田園如畫,周中和,陳會(huì)生
腺苷酸活化蛋白激酶在缺血預(yù)處理誘導(dǎo)的神經(jīng)保護(hù)中的作用
田園如畫,周中和,陳會(huì)生
目的 評(píng)估腺苷酸活化蛋白激酶(AMPK)及其活化型-磷酸化AMPK(pAMPK)在缺血預(yù)處理(IPC)中的作用,通過藥理學(xué)方法控制pAMPK水平,評(píng)價(jià)該通路對(duì)腦梗死面積的影響。方法 對(duì)雄性大鼠行短暫(3min)大腦中動(dòng)脈閉塞處理(MCAO)誘導(dǎo)IPC,4h或72h后再行MCAO 90min,檢測(cè)IPC后AMPK及pAMPK的水平;應(yīng)用AMPK藥物激動(dòng)劑二甲雙胍或抑制劑復(fù)合物C(CC)進(jìn)行處理,觀察IPC與AMPK信號(hào)傳導(dǎo)的相關(guān)性。結(jié)果 IPC預(yù)處理(72h)可使MCAO模型大鼠大腦皮質(zhì)、半球及總梗死面積明顯減少(P<0.05),神經(jīng)功能缺損評(píng)分(NDS)明顯降低(P<0.05);單純MCAO(90min)處理后4h可明顯增加pAMPK的表達(dá),IPC預(yù)處理(4h)可使誘導(dǎo)的pAMPK增加明顯下調(diào)(P<0.05)。應(yīng)用CC腹腔注射可減少M(fèi)CAO所致的大鼠腦梗死面積;IPC預(yù)處理(72h)聯(lián)合CC并不能進(jìn)一步減少大鼠腦梗死面積。IPC預(yù)處理(72h)行MCAO同時(shí)給予二甲雙胍,二甲雙胍可明顯阻斷IPC誘導(dǎo)的大腦半球、皮層及紋狀體梗死面積的減少(P<0.05)。結(jié)論 AMPK及pAMPK信號(hào)在IPC介導(dǎo)的神經(jīng)保護(hù)作用中發(fā)揮重要作用,IPC的神經(jīng)保護(hù)作用可能與下調(diào)pAMPK水平有關(guān)。
腦缺血;梗死,大腦中動(dòng)脈;AMP活化蛋白激酶類;二甲雙胍;復(fù)合物C
腺苷酸活化蛋白激酶(adenosine 5'-monophosphateactivated protein kinase,AMPK)是一種異源三聚體蛋白,在大多數(shù)哺乳動(dòng)物組織和器官,包括大腦中均有表達(dá)[1-2]。AMPK主要由α、β、γ三個(gè)亞基組成,α亞基起催化作用,β、γ亞基主要維持三聚體的穩(wěn)定性以及作用底物的特異性,它們各自有不同的組織表達(dá)和生理特性[3-4]。當(dāng)能量供應(yīng)不足時(shí),AMPK可以被α亞基中172位的磷酸化蘇氨酸激活[5-6],被認(rèn)為是細(xì)胞能源動(dòng)力的重要調(diào)控因子[3,7]。AMPK在細(xì)胞水平通過抑制三磷腺苷(ATP)的消耗代謝、激活A(yù)TP的合成代謝維持能量?jī)?chǔ)備,啟動(dòng)級(jí)聯(lián)反應(yīng)保證代謝適應(yīng)性和細(xì)胞活力[4,8]。缺血發(fā)生后會(huì)立即誘導(dǎo)pAMPK增高并持續(xù)24h,所以藥物性抑制AMPK具有神經(jīng)保護(hù)作用[2,9-10]。
缺血預(yù)處理(ischemic preconditioning,IPC)可導(dǎo)致哺乳動(dòng)物的適應(yīng)性耐受,因此短暫的非損傷性刺激反而可降低后續(xù)損傷的嚴(yán)重程度[11]。IPC可降低后續(xù)損傷中ATP的消耗速率,所以IPC的有益作用被歸結(jié)于代謝抑制[12]。有研究指出,IPC激活的許多信號(hào)通路由AMPK調(diào)控,提示AMPK可能是缺血性代謝適應(yīng)的重要介質(zhì)[13-14]。
