周正存,郭德穩(wěn),杜 潔,張義平,顧蘇怡,嚴勇健
(1.蘇州市職業(yè)大學(xué) 機電工程學(xué)院,江蘇 蘇州 215104;2.安徽國禎環(huán)保節(jié)能科技股份有限公司 研發(fā)部,安徽 合肥 230088)
無鎳Ti-Nb基合金的形狀記憶效應(yīng)和超彈性
周正存1,郭德穩(wěn)2,杜 潔1,張義平1,顧蘇怡1,嚴勇健1
(1.蘇州市職業(yè)大學(xué) 機電工程學(xué)院,江蘇 蘇州 215104;2.安徽國禎環(huán)保節(jié)能科技股份有限公司 研發(fā)部,安徽 合肥 230088)
無鎳Ti-Nb基合金是具有應(yīng)用前景的無毒形狀記憶合金和超彈性合金.綜述無鎳Ti-Nb基合金的形狀記憶性能和超彈性,結(jié)果表明優(yōu)良形狀記憶效應(yīng)和超彈性的獲得,需要有合適的化學(xué)成分和適當?shù)臒崽幚?β型Ti-Nb合金從高溫β相區(qū)快速冷卻經(jīng)過一個馬氏體轉(zhuǎn)變,轉(zhuǎn)變成α’馬氏體或者α”馬氏體,從β相到α”相的轉(zhuǎn)變是熱彈性馬氏體轉(zhuǎn)變,由此而產(chǎn)生形狀記憶效應(yīng)和超彈性.隨著Nb含量的增加,馬氏體轉(zhuǎn)變溫度降低,在所報道的Ti-Nb合金中,Nb含量主要集中范圍在22~26(at.%),這是由于室溫超彈性發(fā)生在此成分范圍.Zr、Sn、O、Al等元素對Ti-Nb基合金的形狀記憶性能和超彈性有影響,這些元素的添加降低了Ms,增加了超彈性,超彈性比較好的合金有Ti-22Nb-4Zr(at.%),可恢復(fù)應(yīng)變最大達4.3%.在添加Al的合金Ti-Nb基合金中,Ti-24Nb-3Al(at.%)合金具有的最大可恢復(fù)應(yīng)變達到4.7%.
無鎳Ti-Nb基合金;形狀記憶性能;超彈性
Ti-Ni形狀記憶合金具有優(yōu)良的形狀記憶性能、超彈性和耐腐蝕性能,已經(jīng)成功地作為生物材料得到應(yīng)用,如:畸齒矯正線、骨板和骨支架.Ni對生物組織的毒性和過敏性促進了無Ni的Ti基合金的發(fā)展[1-7].因此,無Ni的β型的Ti基(Ti-Nb,Ti-Ta,Ti-Mo,Ti-Zr,等)合金,特別是Ti-Nb合金已經(jīng)引起很多關(guān)注,并且發(fā)展成為有應(yīng)用潛力的生物形狀記憶合金和超彈性合金[8-19].本文主要綜述無Ni的Ti-Nb合金的制備、微觀結(jié)構(gòu)及其形狀記憶效應(yīng)和超彈性.
Baker首先報道了Ti-35 wt.% Nb合金中的形狀記憶效應(yīng)產(chǎn)生于α”相(正交馬氏體)轉(zhuǎn)變成β相(無序的體心立方)的過程.盡管他報道了在573~773 K短時間時效產(chǎn)生的ω相沉淀能改善形狀記憶效果,但沒有展示Ti-Nb合金的超彈性.Kim等[12-13]報道Ti-(22-27) at.% Nb合金在室溫下顯示出形狀記憶效應(yīng)和超彈性能,轉(zhuǎn)變應(yīng)變和轉(zhuǎn)變溫度隨Nb含量的增加而線性減少.固溶處理的二元Ti-Nb合金在低應(yīng)力的滑移形變情況下僅產(chǎn)生小的超彈性應(yīng)變.Ti-26 at.%Nb合金在573~673 K溫度范圍時效生成的細小而致密的ω沉淀物對增加滑移變形的臨界應(yīng)力是有效的,滑移變形的臨界應(yīng)力越高,產(chǎn)生的恢復(fù)應(yīng)變和穩(wěn)定的超彈性越大.
