亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Derivative-free characterizations of a class of M?bius invariant spaces

        2015-12-05 04:10:14HANJinzhuangZHOUJizhen
        安徽大學學報(自然科學版) 2015年2期

        HAN Jin-zhuang,ZHOU Ji-zhen

        (1.School of Mathematics,Hulunbeier University,Inner Mongolia,Hulunbeier 021008,China;2.School of Sciences,Anhui University of Science and Technology,Huainan 232001,China)

        On the other hand,by Fubini’s Theorem,we have

        0 Introduction

        Throughout this paper,the unit disc is denoted byD.For any givena∈D,let

        be a M¨obius transformation of the unit disc.LetK:(0,∞]→ (0,∞]be a right-continuous and nondecreasing function.For 0<p< ∞ ,the spaceQK(p,p-2)consists of all analytic functionsfonDsatisfying

        wheredλ(z)=(1-|z|2)-2dA(z).Note thatdA(z)is the Eculidean area measure onDso thatA(D)=1.Equipped with the norm‖f‖=|f(0)|+‖f‖K,p,the spaceQK(p,p-2)is a Banach space whenp≥1.We know that the spaceQK(p,p-2)is a subset of the Bloch space[1].The basic properties ofQK(p,p-2)spaces can be founded in[1].Ifp=2,thenQK(p,p-2)spaces are justQKspaces[2-3].IfK(0)>0andp>2,then the spaceQK(p,p-2)coincides with the analytic Besov space.

        It is clear that the spaceQK(p,p-2)is Mobius invariant,i.e.,‖f?φa‖K,p=‖f‖K,p.The spaceQK(p,p-2)is nontrivial if and only if it contains all polynomials[4],that is

        Making a change of variables in the above integral and simplifying the result using polar coordinates,we obtain that the spaceQK(p,p-2)is nontrivial if and only if

        In the paper,we may need two conditions onKas follows

        and

        where

        The derivative-free characterizations ofQKspaces have been study in many papers[4-5].In this paper,we study the derivative-free characterization inQK(p,p-2)spaces by applying the Bergman metric andp-mean oscillation.The technique is suggested by the theory of Bergman space.The result is important which enriches the theory ofQKtype spaces.It has important significance in application.

        Furthermore,we suppose that the nondecreasing functionKsatisfiesK(2t)≈K(t),that is,K(2t)?K(t)?K(2t).Note,K(2t)?K(t)means that there exists a constantC(independent oft),such that

        1 Derivative-Free characterizations of QK(p,p-2)spaces

        In this section,we give some derivative-free characterizations ofQK(p,p-2)spaces.We now introduce some basic definitions.

        Recall that the Bergman metric ofDis given by

        For anyz∈Dandr>0,the pseudo-h(huán)yperbolic disc is defined by

        The pseudo-h(huán)yperbolic discD(z,r)is an Euclidean disc[5].Let|D(z,r)|be the Euclidean area ofD(z,r).Obviousy,|D(z,r)|≈ (1-|z|2)2aszapproaches the unit circle for any givenr>0.It is well known that

        Iffis an analytic function onD,we define the oscillation offatzin the Bergman metric as

        Thep-mean oscillation offatzin the Bergman metric is defined by

        where

        andp>0.Ifp=2,we call it the mean oscillation offatzin the Bergman metric.See section 7.1 of[6].Furthermore,we define

        forp,r>0.

        The following result will be needed in the proof of the main theorem.

        Lemma 1[7]LetKsatisfy the condition(3).For any givenz∈D,then

        Lemma 2[8]Let 0<p< ∞,-1<q< ∞ .Iffis analytic onD,then

        Lemma 3LetKsatisfy the condition(3)and 0<p< ∞ .Letfbe analytic onD,then

        if and only if

        ProofBy Lemma 2,we have

        Note that

        Make a change of variables,Then

        Given a fixedr>0,then

        for allw∈D(z,r).Proposition 4.3.8of[6]and(4)imply

        On the other hand,by Fubini’s Theorem,we have

        Lemma 1Gives

        The proof is complete.

        Theorem 1LetKsatisfy the condition(3).Ifr>0,0<p<∞ ,then the following conditions are equivalent for all analyticsfonD.

        (1)The functionfbelongs toQK(p,p-2)spaces.

        ProofWe make two change variablesu=φa(z)andv=φa(w).Then

        Lemma 3implies

        Take the supremum overa∈Dboth side.This shows(1)?(2).

        By Proposition 4.3.8of[6],we have the following inequality

        Replacingfbyf-f(z),then

        for all analyticsfandz,w∈D.This means

        whenw∈D(z,r).Ifw∈D(z,r),thenD(w,r)?D(z,2r)and|D(z,2r)|≈|D(w,r)|.By(5)we have

        This gives

        We have showed(2)? (3).Ifw,u∈D(z,r),then

        So we have

        This gives

        Then we obtain

        This shows(3)?(4).

        We apply(6)to get the following inequality

        This proves(4)?(5).

