亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于先進(jìn)調(diào)制的高速可見光通信技術(shù)

        2014-12-13 13:18:23遲楠黃星星王一光
        中興通訊技術(shù) 2014年6期
        關(guān)鍵詞:正交頻分復(fù)用

        遲楠+黃星星+王一光

        中圖分類號:TN929.1 ? ?文獻(xiàn)標(biāo)志碼:A ? 文章編號:1009-6868 (2014) 06-0016-005

        摘要:基于發(fā)光二極管(LED)調(diào)制帶寬限制了可見光通信(VLC)系統(tǒng)傳輸速率這一問題,從VLC系統(tǒng)的先進(jìn)調(diào)制技術(shù)出發(fā),探討了類平衡-正交頻分復(fù)用、無載波幅相調(diào)制和頻域均衡單載波調(diào)制3種調(diào)制技術(shù)。對這3種調(diào)制技術(shù)原理和實(shí)驗(yàn)結(jié)果的分析與討論,驗(yàn)證了先進(jìn)調(diào)制技術(shù)在提升VLC系統(tǒng)傳輸容量上的可行性。

        關(guān)鍵詞:?可見光通信;正交頻分復(fù)用;無載波幅相調(diào)制;頻域均衡單載波調(diào)制;類平衡探測

        Abstract:We introduce three formats, based on advanced modulation, that improve transmission. These formats are quasi-balanced detection orthogonal frequency-division multiplexing (OFDM), carrier-less amplitude and phase modulation, and single carrier-frequency domain equalization (SC-FDE). We determine the feasibility of these schemes for improving transmission in a VLC system. We analyze the principles of these three modulation formants and provide experimental results.

        Keywords:?visible light communication; orthogonal frequency division multiplexing; carrier-less amplitude and phase modulation; single carrier-frequency domain equalization; quasi-balanced detection

        可見光發(fā)光二極管(LED)具有高亮度、高可靠性、能量損耗低和壽命長等許多優(yōu)良的特性,可用于全色顯示、交通信號指示和照明光源等,是公認(rèn)的下一代綠色照明產(chǎn)品。此外,可見光LED還具有調(diào)制性能好、響應(yīng)靈敏度高的優(yōu)點(diǎn),利用LED的這種特性,我們還可以將信號調(diào)制到LED所發(fā)出的可見光上進(jìn)行傳輸。LED可以將照明與數(shù)據(jù)傳輸結(jié)合起來,促進(jìn)了一種新型的無線通信技術(shù),即可見光通信(VLC)技術(shù)的發(fā)展[1]。VLC利用的可見光波段是未受到管制的頻譜,無需授權(quán)即可使用。與傳統(tǒng)的射頻無線通信技術(shù)相比,VLC具有如下優(yōu)點(diǎn)[2-4]:

        (1)綠色通信,安全環(huán)保,沒有射頻電磁輻射,且LED發(fā)出的白光對于人眼安全。

        (2)能夠同時實(shí)現(xiàn)通信與照明。

        (3)白光不可穿透墻壁等物體,因此可見光通信具有高度的保密性。

        (4)可見光不受射頻信號的電磁干擾,可以應(yīng)用在電磁敏感環(huán)境中,如機(jī)艙、醫(yī)院等。

        (5)由于頻譜無需授權(quán)即可使用,所以可見光通信應(yīng)用靈活,可以單獨(dú)使用,也可以作為射頻無線設(shè)備的有效備份。

        目前,VLC得到了全球研究者越來越多的關(guān)注[5-13]。VLC技術(shù)已經(jīng)取得迅猛發(fā)展,傳輸速率從最開始的幾十兆比特每秒[5-6]到500 Mb/s[7]再到800 Mb/s[8],目前已經(jīng)突破了吉比特每秒[9-10]。隨著與VLC相關(guān)系統(tǒng)器件的開發(fā),系統(tǒng)通信速率還會有更高的提升。