本研究目的在于進(jìn)一步探討AMPK信號(hào)通路在IPC中的作用。由于IPC的神經(jīng)保護(hù)作用需延遲數(shù)小時(shí)才能完全顯現(xiàn),早期一些研究認(rèn)為72h是IPC發(fā)揮神經(jīng)保護(hù)作用的高峰[15]。本研究選擇IPC 后72h行大腦中動(dòng)脈閉塞處理(middle cerebral artery occlusion,MCAO)90min,評(píng)估AMPK對(duì)IPC的作用,并通過藥物干預(yù)控制pAMPK水平,評(píng)價(jià)該方法對(duì)腦梗死面積的影響。
1.1 動(dòng)物及試劑 SD雄性大鼠由沈陽(yáng)軍區(qū)總醫(yī)院動(dòng)物實(shí)驗(yàn)科提供,體重200~250g,實(shí)驗(yàn)動(dòng)物的使用遵循倫理相關(guān)要求。pAMPK、AMPK、AMPK激活劑二甲雙胍(Metformine )購(gòu)自Cell Signaling公司,熱休克蛋白70(HSP70)購(gòu)自Santa Cruz公司,β-actin購(gòu)自Sigma公司,AMPK、pAMPK羊抗兔IgG、HSP70、β-actin羊抗鼠IgG購(gòu)自Chemicon International公司,AMPK抑制劑復(fù)合物C(CC)購(gòu)自Merck-Calbiochem公司。
1.2 IPC與MCAO模型制備 雄性SD大鼠右側(cè)行MCAO處理,將線栓抽出行再灌注,誘導(dǎo)局部短暫腦缺血[9,16]。假手術(shù)操作:線栓未進(jìn)入大腦中動(dòng)脈,其余與IPC操作相同。采用激光多普勒血流儀(LDF)測(cè)定腦血流。
1.3 實(shí)驗(yàn)設(shè)計(jì)及分組
1.3.1 檢測(cè)IPC對(duì)梗死面積的影響 實(shí)驗(yàn)設(shè)IPC+MCAO組和對(duì)照(Sham)+MCAO組(n=8)。IPC+MCAO組在IPC后72h行MCAO 90min,Sham+MCAO組假手術(shù)IPC后72h行MCAO 90min。各組大鼠處理后取腦,測(cè)定大腦半球總梗死面積,并在MCAO處理24h后進(jìn)行神經(jīng)功能缺損(nervous functional deficiency,NDS)評(píng)分。
1.3.2 檢測(cè)IPC對(duì)pMARK蛋白表達(dá)的影響 實(shí)驗(yàn)設(shè)5個(gè)組(n=6):IPC 4h組,IPC 72h組,Sham組,IPC+MCAO 4h組和MCAO 4h組。IPC 4h組和IPC 72h組:12只大鼠行單純IPC,其中6只4h后取腦,6只于72h取腦。IPC+MCAO 4h組:IPC后72h行MCAO(90min),4h后取腦;MCAO 4h組:MCAO(90min)后4h取腦;Sham組:12只大鼠行假手術(shù)IPC處理。各組大鼠處理后取腦組織,待測(cè)pMARK蛋白表達(dá)。
1.3.3 檢測(cè)AMPK抑制劑CC對(duì)梗死面積的影響
實(shí)驗(yàn)設(shè)4組(n=8):CC+MCAO組,CC溶媒生理鹽水(saline)+MCAO組,IPC+CC+MCAO組,IPC+saline+MCAO組。各組處理如下:CC+MCAO組:MCAO同時(shí)給予CC(10mg/kg CC溶于0.2ml/20g生理鹽水,腹腔注射);saline+MCAO組:MCAO同時(shí)給予CC溶媒生理鹽水(0.2ml/20g,腹腔注射);IPC+CC+MCAO組:IPC后72h行MCAO同時(shí)給予復(fù)合物C;IPC+saline+MCAO組:IPC后72h行MCAO處理同時(shí)給予溶媒生理鹽水。各組大鼠處理后取腦,測(cè)皮質(zhì)、紋狀體以及總梗死面積。
1.3.4 檢測(cè)AMPK激活劑二甲雙胍(Metformine)對(duì)梗死面積的影響 實(shí)驗(yàn)設(shè)3組(n=6):IPC+MCAO+二甲雙胍、I PC+MC AO+二甲雙胍溶媒生理鹽水(saline)組,Saline+MCAO組,每組6只大鼠。處理如下:IPC+MCAO+二甲雙胍組:IPC 后72h行MCAO同時(shí)給予二甲雙胍(100mg/kg二甲雙胍溶于0.2ml/20g生理鹽水中,腹腔注射)。IPC+MCAO+saline組:IPC后72h行MCAO處理同時(shí)給予溶媒saline(0.2ml/20g,腹腔注射)。Saline+MCAO組:MCAO處組同時(shí)給予saline(0.2ml/20g,腹腔注射)。各組大鼠處理后取腦,測(cè)皮質(zhì)、紋狀體以及總梗死面積。
