劉海波,吳嘉錕,王永青
?
地腳螺栓蠕變松弛對(duì)大型數(shù)控機(jī)床幾何精度衰退的影響
劉海波,吳嘉錕,王永青
數(shù)控機(jī)床床身是保障機(jī)床正常服役的關(guān)鍵基礎(chǔ)件[1]。大型/重型數(shù)控機(jī)床的床身安裝大都采用地腳螺栓分布預(yù)緊方式。預(yù)緊后的地腳螺栓蠕變松弛將直接影響螺栓預(yù)緊載荷大小、床身與地基間的連接剛度、床身應(yīng)力分布等,導(dǎo)致床身幾何尺寸發(fā)生變化,進(jìn)而影響機(jī)床精度的保持狀態(tài)。因此,研究數(shù)控機(jī)床服役過(guò)程中的地腳螺栓長(zhǎng)期蠕變松弛行為,及其對(duì)床身預(yù)緊狀態(tài)和幾何精度的影響具有重要意義和工程價(jià)值。
國(guó)內(nèi)外學(xué)者和研究機(jī)構(gòu)針對(duì)金屬材料結(jié)構(gòu)的高溫蠕變開(kāi)展了大量的研究[2]??紤]到數(shù)控機(jī)床的實(shí)際工作環(huán)境,地腳螺栓的常溫蠕變特征最為顯著。Kassner等綜述了常溫/低溫條件下的結(jié)晶材料的蠕變行為,討論了蠕變塑性的基本機(jī)制[3]。Delhomme等基于黏彈性理論對(duì)內(nèi)埋于混凝土的地腳螺栓進(jìn)行了數(shù)值分析,預(yù)測(cè)了地腳螺栓預(yù)應(yīng)力損失規(guī)律[4]。Fan等通過(guò)研究泥巖和螺栓瞬間粘合強(qiáng)度與螺栓蠕變速率、螺栓失效的關(guān)系,提出了螺栓在軟質(zhì)巖中的設(shè)計(jì)和應(yīng)用準(zhǔn)則[5]。Xu等根據(jù)螺栓拉拔蠕變實(shí)驗(yàn),建立了螺栓拉拔剛度與蠕變損傷模型[6]。Kim研究了低壓灌漿地腳螺栓蠕變松弛行為和載荷傳遞機(jī)制[7]。楊國(guó)慶等提出了一種螺栓被連接件軸向剛度高精度計(jì)算的半解析方法,實(shí)現(xiàn)了不同材料不同幾何尺寸參數(shù)所對(duì)應(yīng)被連接件剛度的精確計(jì)算[8]。Gurinsky分析了螺栓在黏性土壤中長(zhǎng)期蠕變現(xiàn)象,并對(duì)螺栓變形進(jìn)行了實(shí)驗(yàn)測(cè)試[9]。上述研究多面向單個(gè)螺栓的常溫蠕變,而多個(gè)螺栓的常溫蠕變行為及對(duì)連接性能的交互影響仍缺乏針對(duì)性研究。
大型數(shù)控機(jī)床床身地腳螺栓安裝具有螺栓分布式、數(shù)量多、預(yù)緊交互影響顯著等特征,床身在長(zhǎng)期服役過(guò)程中的預(yù)緊狀態(tài)及精度衰退規(guī)律復(fù)雜,因此有必要分析地腳螺栓蠕變松弛及其影響。
圖1 螺栓孔的彈簧-節(jié)點(diǎn)模型
(1)
在常溫環(huán)境下(T<0.3Tm,T為環(huán)境溫度,Tm為螺栓熔點(diǎn)溫度),基于時(shí)效硬化的冪律模型常用于描述金屬常溫蠕變行為[10],即
(2)
對(duì)式(2)進(jìn)行蠕變時(shí)間積分,得到螺栓蠕變引起的軸向應(yīng)變
(3)
在螺栓蠕變的影響下,螺栓預(yù)緊力
(4)
設(shè)螺栓組包含N個(gè)螺栓,根據(jù)式(1)可推導(dǎo)出預(yù)緊力彈性交互關(guān)系的通用模型
(5)
2.1 計(jì)算模型
由式(4)和式(5)可知,螺栓實(shí)際預(yù)緊狀態(tài)是由螺栓蠕變和蠕變螺栓間的彈性交互共同作用的結(jié)果,其中螺栓蠕變力是分析螺栓預(yù)緊狀態(tài)變化的關(guān)鍵。螺栓蠕變力定義為由蠕變引起的螺栓軸向應(yīng)變產(chǎn)生的力,即
(6)