        但是VLC技術(shù)通信速率的提高也存在著很多限制因素,其中最主要的挑戰(zhàn)是LED有限的調(diào)制帶寬。目前,普通商用白光LED的3 dB調(diào)制帶寬都低于10 MHz,這很大程度上限制了VLC系統(tǒng)的傳輸速率。為突破調(diào)制帶寬這一“瓶頸”,許多技術(shù)都被應(yīng)用到VLC系統(tǒng),如系統(tǒng)多維復(fù)用技術(shù)[11]、預(yù)均衡技術(shù)[12]、后均衡技術(shù)[13]等等,來提升VLC系統(tǒng)傳輸速率。采用先進(jìn)調(diào)制技術(shù),是克服可見光通信系統(tǒng)調(diào)制帶寬限制,提升系統(tǒng)傳輸容量的有效方法。在VLC系統(tǒng)中,可以采用的先進(jìn)調(diào)制技術(shù)包括類平衡探測-正交頻分復(fù)用(OFDM)[14]、無載波幅相調(diào)制(CAP)[15]和頻域均衡單載波調(diào)制技術(shù)(SC-FDE)[16]。本文從提升VLC系統(tǒng)傳輸容量出發(fā),分析這3種先進(jìn)調(diào)制技術(shù)的特點(diǎn)與實(shí)現(xiàn)方式,實(shí)現(xiàn)了高速VLC傳輸系統(tǒng)。通過對這3種調(diào)制技術(shù)原理和實(shí)驗(yàn)結(jié)果的分析與討論,驗(yàn)證了先進(jìn)調(diào)制技術(shù)在提升VLC系統(tǒng)傳輸容量上的可行性。

        1 類平衡探測-正交頻分

        復(fù)用技術(shù)

        類平衡探測-正交頻分復(fù)用技術(shù)(QBD-OFDM)結(jié)合類平衡探測編碼技術(shù)和OFDM技術(shù)[14]。OFDM信號數(shù)據(jù)被分為多個數(shù)據(jù)塊,每個數(shù)據(jù)塊有兩個符號的數(shù)據(jù)。在相同的數(shù)據(jù)塊,第二個符號中的信號是和第一個符號中的信號在運(yùn)算符號上是相反的。經(jīng)過理論推導(dǎo),發(fā)現(xiàn)二階互調(diào)制失真、直流電流、可以完全消除,而且接收機(jī)的靈敏度可以提高3 dB,因此可以提高信噪比。

        我們采用QBD-OFDM技術(shù),實(shí)現(xiàn)了可達(dá)到2.1 Gb/s實(shí)際物理數(shù)據(jù)速率,并使傳輸距離達(dá)到2.5 m。圖1為所提出的QBD-OFDM實(shí)驗(yàn)的原理。實(shí)驗(yàn)中,QBD-OFDM信號由任意波形發(fā)生器(AWG)產(chǎn)生,經(jīng)過低通濾波(LPF)、電放大器(EA)和偏置樹(Bias Tee)后調(diào)制到紅綠藍(lán)發(fā)光二極管(RGB-LED)不同顏色的芯片上。經(jīng)過自由空間傳輸后,在接收端由棱鏡聚光后,用濾光片將3個波長的光分開,最后采用雪崩光電二極管(APD)探測器接收。然后進(jìn)行后端的均衡與解調(diào)算法處理。endprint

