[J].Journal of Clinical Investigation,2006,116(3):760-768.
[92] UKKOLA O,RAVUSSIN E,JACOBSON P,et al.Muta?tions in the preproghrelin/ghrelin gene associated with obesity in humans[J].The Journal of Clinical Endocri?nology&Metabolish,2001,86(8):3996-3999.
[93] UKKOLA O,RAVUSSIN E,JACOBSON P,et al.Role of ghrelin polymorphisms in obesity based on three different studies[J].Obesity Research,2002,10 (8):782-791.
[94] DOCKRAY G J.Immunochemical evidence of chole?cystokinin?like peptides in brain[J].1976,264 (5586):568-570.
[95] DAVISON J S.Activation of vagal gastric mechanore?ceptors by cholecystokinin[C]//Proceedings of the Western Pharmacology Society.[S.l.]:[s.n.],1986.
[96] DOCKRAY G J.The G.L.brown lecture regulatory peptides and the neuroendocrinology of gut?brain rela?tionS[J].Quarterly Journal of Experimental Physiolo?gy,1988,73(5):703-727.
[97] TACK J,DEPOORTERE I,BISSCHOPS R,et al.In?fluence of ghrelin on interdigestive gastrointestinal motility in humans[J].Gut,2006,55(3):327-333.
[98] TRUDEL L,TOMASETTO C,RIO M C,et al.Ghre?lin/motilin?related peptide is a potent prokinetic to re?verse gastric postoperative ileus in rat[J].American Journal of Physiology?Gastrointestinal and Liver Phys?iology,2002,282(6):G948-G952.
[99] XU L,GONG Y L,WANG H B,et al.The stimulating effect of ghrelin on gastric motility and firing activity of gastric?distension?sensitive hippocampal neurons and its underlying regulation by the hypothalamus[J].Experimental Physiology,2014,99(1):123-135.
[100]ARIGA H,TSUKAMOTO K,CHEN C,et al.Endoge?nous acyl ghrelin is involved in mediating spontaneous phaseⅢ?like contractions of the rat stomach[J].Neu?rogastroenterology&Motility,2007,19(8):675-680.
[101]ZHENG J,ARIGA H,TANIGUCHI H,et al.Ghrelin regulates gastric phaseⅢ?like contractions in freely moving conscious mice[J].Neurogastroenterology&Motility,2009,21(1):78-84.
[102]OHNO T,MOCHIKI E,KUWANO H.The roles of motilin and ghrelin in gastrointestinal motility[J].In?ternational Journal of Peptides,2010,2010:Article ID 820794.
[103]YANG C G,WANG W G,YAN J,et al.Gastric mo?tility in ghrelin receptor knockout mice[J].Molecular Medicine Reports,2013,7(1):83-88.
[104]KORBONITS M,GOLDSTONE A P,GUEORGUIEV M,et al.Ghrelin?a hormone with multiple functions [J].Frontiers in Neuroendocrinology,2004,25(1):27-68.
[105]GONG Y L,XU L,GUO F F,et al.Effects of ghrelin on gastric distension sensitive neurons and gastric mo?tility in the lateral septum and arcuate nucleus regula?tion[J].Journal of Gastroenterology,2014,49(2):219-230.
[106]DATE Y.Ghrelin and the vagus nerve[J].Methods in Enzymology,2012,514:261-269.
[107]HEWSON A K,DICKSON S L.Systemic administra?tion of ghrelin induces Fos and Egr?1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats [J].Journal of Neuroendocrinology,2000,12(11):1047-1049.
[108]HAHN T M,BREININGER J F,BASKIN D G,et al.Coexpression of Agrp and NPY in fasting?activated hypothalamic neurons[J].Nature Neuroscience,1998,1(4):271-272.
[109]ANDREWS Z B.Central mechanisms involved in the orexigenic actions of ghrelin[J].Peptides,2011,32 (11):2248-2255.
[110]ZHENG H Y,CORKERN M,STOYANOVA I,et al.Peptides that regulate food intake:appetite?inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons[J].America Journal of Physiology:Regulatory,Integrative Com?parative Physiology,2003,284(6):R1436-R1444.
[111]WANG L X,SAINT?PIERRE D H,TACHé Y.Pe?ripheral ghrelin selectively increases Fos expression in neuropeptide Y?synthesizing neurons in mouse hypo?thalamic arcuate nucleus[J].Neuroscience Letters,2002,325(1):47-51.