式中:Fc為螺栓蠕變力;L為螺栓桿基本長(zhǎng)度;δc為螺栓桿長(zhǎng)度方向的蠕變量;ΔF為螺栓預(yù)緊力變化量;ΔFf為蠕變螺栓間彈性交互作用引起的力變化量。δc可直接根據(jù)蠕變前、后螺栓中桿長(zhǎng)的變化計(jì)算得到。
由于在蠕變過(guò)程中螺栓變形為塑性的,所以E為變量,無(wú)法直接利用螺栓蠕變量δc計(jì)算螺栓蠕變力。根據(jù)式(6),螺栓蠕變力可通過(guò)計(jì)算ΔFf間接獲取。
根據(jù)式(5),可推出
(7)
結(jié)合式(6)和式(7),得出N個(gè)螺栓蠕變力的計(jì)算式,即
(8)
2.2 蠕變力的預(yù)測(cè)
圖2 地腳螺栓蠕變模擬模型
ui和li分別為標(biāo)記在上和下導(dǎo)軌面的測(cè)點(diǎn)位置圖3 地腳螺栓序列
所選的10個(gè)地腳螺栓被分成兩排,對(duì)稱分布于床身兩側(cè),地腳螺栓定義序列如圖3所示。采用中間向兩邊對(duì)稱的預(yù)緊原則進(jìn)行地腳螺栓組的預(yù)緊順序規(guī)劃,規(guī)劃后的地腳螺栓預(yù)緊順序?yàn)槁菟?—螺栓8—螺栓4—螺栓9—螺栓7—螺栓2—螺栓6—螺栓1—螺栓10—螺栓5,以獲得優(yōu)化后的初始預(yù)緊狀態(tài)。
(9)
圖4 螺栓孔單元?jiǎng)偠?/p>
圖5 3號(hào)地腳螺栓的蠕變力與預(yù)緊力變化量曲線
提取不同蠕變模擬時(shí)間節(jié)點(diǎn)的δc與ΔF,結(jié)合式(9)求得的K,并將其代入式(8)計(jì)算螺栓蠕變力。經(jīng)9 000 h螺栓蠕變模擬,3號(hào)地腳螺栓的蠕變力及預(yù)緊力變化量如圖5所示。由圖可以看出,隨著蠕變時(shí)間的推進(jìn),地腳螺栓蠕變力趨于穩(wěn)定,而蠕變螺栓間的彈性交互作用對(duì)螺栓預(yù)緊力變化的影響逐漸增大。
為分析地腳螺栓長(zhǎng)期蠕變松弛對(duì)床身導(dǎo)軌安裝面的直線度、平行度等關(guān)鍵幾何精度衰退的影響,在床身上、下2個(gè)導(dǎo)軌安裝面的中線上依次均勻地取10個(gè)測(cè)點(diǎn),得到2個(gè)測(cè)點(diǎn)序列Sui,i=1,2,…,10和Sli,i=1,2,…,10,ui和li分別為標(biāo)記在上和下導(dǎo)軌面的測(cè)點(diǎn)位置,如圖3所示。
由于螺栓蠕變及其彈性交互影響,使得螺栓殘余預(yù)緊力松弛。按照規(guī)劃順序預(yù)緊后的螺栓初始預(yù)緊力和蠕變后的地腳螺栓殘余預(yù)緊力對(duì)比曲線如圖6所示。相比初始預(yù)緊狀態(tài),地腳螺栓預(yù)緊力的松弛比約為14.8%。不同蠕變時(shí)間節(jié)點(diǎn)的地腳螺栓殘余預(yù)緊力標(biāo)準(zhǔn)偏差計(jì)算結(jié)果分布如圖7所示。由圖6和圖7可知,隨著螺栓蠕變松弛,螺栓組預(yù)緊力分布均勻性與殘余預(yù)緊力變化速率有關(guān)。
圖6 地腳螺栓殘余預(yù)緊力變化曲線
圖7 蠕變螺栓的殘余預(yù)緊力標(biāo)準(zhǔn)偏差
(a)序列Sui
(b)序列Sli圖8 測(cè)點(diǎn)蠕變位移曲線
床身導(dǎo)軌安裝面上各測(cè)點(diǎn)由螺栓蠕變引起的位移曲線如圖8所示。由圖可以看出,各測(cè)點(diǎn)的最大蠕變位移約為10.4 μm,且蠕變位移與殘余預(yù)緊力的變化趨勢(shì)基本一致。根據(jù)各測(cè)點(diǎn)蠕變位移,按照標(biāo)準(zhǔn)ISO230-1計(jì)算出導(dǎo)軌面各直線度的最大相對(duì)衰減量為4.3 μm,兩導(dǎo)軌平行度的相對(duì)衰減量為2.8 μm。