        結(jié)合波分復(fù)用(WDM)和類平衡探測子載波復(fù)用,很好地利用了多色LED的波分復(fù)用,提供了更多的傳輸信道。利用類平衡探測技術(shù)很好地避免了OFDM提供更多子載波時的峰均功率比(PAPR)限制,有效提升了多色LED傳輸速度,提高了系統(tǒng)誤碼率(BER)性能,同時增加了可見光通信的傳輸距離。圖2給出QBD-OFDM技術(shù)和直接探測光正交頻分復(fù)用(DDO-OFDM)技術(shù)的對比。兩個子信道帶寬為,Sub1:6.25~56.25 MHz,Sub2:56.25~106.25 MHz。每個子信道對應(yīng)的調(diào)制階數(shù)分別為,紅光:256正交幅度調(diào)制(256QAM)和128正交幅度調(diào)制(128QAM),綠光:128QAM和64QAM,藍(lán)光:128QAM和128QAM。因此,紅光、綠光和藍(lán)光的數(shù)據(jù)速率分別為750 Mb/s、650 Mb/s和700 Mb/s,總數(shù)據(jù)速率達(dá)到2.1 Gb/s,實(shí)驗(yàn)距離可以達(dá)到2.5 m。在距離為0.5 m時,紅綠藍(lán)3色對應(yīng)的Sub1、Sub2兩個子信道的BER提升為25.6 dB、31 dB、30.3 dB、25.8 dB、21.8 dB和19.3 dB。當(dāng)可見光通信系統(tǒng)的通信距離增加時,系統(tǒng)誤碼率會增加,這是因?yàn)榫嚯x增加導(dǎo)致系統(tǒng)接收到的光信號減弱,系統(tǒng)信噪比降低,誤碼率增加。繼續(xù)增加距離會使BER超過前向糾錯碼的門限,為使距離增加,就要使系統(tǒng)的傳輸速率降低。藍(lán)光LED采用QBD-OFDM和DDO-OFDM的對應(yīng)的Sub1、Sub2兩個子信道的星座圖如圖2(d)的(i)、(ii)、(iii)和(iv)所示。

        2 無載波幅相

        調(diào)制技術(shù)

        無載波幅度相位調(diào)制(CAP)是正交幅度調(diào)制的一個變種多階編碼調(diào)制技術(shù),可以使用模擬或數(shù)字濾波器,實(shí)現(xiàn)靈活的子帶劃分和高階調(diào)制,減少了計(jì)算的復(fù)雜性和系統(tǒng)結(jié)構(gòu),在數(shù)字用戶線路有著廣泛的應(yīng)用。

        無載波幅相調(diào)制信號可以表示如下:

        [st=at?fIt-bt?fQt] ? ?(1)

        這里a(t)和b(t)是I路和Q路的原始比特序列經(jīng)過編碼和上采樣之后的信號。[fIt=gtcos2πfct] 和[fQt=gtsin2πfct]是對應(yīng)的整形濾波器的時域函數(shù),它們形成一對希爾伯特變換對。

        假設(shè)傳輸信道是理想的,在接收機(jī)端兩個匹配濾波器的輸出可以表示如下:

        這里[mIt=fI-t] 和[mQt=fQ-t]是對應(yīng)的匹配濾波器的脈沖響應(yīng)。利用對應(yīng)的匹配濾波器在接收端就可以解調(diào)出原始信號。

        我們采用了無載波幅相調(diào)制技術(shù),結(jié)合先進(jìn)預(yù)均衡與后均衡算,后均衡算法采用改進(jìn)級聯(lián)多模算法(CMMA),實(shí)現(xiàn)了1.35 Gb/s可見光傳輸系統(tǒng)實(shí)驗(yàn)[15]。實(shí)驗(yàn)原理圖和實(shí)驗(yàn)裝置圖如圖3所示。

        圖4(a)到圖4(c)為采用改進(jìn)CMMA均衡算法所測得BER和距離的關(guān)系。實(shí)驗(yàn)中,每個波長上采用頻分復(fù)用技術(shù),將不同用戶的信號分別調(diào)制到3個子載波上,每個子載波調(diào)制信號帶寬為25 MHz,調(diào)制階數(shù)為64QAM,因此每個子載波的傳輸速率為150 Mb/s,每個波長的傳輸速率為450 Mb/s。在發(fā)射和接收的距離為30 cm時,經(jīng)過波分復(fù)用后該系統(tǒng)總的傳輸速率達(dá)到1.35 Gb/s。圖4(d)對比了CMMA和改進(jìn)CMMA的性能,改進(jìn)CMMA性能要優(yōu)于CMMA,尤其是在第3個子帶更為明顯。