優(yōu)良超彈性的獲得其熱處理工藝是在873 K保持600 s退火接著在573 K時效,這種優(yōu)良超彈性來自于加工硬化和時效硬化的復(fù)合作用.Tahara等[21]調(diào)查了循環(huán)變形對Ti-26 at.%Nb合金超彈性的作用,加載和卸載的最大恒定應(yīng)變是2.5%,經(jīng)過了500次循環(huán),隨著循環(huán)次數(shù)的增加,誘導(dǎo)馬氏體轉(zhuǎn)變和超彈性應(yīng)變的臨界應(yīng)力減少,而累積殘留應(yīng)變增加,在循環(huán)變形期間,殘留應(yīng)變的增加主要是由于α”馬氏體的穩(wěn)定化引起,殘留應(yīng)變和殘余的α”相都隨循環(huán)次數(shù)的增加而增加.同時,在合適的溫度退火或時效,超彈性的穩(wěn)定性也得到了改善,表明殘留應(yīng)變減少,超彈性應(yīng)變增加.在873 K保持600 s退火,然后在573 K時效3 600 s可獲得最穩(wěn)定的超彈性,這是由于加工硬化和ω沉淀相的復(fù)合作用引起.Kim等[22]調(diào)查了合金化對三元Ti-Nb-Si合金的微觀結(jié)構(gòu)和彈性模量的作用,結(jié)果顯示,Si對抑制ω相的發(fā)生具有有效作用,降低了亞穩(wěn)β相的彈性模量.Ping等[23]調(diào)查了Ti-30Nb-3Pd合金的形狀記憶性能,這種合金具有高溫形狀記憶性能,變形的合金在973~1173 K固溶處理后水淬,其馬氏體轉(zhuǎn)變開始溫度Ms是561 K,馬氏體轉(zhuǎn)變結(jié)束溫度Mf是446 K,奧氏體轉(zhuǎn)變開始溫度As是678 K,奧氏體轉(zhuǎn)變結(jié)束溫度Af是772 K,873 K時效20 min的合金大約有2%的100%應(yīng)變恢復(fù).對成分(20-26)Nb,(2-8) Zr and (3.5-11.5)Sn (wt.%)的Ti-Nb合金的研究發(fā)現(xiàn),Zr和Sn對Ti-Nb合金的楊氏模量有影響,α”馬氏體的Ms因Zr和Sn的添加而受到抑制,在所研究的合金中,具有單相β結(jié)構(gòu)的Ti-24Nb-4Zr-7.5Sn (wt.%)合金具有最低52 GPa楊氏模量,室溫下循環(huán)變形時可恢復(fù)的彈性應(yīng)變大約是2%,具有良好的超彈性[24].Kim等[25]研究了熱和力學(xué)雙重處理對Ti-(26-28) (at.%)Nb 合金力學(xué)性能和形狀記憶性能的作用,發(fā)現(xiàn)Ti-26 (at.%)Nb合金在溫度范圍293~313 K有超彈性,Ti-27 (at.%)Nb和 Ti-28 (at.%)Nb合金的超彈性溫度區(qū)間分別在193 ~313 K以及163~233 K,可是,在室溫下得不到超過2%的完全的超彈性應(yīng)變,因為固溶處理的合金具有較低的滑移變形的臨界應(yīng)力.隨著退火溫度的增加,抗拉強度減小、斷裂應(yīng)變增加,在873 K的低溫退火,穩(wěn)定了Ti-(26-28) (at.%)Nb合金的超彈性應(yīng)變.經(jīng)873 K退火處理后,再在573 K時效的Ti-(26-28) (at.