潘紅飛,夏鐵成
(上海大學(xué)理學(xué)院,上海 200444)
混合AKNS-CLL方程的N-孤子解
潘紅飛,夏鐵成
(上海大學(xué)理學(xué)院,上海 200444)
由Hirota方法推導(dǎo)出混合AKNS-CLL方程的雙線性導(dǎo)數(shù)方程和N-孤子解,并比較混合AKNS-CLL方程、AKNS方程和CLL方程的單孤子解|q|和|r|的圖像,可以發(fā)現(xiàn)混合AKNS-CLL方程的特征形狀不同于經(jīng)典AKNS和CLL方程解.最后,通過約化,得到混合非線性Schr¨odinger方程的N-孤子解.
混合AKNS-CLL方程;混合非線性Schr¨odinger方程;N-孤子解;Hirota方法
非線性Schr¨odinger方程是非線性波理論研究所關(guān)注的一個問題.這一類方程的物理背景來源于非線性光學(xué)、非線性水波和等離子物理學(xué)等[1-4].許多Schr¨odinger方程的精確解可以通過Hirota雙線性法、反散射變換法、Jacobi橢圓法、tanh函數(shù)法等方法獲得[5-8],Schr¨odinger方程的多分量和超可積情形也是當(dāng)前研究的熱點[9-11].
本工作考慮如下混合AKNS-CLL方程:
式中,q=q(x,t),r=r(x,t)是關(guān)于x和t的復(fù)函數(shù),a,b∈C.當(dāng)a=1,b=0和a=0,b=1時,方程(1)分別對應(yīng)于二階等譜AKNS方程[12-13]和帶導(dǎo)數(shù)的非線性Schr¨odinger方程[14-15].當(dāng)r=q?時,令t為-it,x為ix,則方程(1)約化為混合非線性Schr¨odinger方程(combined nonlinear Schr¨odinger equation,CNSE),即
令
并利用恒等式
則方程(1)轉(zhuǎn)化為雙線性導(dǎo)數(shù)方程:
式中,D是Hirota雙線性算子,定義為
為求出混合AKNS-CLL方程(1)的N-孤子解,將f,g,s,h按參數(shù)ε展成級數(shù),則有
將式(6)代入方程(5),并比較ε的同次冪系數(shù),可得
由式(7)和(8)可知,g(1)和h(1)有如下線性指數(shù)函數(shù)形式的解:
由式(3),可推得當(dāng)ε=1時方程(1)的單孤子解為
特別地,當(dāng)(a,b)=(1,0)時,式(12)為二階等譜AKNS方程的單孤子解[13];當(dāng)(a,b)=(0,1)時,式(15)為帶導(dǎo)數(shù)的非線性Schr¨odinger方程的單孤子解[16].作為對比,本工作給出由式(12)決定的|q|和|r|在4種情形時的圖像(見圖1).通過選擇不同的參數(shù)k1,l1,可以發(fā)現(xiàn)混合AKNS-CLL方程有類似于尖孤子解(peakon soliton)的性態(tài)(見圖1(d)),這種現(xiàn)象是單一AKNS方程或CLL方程所不具有的一類特性.AKNS-CLL方程與AKNS方程、CLL方程存在本質(zhì)的區(qū)別.
圖1 方程(1)的單孤子解Fig.1 One soliton solutions of Eq.(1)
將式(13)代入式(9)和(10),可得
將式(13)和(14)代入式(7)和(8)的第二式,有
將式(13)~(15)代入式(9)和(10)的第二式,又可得到
根據(jù)式(7)~(10),可取
所以,有
因此,令ε=1,即可求得方程(1)的雙孤子解(見式(3)).特別地,當(dāng)(a,b)=(1,0)時,可引出二階等譜AKNS方程的雙孤子解[13];當(dāng)(a,b)=(0,1)時,可求得帶導(dǎo)數(shù)非線性Schr¨odinger方程的雙孤子解[16].