        3 頻域均衡單載波調(diào)制技術(shù)

        基于頻域均衡的單載波調(diào)制技術(shù)(SC-FDE)是基于單載波的高頻譜效率調(diào)制技術(shù),該調(diào)制技術(shù)頻譜效率和OFDM一致,復(fù)雜度一致??梢姽馔ㄐ畔到y(tǒng)是一個非線性非常嚴(yán)重的系統(tǒng),OFDM存在PAPR的缺點(diǎn),高PAPR對于可見光系統(tǒng)是一個非常大的缺點(diǎn),而SC-FDE相比于OFDM具有一定優(yōu)勢,因?yàn)镾C-FDE擁有更小的PAPR,其調(diào)制/解調(diào)原理如圖5所示。SC-FDE調(diào)制技術(shù)和OFDM過程基本一致,但SC-FDE技術(shù)把IFFT變換從系統(tǒng)發(fā)射端移到了系統(tǒng)接收端。

        采用SC-FDE技術(shù),使用RGB-LED波分復(fù)用技術(shù)和高階調(diào)制格式,并在頻域采用預(yù)均衡和后均衡技術(shù),可以在LED 3 dB帶寬只有10 MHz的條件下取得3.25 Gb/s的速率[16]。如圖6(a)所示。該速率是在發(fā)射和接收距離小于1 cm條件下測得,預(yù)均衡后的帶寬為125 MHz,紅光和綠光都采用512QAM,藍(lán)光則采用256QAM。圖6(b)、圖6(c)和圖6(d)分別為紅綠藍(lán)3色BER與距離的關(guān)系,并給出了每種顏色光有無預(yù)均衡的性能對比。

        4 結(jié)束語

        本文針對可見光通信系統(tǒng)的調(diào)制帶寬低問題,采用先進(jìn)調(diào)制方式,突破帶寬限制,實(shí)現(xiàn)可見光通信系統(tǒng)大容量傳輸。本文分析了類平衡-正交頻分復(fù)用、無載波幅相調(diào)制和頻域均衡單載波調(diào)制技術(shù)。通過對這3種調(diào)制技術(shù)原理和實(shí)驗(yàn)結(jié)果的分析與討論,驗(yàn)證了先進(jìn)調(diào)制技術(shù)在提升VLC系統(tǒng)傳輸容量上的可行性。因此,先進(jìn)調(diào)制格式技術(shù)是實(shí)現(xiàn)高速VLC系統(tǒng)非常重要的途徑。

        參考文獻(xiàn)

        [1] O'BRIEN D, LE M H, ZENG L, et al. Indoor visible light communications: challenges and prospects [C]//Proceedings of the Optical Engineering Applications. International Society for Optics and Photonics, 2008: 709106-709106-9.

        [2] LANGER K D, VUCIC J, KOTTKE C, et al. Advances and prospects in high-speed information broadcast using phosphorescent white-light LEDs [C]//Proceedings of the Transparent Optical Networks, 2009. ICTON'09. 11th International Conference on. IEEE, 2009: 1-6.endprint

        [3] CUI K, CHEN G, XU Z, et al. Line-of-sight visible light communication system design and demonstration [C]//Proceedings of the Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on. IEEE, 2010: 621-625.

        [4] TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links [C]//Proceedings of the Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on. IEEE, 2000, 2: 1325-1329.

        [5] LE M H, OBRIEN D. Faulkner et al. High-speed visible light communications using multiple-resonant equalization [J]. IEEE Photon. Technol. Lett. 2008, 20(14): 1243-1245.

        [6] LE M H, OBRIEN D, FAULKNER G, et al. 80 Mb/s visible light communications using pre-equalized white LED [C]//Proceedings of the ECOC 2008, 2008: 6.09.