%)Nb合金,既增加抗拉強度,又提高了馬氏體轉(zhuǎn)變的臨界應(yīng)力,這是由于Ti-(26-28) (at.%)Nb合金中形成了熱ω相引起的.但是,隨著時效時間的增加,伸長減少.Ti-26 (at.%)Nb合金經(jīng)873 K退火處理后,再在573 K時效3.6 ks可得到3%的完全超彈性應(yīng)變.對于Ti-22Nb-(2-8)Zr(at.%)的生物合金的形狀記憶特征,Kim等[26]也進行了研究.所有合金在室溫下進行冷加工(厚度縮減95%)后在1 173 K固溶處理1.8 ks,經(jīng)過固溶處理的這些合金展示出28%~40%的大伸長率,Zr含量增加1 (at.%),馬氏體轉(zhuǎn)變溫度降低38 K,Ti-22Nb-4Zr(at.%)合金具有最大4.3%的可恢復(fù)應(yīng)變,Ti-22Nb-(2-4)Zr(at.%) 和 Ti-22Nb-6Zr(at.%)合金分別在室溫下顯示出形狀記憶性能和超彈性性能.Lee等[27]研究了鑄造Ti-Nb合金的結(jié)構(gòu)和性能之間的關(guān)系.C.P.(商用純Ti)是六方α相,具有條狀形貌.含Nb量小于15 wt.%的合金主要是由六方的α,相組成,具有針狀馬氏體結(jié)構(gòu);含Nb量在(17.5-25) wt.%的合金主要由正交α”馬氏體組成;含Nb量達到27.5 wt.%時,亞穩(wěn)的β相開始形成.當含Nb量超過30 wt.%時,等軸的β相幾乎完全被保留,含Nb量在(27.5-30) wt.%的合金能檢測含有少量的ω相.在所有合金中,Ti-10 Nb和Ti-27.5 Nb合金具有最高的強度,而主要含α”結(jié)構(gòu)(17.5-20 )wt.% Nb的合金以及具有β相(>30) wt.% Nb的合金有最低的模量.所有Ti-Nb合金在37 ℃的Hank,s溶液中具有良好的耐腐蝕性.從這個研究的數(shù)據(jù)看,Ti-Nb合金各種相的微觀硬度、彎曲強度和模量的試驗結(jié)果排序如下:微觀硬度和彎曲強度的排序為ω>α,>α”>β>α (c.p. Ti);彎曲模量的排序為ω>α(c.p. Ti)>α,>α”>β.Mantani等[28]研究了時效對Ti-Nb合金的內(nèi)耗和彈性模量的作用,試驗合金有4種,含Nb量分別為25、30、35和40 wt.%的Ti-Nb合金,這些合金在1 223 K的溫度進行固溶處理并在423K、573K、723 K的溫度時效處理,盡管最高的楊氏模量出現(xiàn)在淬火的具有α”和β雙相結(jié)構(gòu)的T-30Nb的樣品,而不是出現(xiàn)在具有馬氏體結(jié)構(gòu)的T-25Nb合金中,但在其他合金中楊氏模量隨馬氏體量的增加而減少,淬火樣品的內(nèi)耗隨β相數(shù)量的增加而減少.在α”→β逆轉(zhuǎn)變以及時效處理α相析出的過程中內(nèi)耗增加,楊氏模量減少.另一方面,在時效處理ω相析出的過程中,內(nèi)耗減小而楊氏模量增加.特別是在723 K時效處理具有α”馬氏體結(jié)構(gòu)的Ti-25Nb合金時的內(nèi)耗減少以及α”和β雙相結(jié)構(gòu)時效處理ω相的析出過程中內(nèi)耗和楊氏模量的變化很明顯.