1.3.5 藥物處理方式 當(dāng)MCAO開始時(shí),向腹腔內(nèi)注射復(fù)合物C(10mg/kg)或二甲雙胍(100mg/kg)或生理鹽水,溶于生理鹽水后0.2ml/20g,劑量參考文獻(xiàn)[9,17-18]。
1.4 檢測(cè)指標(biāo)及檢測(cè)方法 研究者在雙盲情況下進(jìn)行指標(biāo)檢測(cè)及分析。
1.4.1 行為學(xué)評(píng)分 分別于MCAO缺血期間和MCAO后24h對(duì)大鼠進(jìn)行神經(jīng)功能缺損評(píng)分(nervous functional deficiency,NDS)。評(píng)分標(biāo)準(zhǔn)如下:0分,無缺損癥狀;1分,前肢無力、提尾時(shí)軀干向同側(cè)傾倒;2分,向患側(cè)轉(zhuǎn)圈;3分,患側(cè)不能承受體重;4分,無自發(fā)活動(dòng)或滾動(dòng)[9]。研究人員在雙盲情況下進(jìn)行評(píng)分。
1.4.2 梗死面積分析 IPC再灌注后24h(預(yù)處理后96h),將大鼠安樂死,取腦,2mm冠狀切片,1.5% 2,3,5-三苯基氯化四氮唑(TTC)染色,根據(jù)TTC染色后梗死面積與其所占切片總面積的百分比進(jìn)行分析描述[9]。
1.4.3 Western blotting檢測(cè) 參考既往研究方法行Western blotting分析[9]。由于pAMPK表達(dá)變化具有動(dòng)態(tài)特性,斷頭取腦后需盡快取腦、冰凍保存,勻漿后分裝保存于–80℃,避免反復(fù)凍融。IPC后4h或72h取腦。依次加入pAMPK(1:500)、AMPK(1:1000),HSP70(1:2500),β-actin(1:5000)作內(nèi)參,4℃孵化過夜,再加入二抗(AMPK、pAMPK羊抗兔IgG,1:10 000,HSP70、β-actin羊抗鼠IgG,1:5000),室溫下孵育45min,滴加ECL顯色液,采用Imagepro Plus軟件采集圖像并分析。
1.5 統(tǒng)計(jì)學(xué)處理 采用SPSS 10.0軟件進(jìn)行分析。定量資料包括大腦梗死面積百分比、NDS評(píng)分、pAMPK水平,數(shù)據(jù)符合正態(tài)分布采用±s描述,多組比較采用單因素方差分析,進(jìn)一步兩兩比較采用SNK-q檢驗(yàn);不符合正態(tài)分布,采用25%中位數(shù)進(jìn)行描述,組間比較采用秩和檢驗(yàn)。P>0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 MCAO模型確定 MCAO處理后,用激光多普勒血流儀(LDF)測(cè)定腦血流,證實(shí)動(dòng)物腦血流量下降≥80%,再灌注時(shí)又恢復(fù)正常,提示造模成功。
2.2 IPC對(duì)腦梗死及NDS評(píng)分的影響 經(jīng)3min M C AO后誘導(dǎo)I P C刺激的鼠腦組織在T TC染色時(shí)未見損傷。MCAO前72h行IPC可明顯減少動(dòng)物大腦半球總梗死面積(sham+MCAO vs IPC+MCAO, 44.9±3.2% vs 32.8±3.1%,P<0.05,圖1A、B)。同時(shí),IPC也降低了MCAO后的NDS評(píng)分(Sham+MCAO vs IPC+MCAO,3.00 vs 2.01,P<0.05;圖1C)。IPC未導(dǎo)致梗死,可誘導(dǎo)神經(jīng)保護(hù)作用、改善行為障礙。