一般地,方程(1)的關(guān)于f,g,h和s的N-孤子解(N=1,2,···)為
式中,
A1(μ),A2(μ)表示當(dāng)μj(j=1,2,···,2N)取所有可能的0或1時,還需分別滿足
作為應(yīng)用,考慮混合非線性Schr¨odinger方程(式(2)),并通過方程(1)的約化給出雙線性導(dǎo)數(shù)方程和N-孤子解.取s=f?,h=g?,并令t為-it,x為ix,則方程(4)約化為式(2)的雙線性導(dǎo)數(shù)方程,即
式中,
致謝感謝上海大學(xué)數(shù)學(xué)系陳登遠(yuǎn)教授的有益指導(dǎo).
[1]Johnson R S.A modern introduction to the mathematical theory of water waves[M].New York:Cambridge University Press,1997:298-345.
[2]Belashov V Y,Vladimirov S V.Solitary wave in dispersive complex media[M].Berlin:Springer-Verlag,2005.
[3]Kivshar Y S,Agrawal G P.Optical solitons from fibers to photonic crystals[M].New York:Academic Press,2003:3-25.
[4]Maimistov A I.Solitons in nonlinear optics[J].Quantum Electronics,2010,40:756-781.
[5]Zayed E M E,Zedan H A,Gepreel K A.On the solitary wave solutions for nonlinear Hirota-Satsuma coupled KdV of equations[J].Chaos,Solitons and Fractals,2004,22(2):285-303.
[6]Khuri S A.A complex tanh-function method applied to nonlinear equations of Schr¨odinger type[J].Chaos,Solitons and Fractals,2004,20(5):1037-1040.
[7]Ablowitz M J,Clarkson P A.Solitons,nonlinear evolution equations and inverse scattering[M].Cambridge:Cambridge University Press,1991:70-100.
[8]Hirota R.The direct methods in soliton theory[M].Cambridge:Cambridge University Press,2004:157-168.
[9]Tsuchida T,Wadati M.New integrable systems of derivative nonlinear Schr¨odinger equations with multiple components[J].Physics Letter A,1999,257:53-64.
[10]Roelofs G H M,Kersten P H M.Supersymmetric extensions of the nonlinear Schr¨odinger equation:symmetries and coverings[J].Journal of Mathematical Physics,1992,33(6):2185-2206.
[11]He G L,Zhai Y Y,Geng X G.A super hierarchy of coupled derivative nonlinear Schr¨odinger equations and conservation laws[J].Communications in Nonlinear Science and Numerical Simulation,2014,19(7):2228-2233.
[12]Chen D Y,Zhang D J,Bi J B.New double Wronskian solutions of the AKNS equation[J]. Science China Mathematics,2008,51(1):55-69.
[13]Ablowitz M J,Kaup D J,Newell A C,et al.The inverse scattering transform-Fourier analysis for nonlinear problem[J].Studies in Applied Mathematics,1974:53(4):249-315.
[14]Chen H H,Lee Y C,Liu C S.Integrability of nonlinear Hamiltonian systems by inverse scattering method[J].Physica Scripta,1979,20:490-492.
[15]Chen D Y.k-constraint for the modified Kadomtsev-Petviashvili system[J].Journal of Mathematical Physics,2002,43(4):1956-1965.
[16]Zhai W,Chen D Y.N-soliton solutions of general nonlinear Schr¨odinger equation with derivative[J].Communications in Theoretical Physics,2008,49(5):1101-1104.
N-soliton solutions of combined AKNS-CLL equation
PAN Hong-fei,XIA Tie-cheng
(College of Sciences,Shanghai University,Shanghai 200444,China)
The bilinear form and N-soliton solutions are derived for a combined AKNSCLL equation using the Hirota approach.These solutions are novel in general.The one-soliton solutions of the combined AKNS-CLL equation,AKNS equation and CLL equation were drawn.Also,the combined AKNS-CLL equation is given a different characteristic from the classical AKNS and CLL equations.The bilinear form and N-soliton solutions of combined nonlinear Schr¨odinger equation are obtained by reduction.
combined AKNS-CLL equation;combined nonlinear Schr¨odinger equation;N-soliton solutions;Hirota approach
O 175.2
A
1007-2861(2015)06-0709-08
10.3969/j.issn.1007-2861.2014.04.002
2014-06-23
國家自然科學(xué)基金資助項目(11271008)
夏鐵成(1960—),男,教授,博士生導(dǎo)師,研究方向為孤子與可積系統(tǒng).E-mail:xiatc@shu.edu.cn