Matlakhova等[29]調(diào)查了含2 wt.% Al和(15-40) wt.% Nb的Ti-Nb合金中溫度對性能和相變的影響,Nb含量不同,從穩(wěn)定β相的溫度區(qū)淬火,則形成的結(jié)構(gòu)也不同.加熱后,初始的亞穩(wěn)結(jié)構(gòu),如α,(Nb<15) wt.%、α,+α”(15-24) wt.% Nb、α,(α”) +ω (24-30) wt.% Nb、α,(α”)+β(30-35) wt.%Nb、α”+β(35-40) wt.% Nb或者β(>40) wt.% Nb,將趨向轉(zhuǎn)變成穩(wěn)定態(tài).模量E和G在某一臨界溫度經(jīng)過一個極小值,歸因于α,(α”)相向β相轉(zhuǎn)變時的點陣軟化,在臨界溫度以上,β相變得較穩(wěn)定,剛度也變大.在Nb<30wt.%的Ti-Nb合金中,沒有初始的β相,只有α,(α”)馬氏體,穩(wěn)定的β相在500 ℃轉(zhuǎn)變,隨后E和G的最小值發(fā)生在相對較高的溫度.相反,具有初始α,(α”)+β或者單相亞穩(wěn)β相的合金在較低的溫度下將產(chǎn)生逆馬氏體轉(zhuǎn)變和/或β相分解,因此,E和G的最小值發(fā)生的溫度低于200 ℃.Chai等[30]研究了Nb含量(20-40)at.%的Ti-Nb形狀記憶合金的α”馬氏體的自適應(yīng)形貌.由3種α”變體組成的空心和實心的三角形貌是α”馬氏體的自適應(yīng)形貌.Kim等[31]研究了Ti-22Nb-6Ta(at.%)合金的織構(gòu)和形狀記憶性能,一個好的{001}<? ī0>織構(gòu)能在冷軋的樣品中出現(xiàn)和873 K熱處理600 s時獲得,再結(jié)晶織構(gòu){112}<? ī 0>在1 173 K熱處理1.8 ks獲得,在形狀恢復(fù)應(yīng)變和楊氏模量的各向異性在873 K和1 173 K的樣品中均可獲得.在873 K熱處理的樣品,3.4%的大恢復(fù)應(yīng)變能在軸向載荷沿著或者垂直于軋制方向時獲得.另一方面,對于1 173 K熱處理樣品,恢復(fù)應(yīng)變在沿軋制方向(RD)取最大值,而在垂直于軋制方向(TD)取最小值.轉(zhuǎn)變應(yīng)變對位向的依賴性的實驗結(jié)果與計算結(jié)果一致,計算的依據(jù)是織構(gòu)參數(shù)和馬氏體與母相之間的對應(yīng)關(guān)系.Kim等[32]對Ti-22Nb-(0.5-2.0)O(at.%)合金的形狀記憶性能的研究發(fā)現(xiàn),軋制和固溶處理的樣品的斷裂應(yīng)力隨O含量的增加而增加,軋制的Ti-22Nb-2O合金的斷裂應(yīng)力是1.37 GPa,馬氏體轉(zhuǎn)變溫度在O含量每增加1%時減小160 K,觀察到室溫下Ti-22 Nb-(0.5-1.5)O合金有優(yōu)良的形狀記憶性能和超彈性.O的添加增加了永久變形的臨界應(yīng)力,從而對Ti-Nb合金的超彈性起到了穩(wěn)定作用,4.0%的最大可恢復(fù)應(yīng)變在Ti-22Nb-0.5O合金中得到,永久變形的900 MPa的臨界應(yīng)力在Ti-22Nb-1.5O合金中出現(xiàn).Xiong等[33]調(diào)查了多孔Ti-26 (at.%) Nb形狀記憶合金的力學(xué)性能,多孔合金是靠添加間隔物燒結(jié)而成.多孔結(jié)構(gòu)用掃描電子顯微鏡(SEM)來表征,多孔Ti-26Nb合金的力學(xué)性能用壓縮試驗表征,結(jié)果顯示,多孔Ti-26Nb合金的力學(xué)性能受孔隙率的影響,多孔樣品壓縮試驗的平臺應(yīng)力和彈性模量隨空隙率的增加而減小,空隙率在50%~80%,平臺應(yīng)力在10~200 MPa,彈性模量在0.4~5.0 GPa.Kim等[34]研究了Ta對Ti-22 at.% Nb形狀記憶性能的影響,室溫下Ti-22Nb合金的最大可恢復(fù)應(yīng)變是2.7%,這種合金的馬氏體轉(zhuǎn)變溫度每增加1 at.