圖1 Sham+MCAO與IPC+MCAO組梗死面積和NDS評(píng)分比較Fig.1 Comparison of the infarct area and NDS between sham+MCAO group and IPC+MCAO group
圖2 各組AMPK和pAMPK表達(dá)及比較Fig. 2 Expression and comparison of AMPK and pAMPK levels among sham, IPC, sham+MCAO and IPC+MCAO groups
2.3 IPC對(duì)pAMPK蛋白表達(dá)的影響 由圖2可見,單純IPC后4h,pAMPK水平可明顯提高(Sham vsIPC,0.9±0.2 vs 1.6±0.1,P<0.05),但在72h,IPC組大鼠的pAMPK較sham組有所降低(Sham vs IPC,1.2±0.2 vs 1.3±0.1,P<0.05)。單純MCAO(90min)處理后4h可明顯增加pAMPK的表達(dá)(MCAO 4h vs IPC 4h vs Sham,2.3±0.2 vs 1.6±0.1 vs 0.9±0.2,P<0.05)。進(jìn)一步觀察顯示,預(yù)先IPC處理可明顯下調(diào)pAMPK的表達(dá)(Sham+MCAO vs IPC+MCAO,2.3±0.2 vs 1.2±0.1;P<0.05)。由于sham組pAMPK水平無明顯改變,因此將所有Sham組的pAMPK數(shù)值標(biāo)準(zhǔn)化(圖2)。該結(jié)果與既往研究證實(shí)卒中可提高pAMPK表達(dá)[17]相符合。
2.4 CC治療組缺乏預(yù)處理效應(yīng) 首先探討MCAO同時(shí)給予大鼠AMPK抑制劑CC腹腔注射對(duì)梗死面積的影響。實(shí)驗(yàn)中,saline+MCAO組1只大鼠死亡,7只大鼠數(shù)據(jù)進(jìn)入統(tǒng)計(jì)。與saline組相比,CC處理可明顯減少梗死面積(saline+MCAO vs CC+MCAO,總梗死面積46.8±3.6 vs 33.3±2.6,P<0.05;皮層58.7±3.6 vs 36.9±3.0,P<0.05;紋狀體69.5±2.7 vs 56.0±2.8,P<0.05)。
進(jìn)一步觀察I P C是否與CC注射有協(xié)同作用。與IPC+saline處理比較,IPC與CC協(xié)同并未能進(jìn)一步減少梗死面積(IPC+CC+MCAO vs IPC+saline+MCAO,總梗死面積31.4±1.4 vs 32.2±2.4,P>0.05;皮層35.7±3.2 vs 37.8±1.4, P>0.05;紋狀體54.8±3.1 vs 56.2±2.5,P>0.05,圖3)。
2.5 二甲雙胍對(duì)神經(jīng)保護(hù)作用的影響 大鼠行IPC后,在MCAO處理的同時(shí)又給予動(dòng)物腹腔注射AMPK激活劑二甲雙胍。結(jié)果發(fā)現(xiàn),與saline對(duì)照組比較,二甲雙胍可消除IPC誘導(dǎo)的神經(jīng)保護(hù)作用(IPC+saline+MCAO vs IPC+Metformin+MCAO,皮層34.9±3.2 vs 53.1±1.7,P<0.05,紋狀體54.0±3.0 vs 75.0±1.9;P<0.05,大腦半球34.7±2.1 vs 48.5±2.3,P<0.05,圖4)。
圖3 各組皮質(zhì)、紋狀體及總梗死面積比較Fig. 3 Comparison of the infarct size in cortex, striatum and total size among groups
圖4 各組梗死面積比較Fig. 4 Comparison of the infarct sizes among saline+MCAO, IPC+saline+MCAO and IPC+Metformin+MCAO groups