[112]ANDREWS Z B,LIU Z W,WALLLINGFORD N,et al.UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals[J].Nature,2008,454(7206):846-851.
[113]BILGIN H M,TUMER C,DIKEN H,et al.Role of ghrelin in the regulation of gastric acid secretion invol?ving nitrergic mechanisms in rats[J].Physiological Research,2008,57(4):563-568.
[114]MASUDA Y,TANAKA T,INOMATA N,et al.Ghre?lin stimulates gastric acid secretion and motility in rats [J].Biochemical and Biophysical Research Communi?cations,2000,276(3):905-908.
[115]WANG Q,LIU C,UCHIDA A,et al.Arcuate AgRP neurons mediate orexigenic and glucoregulatory ac?tions of ghrelin[J].Molecular Metabolism,2014,3 (1):64-72.
[116]MULLER A F,JANSSEN J A,HOFLAND L J,et al.Blockade of the growth hormone(GH)receptor un?masks rapid GH?releasing peptide?6?mediated tissue?specific insulin resistance[J].The Journal of Clinical Endocrinology&Metabolism,2001,86(2):590-593.
[117]GAUNA C,MEYLER F M,JANSSEN J A M J L,et al.Administration of acylated ghrelin reduces insulin sensitivity,whereas the combination of acylated plus unacylated ghrelin strongly improves insulin sensitivity [J].The Journal of Clinical Endocrinology&Metabo?lism,2004,89(10):5035-5042.
[118]DELHANTY P J D,VAN DER LELY A J.Ghrelin and glucose homeostasis[J].Peptides,2011,32(11):2309-2318.
[119]ZHANG W Z,CHAI B X,LI J Y,et al.Effect of des?acyl ghrelin on adiposity and glucose metabolism[J].Endocrinology,2008,149(9):4710-4716.
[120]VAN DER LELY A J.Ghrelin and new metabolic frontiers[J].Hormone Research in Paediatrics,2009,71(Suppl.1):129-133.
[121]MUCCIOLI G,PONS N,GHè C,et al.Ghrelin and des?acyl ghrelin both inhibit isoproterenol?induced li?polysis in rat adipocytes via a non?type 1a growth hor?mone secretagogue receptor[J].European Journal ofPharmacology,2004,498(1/2/3):27-35.
[122]L?PEZ M,LAGE R,SAHA A K,et al.Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin[J].Cell Metabolisn,2008,7(5):389-399.
[123]ANDREWS Z B,HORVATH B,BARNSTABLE C J,et al.Uncoupling protein?2 is critical for nigral dopa?mine cell survival in a mouse model of Parkinson’s disease[J].The Journal of Neuroscience,2005,25 (1):184-191.
Ghrelin and Energy Metabolism
ZHANG Na
1
DING Yanping
2
WANG Jianlin
1
SHAO Baoping
1?
(責(zé)任編輯 王智航)
(1.Institute of Zoology and Developmental Biology,School of Life Sciences,Lanzhou University,Lanzhou 730000,China;2.College of Life Sciences,Northwest Normal University,Lanzhou 730070,China)
?Corresponding author,associate professor,E?mail:shaobp@lzu.edu.cn
Abstract:Ghrelin is the only endogenous ligand of growth hormone secretagogue receptor(GHSR),and is also the only appetite?stimulating hormone in the periphery.Ghrelin plays an important role in the regulation of the appetite,weight,gastrointestinal function,fat metabolism,glucose metabolism,and lipid metabolism,ect.The acidylation of ghrelin plays an essential role in producing the biological effects combining with its receptor.The article summarized that the function patterns and molecular mechanisms of ghrelin in energy metabolism.[Chinese Journal of Animal Nutrition,2015,27(8):2349?2360]
Key words:energy metabolism;ghrelin;acylation;molecular mechanism
通信作者:?邵寶平,副教授,碩士生導(dǎo)師,E?mail:shaobp@lzu.edu.cn
作者簡(jiǎn)介:張 娜(1988—),女,山東平度人,碩士研究生,從事高原動(dòng)物營(yíng)養(yǎng)代謝研究。E?mail:nzhang2013@lzu.edu.cn
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(青年基金31000190,地區(qū)基金31060141);蘭州大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金
收稿日期:2015-02-06
doi:10.3969/j.issn.1006?267x.2015.08.006
文章編號(hào):1006?267X(2015)08?2349?12
文獻(xiàn)標(biāo)識(shí)碼:A
中圖分類號(hào):S852.2
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2015年7期