%的Ta降低30 K,超彈性應(yīng)變隨Ta量的增加而增加,Ti-22Nb-(6-8)Ta合金的完全超彈性大約是2%拉應(yīng)變,隨著Ta含量的增加,表觀屈服應(yīng)力減小,4 at.%Ta時達到一個最小屈服應(yīng)力值,但之后隨著Ta的進一步增加,屈服應(yīng)力又增加,滑移變形的臨界應(yīng)力也隨Ta量的增加而增加,滑移變形較高的臨界應(yīng)力和誘導(dǎo)馬氏體轉(zhuǎn)變的較低應(yīng)力產(chǎn)生了一個較大的恢復(fù)應(yīng)變,應(yīng)變值在3%以上.Wang等[35]調(diào)查了Sn對Ti-Nb合金微觀結(jié)構(gòu)、相組成和形狀記憶效應(yīng)的作用.Ti-16Nb-5Sn (at.%)合金的單相β組織內(nèi)部存在位錯墻,隨著彎曲應(yīng)變和彎曲溫度的增加,形狀恢復(fù)率降低,說明在不同的溫度范圍相應(yīng)有不同的變形機理,在相同的彎曲應(yīng)變和溫度下,形狀恢復(fù)率隨著Sn含量的增加有降低的趨勢,最大完全恢復(fù)應(yīng)變大約是4%.Takahashi等[36]研究了生物相容性Ti-Nb-Sn合金中熱處理和Sn含量對超彈性的作用.實驗結(jié)果顯示,馬氏體轉(zhuǎn)變溫度隨Sn含量的增加而急劇減少,加熱和冷卻過程中原位光學(xué)顯微鏡觀察顯示馬氏體是熱彈性的,馬氏體和逆馬氏體轉(zhuǎn)變有小的溫度滯后,這個結(jié)果是用DSC(differential scanning calorimetry)測量的.通過控制熱處理條件和Sn含量,在室溫下可獲得較大的超彈性應(yīng)變.Mantani等[37]調(diào)查了Ti-Nb二元合金在時效期間淬火正交馬氏體(α”)的相轉(zhuǎn)變性能,以4種不同Nb含量(25、30、35和40 wt.%)的合金作為試驗合金,完成了DTA(differential thermal analysis)、光學(xué)觀察、X射線衍射以及Vickers硬度試驗,調(diào)查了每種合金在不同時效條件下的相轉(zhuǎn)變性能.此研究所觀察到的相變是α,馬氏體轉(zhuǎn)變成β相的逆相變,β相基體上的ω相沉淀以及α相沉淀,依據(jù)這些結(jié)果,討論了相變的溫度范圍,α”馬氏體和α”+β雙相結(jié)構(gòu)之間可能存在硬化性能和時效轉(zhuǎn)變方面的差別.氮(N)添加對Ti-Nb形狀記憶合金有作用[38].在添加N的三元合金中,Ti-23Nb-1.0N(at.%)具有最好的超彈性,幾乎具有完全的形狀恢復(fù),應(yīng)力滯后小.添加N后,由于滑移變形的臨界應(yīng)力增大,使超彈性的穩(wěn)定性增加.Song等[39]調(diào)查了用ECAP(equal-channel angular pressing)和時效制備的Ti-25(at.%)Nb合金的超彈性和形狀記憶性能.隨著ECAP道次的增加,屈服應(yīng)力漸漸減少,應(yīng)變硬化速率明顯增加.經(jīng)過一個道次的ECAP和573 K時效處理,在應(yīng)變小于2%的情況下,能達到完全的超彈性.在ECAP后573 K時效處理1 h,屈服應(yīng)力和流動應(yīng)力明顯增加,形狀記憶效應(yīng)和超彈性幾乎不改變.Farooq等[40]研究了Ti-Nb-Al三元形狀記憶合金的超彈性.Al添加細化了晶粒,降低了馬氏體轉(zhuǎn)變溫度,改善了力學(xué)性能,這些合金展示的應(yīng)變恢復(fù)高達4.7%.熱等靜壓(HIP)制備的多孔Ti-22Nb-6Zr(at.%)合金的球形孔均勻分布,而傳統(tǒng)燒結(jié)制備的樣品的孔形狀不均勻.固溶處理的Ti-22Nb-6Zr合金的組織由β相和α”馬氏體組成.由機械合金化(MA)和HIP制備的多孔Ti-22Nb-6Zr形狀記憶合金具有好的力學(xué)性能,優(yōu)良的超彈性,最大可恢復(fù)應(yīng)變可達3%,且具有較高的抗壓強度[41].Elmay等[42]給出了生物用的二元Ti-Nb合金的最佳力學(xué)性能,低模量和高強度是生物合金的關(guān)鍵,通過對Ti-(24-26)Nb(at.%)合金的冷加工和特殊熱處理,可獲得強化的β合金而模量不增加.