既往研究已證實(shí)IPC 72h后HSP70明顯增多[19-20],故本研究選擇這一時(shí)間點(diǎn)作為檢測(cè)pAMPK的時(shí)間點(diǎn)。熱休克反應(yīng)是細(xì)胞在多種環(huán)境、生理壓力下產(chǎn)生的一種很常見的保護(hù)作用[21],故選擇HSP70作為產(chǎn)生缺血保護(hù)作用的標(biāo)志。熱休克反應(yīng)中,熱休克蛋白HSP表達(dá)明顯增加[22],其中HSP70家族最常見于動(dòng)物細(xì)胞[23]。有研究發(fā)現(xiàn)在熱應(yīng)激條件下,應(yīng)用AMPK抑制劑可提高HSP70的表達(dá),而應(yīng)用AMPK激活劑AICAR則可抑制HSP70表達(dá)[24]。
本研究表明,IPC有明確的神經(jīng)保護(hù)作用,且可先上調(diào)pAMPK而后下調(diào)pAMPK;給予AMPK抑制劑可顯著減少梗死面積,但與IPC并無協(xié)同作用;給予AMPK激活劑二甲雙胍可逆轉(zhuǎn)IPC的神經(jīng)保護(hù)作用。這些結(jié)果提示AMPK信號(hào)通路可能參與了腦缺血預(yù)處理的神經(jīng)保護(hù)作用。
無論在腦或其他器官中,參與IPC保護(hù)作用的內(nèi)源性機(jī)制都是目前的研究熱點(diǎn)。早期實(shí)驗(yàn)證實(shí)5~10min的缺血處理會(huì)導(dǎo)致28%的腦組織出現(xiàn)顯微鏡可見的梗死[19],因此本研究選擇3min短暫IPC以避免組織損傷。TTC(圖1A)染色同樣表明這種IPC未引起神經(jīng)元損傷[15]。由于IPC后72h HSP70增多,且HSP70的保護(hù)作用已被證實(shí)[19-20],因此,本實(shí)驗(yàn)選擇此時(shí)間點(diǎn)進(jìn)行MCAO處理。
既往研究證實(shí),外周組織器官(如心臟、肝臟等)中AMPK激活可引起缺血耐受,但在腦組織中AMPK水平增加卻會(huì)加重缺血損傷[9,25]。腦內(nèi)糖、氧不足時(shí),神經(jīng)細(xì)胞不能有效進(jìn)行無氧糖酵解,AMPK在腦神經(jīng)元中高表達(dá)時(shí),能量?jī)?chǔ)存下降的指標(biāo)AMP/ATP比值即有所增高,激活A(yù)MPK,驅(qū)動(dòng)ATP產(chǎn)生,導(dǎo)致新陳代謝進(jìn)一步惡化[2]。緩慢下調(diào)腦內(nèi)AMPK表達(dá)可保持缺血時(shí)ATP水平、減輕缺血誘導(dǎo)的乳酸酸中毒[9];而體外培養(yǎng)神經(jīng)細(xì)胞中,短暫激活A(yù)MPK可增加葡萄糖載體3(GLUT3)表達(dá),介導(dǎo)缺血耐受;慢性暴露于AMPK激活劑(如AICAR)可使AMPK超長(zhǎng)時(shí)間激活或AMPK-α1過表達(dá),均可導(dǎo)致神經(jīng)細(xì)胞生存能力降低。AMPK調(diào)控的下游機(jī)制還可以通過激活延長(zhǎng)因子-2激酶,調(diào)節(jié)IPC,抑制蛋白質(zhì)在翻譯過程中的延長(zhǎng),降低雷帕霉素靶蛋白(mTOn),減少蛋白質(zhì)合成[4];AMPK也被認(rèn)為是調(diào)節(jié)細(xì)胞自噬的重要介質(zhì),它可激活細(xì)胞自噬系統(tǒng),參與缺血保護(hù)作用[26-27]。但是,目前AMPK誘導(dǎo)的相關(guān)分子信號(hào)通路仍有待明確。
AMPK活化狀態(tài)會(huì)隨時(shí)間的變化而改變。預(yù)處理之后早期(如4h),AMPK活化,pAMPK增加;在較晚時(shí)間點(diǎn)(如72h)進(jìn)行MCAO處理時(shí),pAMPK水平會(huì)下降,所以我們認(rèn)為pAMPK的下降有利于遲發(fā)型IPC的神經(jīng)保護(hù)作用。