(1)通過(guò)對(duì)大型數(shù)控機(jī)床床身地腳螺栓預(yù)緊工藝分析,建立了慮及螺栓蠕變的彈性交互作用模型和螺栓蠕變力的計(jì)算模型,為大型數(shù)控機(jī)床地腳螺栓蠕變松弛行為的研究奠定了理論基礎(chǔ)。
(2)開(kāi)展了地腳螺栓長(zhǎng)期、常溫蠕變數(shù)值模擬,利用所建立的模型計(jì)算獲得了機(jī)床服役一年的地腳螺栓蠕變力、殘余預(yù)緊力和床身關(guān)鍵點(diǎn)蠕變位移的變化曲線。通過(guò)床身導(dǎo)軌安裝面的直線度和平行度評(píng)估表明,地腳螺栓蠕變導(dǎo)致機(jī)床幾何精度明顯衰退,尤其對(duì)于精密/超精密數(shù)控機(jī)床,這種影響不可忽視。
(3)所建分析模型對(duì)優(yōu)化機(jī)床床身等關(guān)鍵基礎(chǔ)件的螺栓聯(lián)接和研究大型數(shù)控機(jī)床幾何精度的衰退規(guī)律具有重要意義和工程價(jià)值。
[1] 胡敏, 余常武, 張俊, 等. 數(shù)控機(jī)床基礎(chǔ)大件精度保持性研究 [J]. 西安交通大學(xué)學(xué)報(bào), 2014, 48(6): 65-73. HU Min, YU Changwu, ZHANG Jun, et al. Accuracy stability for large machine tool body [J]. Journal of Xi’an Jiaotong University, 2014, 48(6): 65-73.
[2] 涂善東, 軒福貞, 王衛(wèi)澤. 高溫蠕變與斷裂評(píng)價(jià)的若干關(guān)鍵問(wèn)題 [J]. 金屬學(xué)報(bào), 2009, 45(7): 781-787. TU Shandong, XUAN Fuzhen, WANG Weize. Some critical issues in creep and fracture assessment at high temperature [J]. Acta Metallurgica Sinica, 2009, 45(7): 781-787.
[3] KASSNER M E, SMITH K. Low temperature creep plasticity [J]. Journal of Materials Research and Technology, 2014, 3(3): 280-288.
[4] DELHOMME F, DEBICKI G. Numerical modelling of anchor bolts under pullout and relaxation tests [J]. Construction and Building Materials, 2010, 24(7): 1232-1238.
[5] FAN Q Y, LIU C L, YANG K Q, et al. Test study on creep character of anchor rod in argillaceous soft rock [J]. Advanced Materials Research, 2012, 396: 565-570.
[6] XU H, WANG F, CHENG X. Pullout creep properties of grouted soil anchors [J]. Journal of Central South University of Technology, 2007, 14: 474-477.
[7] KIM N K. Performance of tension and compression anchors in weathered soil [J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1138-1150.