Ti-Nb合金是有應(yīng)用前景的生物形狀記憶合金和超彈性合金.Ti-Nb合金從高溫β相區(qū)快速淬火,依據(jù)含Nb量的不同,將形成不同的微觀結(jié)構(gòu),依次是六方α,馬氏體(<15wt.% Nb)、α,+α”(正交馬氏體) (15-24) wt.% Nb、α,(α”)+ω(24-30) wt.% Nb、α,(α”)+β(30-35) wt.% Nb、α”+β(35-40) wt.% Nb和β(>40) wt.% Nb.β型Ti-Nb合金從高溫β相區(qū)快速冷卻經(jīng)過一個馬氏體轉(zhuǎn)變,轉(zhuǎn)變成α,馬氏體或者α”馬氏體,從β相到α”相的轉(zhuǎn)變是熱彈性馬氏體轉(zhuǎn)變,由此而產(chǎn)生形狀記憶效應(yīng)和超彈性.除了Nb含量影響該合金的形狀記憶效應(yīng)和超彈性外,其他元素的種類和含量對該合金性能的影響也很大,淬火合金的后續(xù)熱處理以及循環(huán)變形對形狀記憶性能和超彈性有較大的作用,要獲得好的形狀記憶性能和超彈性能,除了合適的化學(xué)成分,還必須有相應(yīng)的熱處理.Nb含量增加,馬氏體轉(zhuǎn)變溫度降低,Sn和Zr等元素的添加抑制了α”馬氏體轉(zhuǎn)變的開始溫度,Zr每增加1 at.%,馬氏體轉(zhuǎn)變開始溫度Ms降低38 K,O增加1 at.%,Ms降低160 K,Ta增加1 at.%,Ms降低30 K.ω相沉淀能增加滑移變形的臨界應(yīng)力,使可恢復(fù)應(yīng)變增加,超彈性穩(wěn)定性也增加.在所報道的Ti-Nb基合金中,超彈性比較好的合金有Ti-22Nb-4Zr(at.%),可恢復(fù)應(yīng)變最大達4.3%.在添加Al的合金Ti-Nb基合金中,Ti-24Nb-3Al(at.%)合金具有的最大可恢復(fù)應(yīng)變達到4.7%.
[1] DUERIG T W,ALBRECHT J,RICHTER D,et al. Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al [J].Acta Metall.,1982,30:2161-2172.
[2] GROSDIDIER T,PHILIPPE M J. Deformation induced martensite and superelasticity in a β-metastable Titanium alloy [J]. Mater. Sci. Eng. A,2000,291:218-223.
[3] TAKAHASHI E,SAKURAI T,WATANABE S,et al. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys[J]. Mater. Trans.,2002,43:2978-2983.
[4] MAESHIMA T,NISHIDA M. Shape memory properties of biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys [J]. Mater. Trans.,2004,45:1096-1100.
[5] ZHOU T,AINDOW M,ALPAY S P,et al. Pseudo-elastic deformation behavior in a Ti-Mo-based alloy [J]. Scr. Mater.,2004,50:343-348.
[6] FUKUI Y,INAMURA T,HOSODA H,et al. Mechanical properties of a Ti-Nb-Al shape memory alloy [J].Mater. Trans.,2004,45:1077-1082.
[7] KIM H Y,OHMATSU Y,KIM J I,et al. Mechanical properties and shape memory behavior of Ti-Mo-Ga alloys [J]. Mater. Trans.,2004,45:1090-1095.
[8] MAESHIMA T,USHIMARU S,YAMAUCHI K,et al. Effect of heat treatment on shape memory effect and superelasticity in Ti-Mo-Sn alloys [J]. Mater. Sci. Eng. A,2006,438/439/440:844-847.
[9] MAESHIMA T,NISHIDA M. Shape memory and mechanical properties of biomedical Ti-Sc-Mo alloys [J]. Mater. Trans.,2004,45 (4):1101-1105.
[10] MA J,KARAMAN I,MAIER H J,et al. Superelastic cycling and room temperature recovery of Ti74Nb26 shape memory alloy [J]. Acta Mater.,2010,58:2216-2224.
[11] MIYAZAKI S,KIM H Y,HOSODA H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys [J]. Mater. Sci. Eng. A,2006,438:18-24.