一些研究已應(yīng)用AMPK激活劑二甲雙胍對(duì)動(dòng)物腦卒中急性或慢性治療的效果進(jìn)行測(cè)試,結(jié)果顯示一次性大劑量給藥后,動(dòng)物腦內(nèi)pAMPK水平增高,卒中所導(dǎo)致的代謝紊亂加重、乳酸產(chǎn)生增加、缺血損傷加劇[9];相反,在卒中處理前2周慢性小劑量給予二甲雙胍,可抑制pAMPK的基礎(chǔ)產(chǎn)生量和缺血誘導(dǎo)產(chǎn)生量,同時(shí)也出現(xiàn)神經(jīng)保護(hù)作用。也有動(dòng)物模型顯示:藥物激活A(yù)MPK會(huì)逆轉(zhuǎn)IPC的神經(jīng)保護(hù)作用[28]。本研究結(jié)果與這些結(jié)果相符,IPC后72h pAMPK水平下降、存在神經(jīng)保護(hù)作用,AMPK活性降低表示代謝耐受。給予AMPK選擇性抑制劑[17]復(fù)合物C后,實(shí)驗(yàn)動(dòng)物腦內(nèi)pAMPK水平明顯降低[9,11,17,29],因此可通過抑制腦內(nèi)AMPK活性而發(fā)揮神經(jīng)保護(hù)作用。
本研究還證實(shí),IPC可調(diào)控AMPK的表達(dá),腦缺血時(shí)抑制AMPK活化有利于IPC的神經(jīng)保護(hù)作用,但這種保護(hù)作用的反應(yīng)時(shí)間和IPC后AMPK活化的下游信號(hào)通路仍有待進(jìn)一步證實(shí)。我們認(rèn)為,輕度、短暫的代謝應(yīng)激可長(zhǎng)期、緩慢地降低AMPK的活化,從而誘導(dǎo)代謝耐受。許多研究也表明尋找長(zhǎng)期緩慢下調(diào)AMPK活性的方法可以保護(hù)缺血的腦組織,并盡早應(yīng)用于臨床急性腦缺血的治療。
近年來,缺血耐受已成為腦缺血疾病臨床治療研究的新方向,其中遠(yuǎn)端缺血預(yù)處理方法已應(yīng)用于部分院前急救。本研究提示AMPK信號(hào)途徑參與了腦缺血預(yù)處理的神經(jīng)保護(hù)作用,調(diào)控AMPK活性可能會(huì)誘導(dǎo)缺血耐受,有望成為臨床缺血性卒中治療的新靶點(diǎn)。
[1]Carling D, Clarke PR, Zammit VA, et al. Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities[J]. Eur J Biochem, 1989, 186(1-2): 129-136.
[2]Li J, McCullough LD. Effects of AMP-activated protein kinase in cerebral ischemia[J]. J Cereb Blood Flow Metab, 2010, 30(3): 480-492.
[3]Hardie DG. Minireview: The AMP-activated protein kinase cascade: the key sensor of cellular energy status[J]. Endocrinology, 2003, 144(12): 5179-5183.
[4]Weisova P, Davila D, Tuffy LP, et al. Role of 5'-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons[J]. Antioxid Redox Signal, 2011, 14(10): 1863-1876.
[5]Gao P, Si LY, Xu Q, et al. Inhibitory effect of resveratrol on proliferation of vascular smooth muscle cells induced by angiotensin Ⅱ and its underlying mechanism[J]. Med J Chin PLA, 2013, 38(4): 269-273. [郜攀, 司良毅, 徐強(qiáng), 等. 白藜蘆醇對(duì)血管緊張素Ⅱ誘導(dǎo)的血管平滑肌細(xì)胞增殖的抑制作用及其機(jī)制觀察[J]. 解放軍醫(yī)學(xué)雜志, 2013, 38(4): 269-273.]