        [7] VUCIC J, KOTTKE C, NERRETER S, et al. 513 Mb/s visible light communications link based on DMT-modulation of a white LED [J]. Lightw. Technol. 2010, 28(24): 3512-3518.

        [8] CHI N, WANG Y Q, WANG Y G, et al. Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats [J]. Chinese Opt. Lett. 2014, 12(1):10605.

        [9] KHALID A M, COSSU G, CORSINI R, et al. 1 Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation [J]. IEEE Photon. J. 2012, 4(5): 1465-1473.

        [10] COSSU G, KHALID A M, CHOUDHURY P, et al. 3.4 Gb/s visible optical wireless transmission based on RGB LED [J]. Opt. Express, 2012, 20(26): B501-B506.

        [11] WANG Y Q, YANG C, WANG Y G, et al. Gigabit polarization division multiplexing in visible light communication [J]. Optics Letters, 2014, 39(7): 1823-1826.

        [12] FUJIMOTO N, MOCHIZUKI H. 477 Mb/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit [C]//Proceedings of the National Fiber Optic Engineers Conference. Optical Society of America, 2013: JTh2A. 73.

        [13] LI H, CHEN X, HUANG B, et al. High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit [J]. IEEE Photon. Technol. Lett., 2014, 26(2): 119-122.

        [14] WANG Y, CHI N, WANG Y, et al. High-speed quasi-balanced detection OFDM in visible light communication [J]. Optics express, 2013, 21(23): 27558-27564.

        [15] WANG Y G, TAO L, WANG Y Q, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization [J]. IEEE Communication Letters, 2013, 29(2): 2755-2759.

        [16] WANG Y, LI R, WANG Y, et al. 3.25 Gbps Visible Light Communication System based on Single Carrier Frequency Domain Equalization Utilizing an RGB LED [C]//Proceedings of the Optical Fiber Communication Conference. Optical Society of America, 2014: Th1F. 1.endprint

        [3] CUI K, CHEN G, XU Z, et al. Line-of-sight visible light communication system design and demonstration [C]//Proceedings of the Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on. IEEE, 2010: 621-625.

        [4] TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links [C]//Proceedings of the Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on. IEEE, 2000, 2: 1325-1329.

        [5] LE M H, OBRIEN D. Faulkner et al. High-speed visible light communications using multiple-resonant equalization [J]. IEEE Photon. Technol. Lett. 2008, 20(14): 1243-1245.

        [6] LE M H, OBRIEN D, FAULKNER G, et al. 80 Mb/s visible light communications using pre-equalized white LED [C]//Proceedings of the ECOC 2008, 2008: 6.09.

        [7] VUCIC J, KOTTKE C, NERRETER S, et al. 513 Mb/s visible light communications link based on DMT-modulation of a white LED [J]. Lightw. Technol. 2010, 28(24): 3512-3518.

        [8] CHI N, WANG Y Q, WANG Y G, et al. Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats [J]. Chinese Opt. Lett. 2014, 12(1):10605.

        [9] KHALID A M, COSSU G, CORSINI R, et al. 1 Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation [J]. IEEE Photon. J. 2012, 4(5): 1465-1473.

        [10] COSSU G, KHALID A M, CHOUDHURY P, et al. 3.4 Gb/s visible optical wireless transmission based on RGB LED [J]. Opt. Express, 2012, 20(26): B501-B506.

        [11] WANG Y Q, YANG C, WANG Y G, et al. Gigabit polarization division multiplexing in visible light communication [J]. Optics Letters, 2014, 39(7): 1823-1826.

        [12] FUJIMOTO N, MOCHIZUKI H. 477 Mb/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit [C]//Proceedings of the National Fiber Optic Engineers Conference. Optical Society of America, 2013: JTh2A. 73.

        [13] LI H, CHEN X, HUANG B, et al. High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit [J]. IEEE Photon. Technol. Lett., 2014, 26(2): 119-122.