[12] KIM H Y,HASHIMOTO S,KIM J I,et al. Mechanical properties and shape memory behavior of Ti-Nb alloys [J]. Mater. Trans.,2004,45(7):2443-2448.
[13] KIM H Y,IKEHARA Y,KIM J I,et al. Martensitic transformation,shape memory effect and superelasticity of Ti-Nb binary alloys [J]. Acta Mater.,2006,54:2419-2429.
[14] MATSUMOTO H,WATANABE S,HANADA S. Beta Ti-Nb-Sn alloys with low young’s modulus and high strength[J].Mater. Trans.,2005,46(5):1070-1078.
[15] HAO Y L,LI S J,SUN S Y,et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications[J].Acta Biomaterialia,2007(3):277-286.
[16] MATLAKHOVA L A,MATLAKHOV A N,MONTEIRO S N. Properties and structural characteristics of Ti-Nb-Al alloys[J].Mater. Sci. Eng. A,2005,393:320-326.
[17] IKEDA M,KOMATSU SY,NAKAMURA Y. Effects of Sn and Zr additions on phase constitution and aging behavior of Ti-50 Mass% Ta alloys quenched from β Single phase region [J]. Mater. Trans.,2004,45(4):1106-1112.
[18] Al-ZAIN Y,KIM H Y,KOYANO T,et al. Anomalous temperature dependence of the superelastic behavior of Ti-Nb-Mo alloys[J].Acta Mater.,2011,59:1464-1473.
[19] BUENCONSEJO P J S,KIM H Y,HOSODA H,et al. Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy [J]. Acta Mater.,2009,57:1068-1077.
[20] BAKER C. The shape memory effect in a Titanium-35wt.% Niobium Alloy [J]. Mater. Sci. J.,1970(5):92-100.
[21] TAHARA M,KIM H Y,HOSODA H,et al. Cyclic deformation behavior of a Ti-26 at.% Nb alloy [J]. Acta Mater.,2009,57:2461-2469.
[22] KIM H S,KIM W Y,LIM S H. Microstructure and elastic modulus of Ti-Nb-Si ternary alloys for biomedical application [J]. Scr. Mater.,2006,54:887-891.
[23] PING D H,MITARAI Y,YIN F X. Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy [J]. Scripta Mater.,2005,52:1287-1291.
[24] HAO Y L,LI S J,SUN S Y,et al. Effect of Zr and Sn on young’s modulus and superelasticity of Ti-Nb-based alloys [J]. Mater. Sci. Eng. A,2006,441:112-118.
[25] KIM H Y,KIM J I,INAMURA T,et al. Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti-(26-28)at.% Nb alloys [J]. Mater. Sci. Eng. A,2006,438/439/440:839-843.
[26] KIM J I,KIM H Y,INAMURA T,et al. Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys [J]. Mater. Sci. Eng. A,2005,403:334-339.
[27] LEE C M,JU C P,CHERN LIN J H. Structure-property relationship of cast Ti-Nb alloys[J].Journal of Oral Rehabilitation,2002,29:314-322.
[28] MANTANI Y,TAJIMA M. Effect of ageing on internal friction and elastic modulus of Ti-Nb alloy [J]. Mater. Sci. Eng. A,2006,442:409-413.
[29] MATLAKHOVA L A,MATLAKHOV A N,MONTEIRO S N,et al. Infuence of temperature on the properties and phase transformation in Ti-Nb alloys with 2%Al [J]. Revista Materia,2006,11:41-47.
[30] CHAI Y W,KIM H Y,HOSODA H,et al. Self-accommodation in Ti-Nb shape memory alloys [J]. Acta Mater.,2009,57:4054-4064.
[31] KIM H Y,SASAKI T,OKUTSU K,et al. Texture and shape memory behavior of Ti-22Nb-6Ta alloy [J]. Acta Mater.,2006,54:423-433.
[32] KIM J I,KIM H Y,HOSODA H,et al. Shape memory behavior of Ti-22Nb-(0.5-2.0)O(at.%) biomedical alloys [J].Mater. Trans.,2005,46:852-857.
[33] XIONG J Y,LI Y C,YAMADA Y,et al. Processing and mechanical properties of porous Tiyanium-Niobium shape memory alloy for biomedical application [J]. Materials Science Forum,2007,561/562/563/564/565:1689-1692.