[8] 楊國(guó)慶, 王飛, 洪軍, 等. 螺栓被連接件軸向剛度高精度計(jì)算的半解析方法 [J]. 西安交通大學(xué)學(xué)報(bào), 2012, 46(9): 37-42. YANG Guoqing, WANG Fei, HONG Jun, et al. Semi-analytical method for accurate evaluation of axial stiffness of bolted member [J]. Journal of Xi’an Jiaotong University, 2012, 46(9): 37-42.
[9] GURINSKY M A. Long-term strength of prestressed ground anchors in creep-sensitive soils [J]. ASEC Geotechnical Special Publication, 2002, 116(1): 37-52.
[10]MAXIMOV J T, DUNCHEVA G V, ANCHEV A P. An approach to modeling time-dependent creep and residual stress relaxation around cold worked holes in aluminium alloys at room temperature [J]. Engineering Failure Analysis, 2014, 45: 1-14.
(編輯 苗凌)
(大連理工大學(xué)精密與特種加工教育部重點(diǎn)實(shí)驗(yàn)室,116024,遼寧大連)
針對(duì)大型數(shù)控機(jī)床地腳螺栓蠕變松弛的問(wèn)題,建立了分布式螺栓預(yù)緊力和蠕變力的計(jì)算模型及螺栓順序預(yù)緊和室溫蠕變的模擬模型。計(jì)算模型中考慮了螺栓常溫蠕變特征和螺栓孔單元間的彈性交互作用,量化分析時(shí)利用了模擬模型,以揭示蠕變松弛對(duì)機(jī)床幾何精度衰退的影響規(guī)律。結(jié)合20 ℃環(huán)境溫度下拉拔實(shí)驗(yàn)獲得了8.8級(jí)T型地腳螺栓的3個(gè)蠕變系數(shù),再經(jīng)9 000 h蠕變模擬得到的地腳螺栓預(yù)緊力松弛比約為14.8%,床身導(dǎo)軌安裝面直線度和平行度的相對(duì)衰退量分別為4.3 μm和2.8 μm。該結(jié)果表明,所建模型對(duì)大型數(shù)控機(jī)床基礎(chǔ)件的螺栓預(yù)緊優(yōu)化和幾何精度保持能力的提升具有指導(dǎo)意義。
地腳螺栓;蠕變松弛;幾何精度;精度衰退;大型數(shù)控機(jī)床
Impact of Anchor Bolts Creep Relaxation on Geometric Accuracy Decline of Large Computer Numerical Control Machine Tools
LIU Haibo,WU Jiakun,WANG Yongqing
(Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, China)
Aiming at anchor bolt creep relaxation of large CNC machine tools, a calculation model for preload and creep force of the distributed bolts is established, where both bolts creep at room temperature and elastic interaction among bolt-hole units are taken into consideration. A simulation for anchor bolt sequential preload and creep is also conducted and utilized to reveal the influence of bolt creep relaxation on machine geometric accuracy decline quantitatively. Furthermore, three creep parameters of the 8.8 level T-type anchor bolt are estimated via the drawing experiments under 20 ℃ ambient temperature. After 9 000 hours creep simulation, the anchor bolt preload relaxation reaches 14.8%, and the relative accuracy declines of straightness and parallelism of bed linear guide mounting surfaces get 4.3 μm and 2.8 μm, respectively. The developed model can be used for the fundamental parts bolt preload optimization and the geometric accuracy retention capability enhancement of large CNC machine tools.
anchor bolt; creep relaxation; geometric accuracy; accuracy decline; large computer numerical control machine tool
2014-12-15。 作者簡(jiǎn)介:劉海波(1983—),男,講師。 基金項(xiàng)目:國(guó)家科技重大專項(xiàng)資金資助項(xiàng)目(2014 ZX04014021);遼寧省科技創(chuàng)新重大專項(xiàng)資金資助項(xiàng)目(201301002-01)。
時(shí)間:2015-06-17
http:∥www.cnki.net/kcms/detail/61.1069.T.20150617.0902.007.html
10.7652/xjtuxb201509003
TH161
A
0253-987X(2015)09-0014-04