        Letfbe analytic onDwithf(0)=0.Denote bySinceis subharmonic forp>0,we have

        Replacingfbyf?φz-f(z),we obtain

        Making a change of variables,we have

        So(5)implies(1).The proof is complete.

        Denote by?Dthe unit circle.For a subarcI??D,letθbe the midpoint ofIand denote

        where|I|denotes the length ofI.If|I|>1,we setS(I)=D.S(I)is called the Carleson box.A positive measure dμis said to be aK-Carleson measure onDprovided

        IfKsatisfies the conditions(2)and(3),then dμis aK-Carleson measure if and only if

        by Theorem 3.1of[3].By Theorem 1,we have the following result.

        Corollary 1LetKsatisfy the conditions(2)and(3).Ifr>0,0<p< ∞ ,then the following conditions are equivalent for all analyticsfonD.

        (1)The functionfbelongs toQK(p,p-2)spaces.

        (3)(ωr(f)(z))pdλ(z)is aK-Carleson measure.

        (4)(MOp,r(f)(z))pdλ(z)is aK-Carleson measure.

        (5)(Op,r(f)(z))pdλ(z)is aK-Carleson measure.

        2 Derivative-Free characterizations of QK,0(p,p-2)spaces

        For 0<p< ∞ ,the spaceQK,0(p,p-2)consists of all analytic functionsfonDsatisfying

        A positive measure dμis said to be a vanishingK-Carleson measure onDprovided

        IfKsatisfies the conditions(2)and(3),then dμis a vanishingK-Carleson meansure if and only if

        by Theorem 3.1of[3].

        Carefully checking the proof of Theorem 1and Corollary 1.We see that the little version of Theorem 1and Corollary 1hold as well,from which we obtain the following results.

        Theorem 2LetKsatisfy the condition(3).Ifr>0,0<p<∞ ,then the following conditions are equivalent for all analyticsfonD.

        Corollary 2LetKsatisfy the conditions(2)and(3).Ifr>0,0<p< ∞ ,then the following conditions are equivalent for all analyticsfonD.

        (1)The functionfbelongs toQK,0(p,p-2)spaces.

        (3)(ωr(f)(z))pdλ(z)is a vanishingK-Carleson measure.

        (4)(MOp,r(f)(z))pdλ(z)is a vanishingK-Carleson measure.

        (5)(Op,r(f)(z))pdλ(z)is a vanishingK-Carleson measure.

        We leave the details of Theorem 2and Corollary 2to the interested reader.

        [1]Wulan H,Zhou J Z.QKtype spaces of analytic functions[J].J Funct Spaces Appl,2006,4:73-84.

        [2]Essen M,Wulan H.On analytic and meromorphic functions and spaces ofQKtype[J].Illinois J Math,2002,46:1233-1258.

        [3]Essen M,Wulan H,Xiao J.Several function-theoretic characterizations of M¨obius invariantQKspaces[J].J Funct Anal,2006,230:78-115.

        [4]Arazy J,F(xiàn)isher S,Peete J.Mobius invariant functions spaces[J].J Reine Angew Math,1985,363:110-145.

        [5]Garnett J.Bounded analytic functions[M].New York:Academic Press,1982.

        [6]Zhu K H.Operator theory in function spaces[M].New York:Marcel Dekker,1990.

        [7]Wulan H,Zhu K.Derivative-free characterizations ofQKspaces[J].J Austrail Math Soc,2007,82:283-295.

        [8]Rattya J.N-th derivative,characterization,mean growth of derivatives andF(p,q,s)[J].Bull Austral Math Soc,2003,68:405-421.

        y111111少妇影院无码| 国产一区二区三区毛片| 在线亚洲国产一区二区三区| 91精品久久久老熟女91精品 | 日韩有码中文字幕av| 亚洲视频在线免费不卡| 国产精品国产三级国产密月| 中文字幕aⅴ人妻一区二区| 欧洲成人午夜精品无码区久久| 人妻精品丝袜一区二区无码AV| 久久久一本精品久久久一本| 天堂网站一区二区三区| 亚洲日韩av无码中文字幕美国 | 永久免费人禽av在线观看 | 久久久噜噜噜噜久久熟女m| 国产女同舌吻1区2区| 色哟哟精品视频在线观看| 中文字幕喷水一区二区| 亚洲av偷拍一区二区三区| 免费av日韩一区二区| 激情内射日本一区二区三区| 亚洲аv天堂无码| 国产成人久久综合第一区| 熟妇人妻无乱码中文字幕av| 欧美大屁股xxxx| 国产精品玖玖玖在线资源| 一区=区三区国产视频| 精品午夜福利在线观看| 久久人妻少妇嫩草av无码专区| 中文字幕亚洲无线码在一区| 一区二区三区国产偷拍| 国产成人久久精品一区二区三区| 怡红院a∨人人爰人人爽| 在线观看国产内射视频| 国产蜜桃传媒在线观看| 少妇熟女天堂网av| 日韩中文字幕欧美亚洲第一区| 黑丝国产精品一区二区| 亚洲国产精品18久久久久久| 国产剧情麻豆女教师在线观看| 久久无码人妻一区=区三区|