[6]Wang Q, Yu CX, Gao L, et al. Thyroid-stimulating hormone regulates the phosphorylation of hepatic AMPKα Thr 172 instead of Ser 173[J]. J Shandong Univ (Health Sci), 2014, 52(6): 22-27. [王琦, 于春曉, 高聆, 等. 促甲狀腺激素調(diào)節(jié)肝臟AMPKα Thr 172而非Ser 173的磷酸化[J]. 山東大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2014, 52(6): 22-27.]
[7]Hawley SA, Davison M, Woods A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase[J]. J Biol Chem,1996, 271(44): 27879-2787.
[8]Bungard D, Fuerth BJ, Zeng PY, et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation[J]. Science, 2010, 329(5996): 1201-1205.
[9]Li J, Benashski SE, Venna VR, et al. Effects of metformin in experimental stroke[J]. Stroke, 2010, 41(11): 2645-2652.
[10]Li J, Zeng Z, Viollet B, et al. Neuroprotective effects of adenosine monophosphate-activated protein kinase inhibition and gene deletion in stroke[J]. Stroke, 2007, 38(11): 2992-2999.
[11]Stenzel-Poore MP, Stevens SL, King JS, et al. Preconditioning reprograms the response to ischemic injury and primes the em ergence of uniqueendogenous neuroprotective phenotypes: a speculative synthesis[J]. Stroke, 2007, 38(2 Suppl): 680-685.
[12]Yenari M, Kitagawa K, Lyden P, et al. Metabolic downregulation:a key to successful neuroprotection[J]? Stroke, 2008, 39(10): 2910-2917.
[13]Nishino Y, Miura T, Miki T, et al. Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection[J]. Cardiovasc Res, 2004, 61(3): 610-619.
[14]Peralta C, Bartrons R, Serafin A, et al. Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemiareperfusion injury in the rat[J]. Hepatology, 2001, 34(6): 1164-1173.
[15]Puisieux F, Deplanque D, Bulckaen H, et al. Brain ischemic preconditioning is abolished by antioxidant drugs but does not up-regulate superoxide dismutase and glutathion peroxidase[J]. Brain Res, 2004, 1027(1-2): 30-37.
[16]Deplanque D, Venna VR, Bordet R. Brain ischemia changes the long term response to antidepressant drugs in mice[J]. Behav Brain Res, 2011, 219(2): 367-372.
[17]McCullough LD, Zeng Z, Li H, et al. Pharmcaological inhibition of AMP-activated protein kinase provides neuroprotection in stroke[J]. J Biol Chem, 2005, 280(21): 20493-20502.
[18]Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action[J]. J Clin Invest, 2001, 108(8): 1167-1174.
[19]Zhan X, Kim C, Sharp FR. Very brief focal ischemia simulating transient ischemic attacks (TIAs) can injure brain and induce Hsp70 protein[J]. Brain Res, 2008, 1234: 183-197.
[20]Brown IR. Heat shock proteins and protection of the nervous system[J]. Ann N Y Acad Sci, 2007, 1113: 147-158.
[21]Dong L, Liu J, Ma HY, et al. Evaluation of immune effect of recombinant fusion protein targeting the prostate stem cell antigen based on PSCA and HSP70[J]. Med J Chin PLA, 2014, 39(9): 714-719. [董磊, 劉娟, 馬紅雨, 等. 重組蛋白PSCAHSP70的免疫活性及抗腫瘤效應(yīng)觀察[J]. 解放軍醫(yī)學(xué)雜志, 2014, 39(9): 714-719.]
[22]Hou YF, Bu PL. Change of serum heat shock protein 70 in the MODS patients and its clinical significance[J]. J Shandong Univ (Health Sci), 2013, 51(6): 64-70. [侯云峰, 卜培莉. 多器官功能障礙綜合征患者血清熱休克蛋白70的變化及其臨床意義[J]. 山東大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2013, 51(6): 64-70.]