[34] KIM H Y,HASHIMOTO S,KIM J I,et al. Effect of Ta addition on shape memory behavior of Ti-22Nb alloy [J]. Mater. Sci. Eng. A,2006,417:120-128.
[35] WANG B L,ZHENG Y F,ZHAO L C. Effects of Sn content on the microstructure,phase constitution and shape memory effect of Ti-Nb-Sn alloys [J]. Mater. Sci. Eng. A,2008,486:146-151.
[36] TAKAHASHI E,SAKURAI T,WATANAB S,et al. Effect of heat treatment and Sn content on superelasticity in biocompatible Ti-Nb-Sn alloys[J]. Mater.Trans.,2002,43:2978-2983.
[37] MANTANI Y,TAJIMA M. Phase transformation of quenched α”martensite by aging in Ti-Nb alloys [J]. Mater. Sci. Eng. A,2006,438/439/440:315-319.
[38] TAHARA M,KIM H Y,HOSODA H,et al. Shape memory effect and cyclic deformation behavior of Ti-Nb-N alloys [J]. Functional Materials Letters,2009(2):79-82.
[39] SONG J,ZHANG X N,JIANG H,et al. Superelasticity and shape memory behavior of Ti-25at.%Nb alloy processed by ECAP and Aging [J]. Materials Science Forum,2011,682:167-170.
[40] FAROOQ M U,KHALID F A,ZAIGHAM H,et al. Superelastic behavior of Ti-Nb-Al ternary shape memory alloys for biomedical applications[J]. Materials Letters,2014,121:58-61.
[41] MA L W,CHUNG C Y,TONG Y X,et al. Properties of porous Ti-Nb-Zr shape memory alloy fabricated by mechanical alloying and hot isostatic pressing [J]. Journal of Materials Engineering and Performance,2011,20:783-786.
[42] ELMAY W,PATOOR E,BOLLE B,et al. Optimisation of mechanical properties of Ti-Nb binary alloys for biomedical application [J]. Computer Methods in Biomechanics and Biomedical Engineering,2011,14:119-120.
(責任編輯:李 華)
Shape Memory Effect and Superelasticity of Ni-Free Ti-Nb-based Alloys
ZHOU Zheng-cun1,GUO De-wen2,DU Jie1,ZHANG Yi-ping1,GU Su-yi1,YAN Yong-jian1
(1.School of Mechano-electrical Engineering,Suzhou Vocational University,Suzhou 215104,China;2. Department of Research and Department,Anhui Guozhen Environmental Protection Science and Technology Joint Stock Co.Ltd.,Hefei 230088,China)
Ni-Free Ti-Nb-based alloys have potential application as superelastic alloys with non-toxic shape memory. The shape memory behavior and superelasticity of free-Ni Ti-Nb-based alloys are described and discussed in this paper. It is shown that the excellent shape memory behavior and superelasticity can be obtained by a suitable chemical composition and heat treatments. β-Ti-Nb alloys undergo a martensitic transformation when thay are rapidly cooled from the β phase region at high temperatures. This transformation produces α’or α”martensite. The transformation from β phase to α”martensite is a thermoelastic one and thereby produces shape memory effect and superelasticity. The start temperature of martensitic transformation (Ms) decreases with increasing Nb contents. Nb contents are located between 22-26at.% among the reported Ti-Nb alloys since the superelasticity at room temperature exists when the Ti-Nb alloys have the compositions of 22-26at.%Nb. The addition of the elements such as Zr,Sn,O and Al have influences on the shape memory effect and superelasticity of Ti-Nb alloys,which decreases Ms and increases superelasticity. Ti-22Nb-4Zr (at.%) and Ti-24Nb-3Al (at.%) possess large recovery strain. The maximum recovery strain is 4.3% for the former and 4.7% for the latter,respectively.
Ni-Free Ti-Nb-based alloys;shape memory behavior;superelasticity
TG146.2+3
A
1008-5475(2015)01-0001-06
2014-11-03;
2014-11-28
江蘇省海外留學(xué)基金資助項目;青藍工程資助項目;蘇州市職業(yè)大學(xué)校級資助項目(2013SZDYJ05)
周正存(1962-),男,安徽舒城人,教授,博士,主要從事功能材料及其測試儀器研究.