[23]Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism[J]. Cell Mol Life Sci, 2005, 62(6): 670-684.
[24]Wang T, Yu Q, Chen J, et al. PP2A mediated AMPK inhibition pr omotes HSP70 expression in heat shock response[J]. PLoS One, 2010, 5(10). pii: e13096.
[25]Gidday JM. Cerebral preconditioning and ischaemic tolerance[J]. Nat Rev Neurosci, 2006, 7(6): 437-448.
[26]Sheng R, Zhang LS, Han R, et al. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning[J]. Autophagy, 2010, 6(4): 482-494.
[27]Vingtdeux V, Chandakkar P, Zhao H, et al. Novel synthetic smallmolecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation[J]. FASEB J, 2011, 25(1): 219-231.
[28]Lotz C, Fisslthaler B, Redel A, et al. Activation of adenosinemonophosphate-activated protein kinase abolishes desfluraneinduced preconditioning against myocardial infarction in vivo[J]. J Cardiothorac Vasc Anesth, 2011, 25(1): 66-71.
[29]Liu F, Benashski SE, Persky R, et al. Age-related changes in AMP-activated protein kinase after stroke[J]. Age, 2012, 34(1): 157-168.
Effects of adenosine 5’monophosphate-activated protein kinase on europrotection induced by ischemic preconditioning
TIAN Yuan-ru-hua, ZHOU Zhong-he, CHEN Hui-sheng*
Department of Neurology, General Hospital of Shenyang Command, Shenyang 110840, China
*
, E-mail: chszh@aliyun.com
This work was supported by the Scientific and Technological Project of Liaoning Province(2013225089) and the National Natural Science Foundation of Liaoning Province(2013020204)
ObjectiveTo investigate the effects of adenosine 5'-monophosphate-activated protein kinase (AMPK) and phosphated AMPK (pAMPK) signals in ischemic preconditioning (IPC), and the effect of pharmacological intervention of AMPK on infarct size of the brain.MethodsA brief (3min) middle cerebral artery occlusion (MCAO) was employed to induce IPC in male rat, and another 90-min MCAO was performed 4 or 72h later. The levels of AMPK and pAMPK were assessed after IPC. A pharmacological activator metformin, or inhibitor compound C of AMPK, was used to analyze the correlation of IPC to AMPK signaling in MCAO rats.ResultsThe infarct size of total cerebral hemisphere and cortex was significantly decreased in MCAO animals by IPC for 72h (P<0.05, n=8), and the neurological deficit scores (NDS) of MCAO rats were also improved (P<0.05, n=8). There was a significant increase in pAMPK expression after a 90min MCAO (P<0.05, n=6), and a significant decrease in induced pAMPK expression (P<0.05, n=6) achieved only by a 72h IPC treatment. Intraperitoneal injection of an AMPK inhibitor, compound C, could decrease the infarct size in MCAO rats (P<0.05, n=6), but combined IPC (72h) and injection of compound C did not result in further decrease of the infarct size (P>0.05, n=6). The AMPK activator metformin can significantly reverse the protective effect of IPC (P<0.05, n=6).ConclusionsThe signals of AMPK and pAMPK play an important role in neuroprotective effect of IPC on cerebral ischemic injury. The neuroprotective effect of IPC may be associated with the down-regulation of pAMPK.
brain ischemia; infarction, middle cerebral artery; amp-activated protein kinases; metformin; compound C
R743.31
A
0577-7402(2015)05-0366-06
10.11855/j.issn.0577-7402.2015.05.07
2014-11-07;
2015-03-29)
(責(zé)任編輯:沈?qū)?
遼寧省科技攻關(guān)計(jì)劃(2013225089);遼寧省自然科學(xué)基金(2013020204)
田園如畫,碩士研究生。主要從事神經(jīng)病學(xué)方面的研究
110840 沈陽(yáng) 沈陽(yáng)軍區(qū)總醫(yī)院神經(jīng)內(nèi)科(田園如畫、周中和、陳會(huì)生)
陳會(huì)生,E-mail:chszh@aliyun.com