        [14] WANG Y, CHI N, WANG Y, et al. High-speed quasi-balanced detection OFDM in visible light communication [J]. Optics express, 2013, 21(23): 27558-27564.

        [15] WANG Y G, TAO L, WANG Y Q, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization [J]. IEEE Communication Letters, 2013, 29(2): 2755-2759.

        [16] WANG Y, LI R, WANG Y, et al. 3.25 Gbps Visible Light Communication System based on Single Carrier Frequency Domain Equalization Utilizing an RGB LED [C]//Proceedings of the Optical Fiber Communication Conference. Optical Society of America, 2014: Th1F. 1.endprint

        [3] CUI K, CHEN G, XU Z, et al. Line-of-sight visible light communication system design and demonstration [C]//Proceedings of the Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on. IEEE, 2010: 621-625.

        [4] TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links [C]//Proceedings of the Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on. IEEE, 2000, 2: 1325-1329.

        [5] LE M H, OBRIEN D. Faulkner et al. High-speed visible light communications using multiple-resonant equalization [J]. IEEE Photon. Technol. Lett. 2008, 20(14): 1243-1245.

        [6] LE M H, OBRIEN D, FAULKNER G, et al. 80 Mb/s visible light communications using pre-equalized white LED [C]//Proceedings of the ECOC 2008, 2008: 6.09.

        [7] VUCIC J, KOTTKE C, NERRETER S, et al. 513 Mb/s visible light communications link based on DMT-modulation of a white LED [J]. Lightw. Technol. 2010, 28(24): 3512-3518.

        [8] CHI N, WANG Y Q, WANG Y G, et al. Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats [J]. Chinese Opt. Lett. 2014, 12(1):10605.

        [9] KHALID A M, COSSU G, CORSINI R, et al. 1 Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation [J]. IEEE Photon. J. 2012, 4(5): 1465-1473.

        [10] COSSU G, KHALID A M, CHOUDHURY P, et al. 3.4 Gb/s visible optical wireless transmission based on RGB LED [J]. Opt. Express, 2012, 20(26): B501-B506.

        [11] WANG Y Q, YANG C, WANG Y G, et al. Gigabit polarization division multiplexing in visible light communication [J]. Optics Letters, 2014, 39(7): 1823-1826.

        [12] FUJIMOTO N, MOCHIZUKI H. 477 Mb/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit [C]//Proceedings of the National Fiber Optic Engineers Conference. Optical Society of America, 2013: JTh2A. 73.

        [13] LI H, CHEN X, HUANG B, et al. High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit [J]. IEEE Photon. Technol. Lett., 2014, 26(2): 119-122.

        [14] WANG Y, CHI N, WANG Y, et al. High-speed quasi-balanced detection OFDM in visible light communication [J]. Optics express, 2013, 21(23): 27558-27564.

        [15] WANG Y G, TAO L, WANG Y Q, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization [J]. IEEE Communication Letters, 2013, 29(2): 2755-2759.

        [16] WANG Y, LI R, WANG Y, et al. 3.25 Gbps Visible Light Communication System based on Single Carrier Frequency Domain Equalization Utilizing an RGB LED [C]//Proceedings of the Optical Fiber Communication Conference. Optical Society of America, 2014: Th1F. 1.endprint

        猜你喜歡
        正交頻分復(fù)用
        OFDM系統(tǒng)信道估計(jì)技術(shù)仿真研究
        卷宗(2016年10期)2017-01-21 16:47:35
        NLOS環(huán)境下信道估計(jì)輔助的精確TOA估計(jì)
        使用聯(lián)合方法降低OFDM系統(tǒng)PAPR
        OFDM光網(wǎng)絡(luò)中軟件定義的信號傳輸性能優(yōu)化
        自適應(yīng)OFDM技術(shù)中次最優(yōu)功率分配算法的實(shí)現(xiàn)
        減小OFDM 系統(tǒng)PAPR的QEA?PTS聯(lián)合方法
        基于實(shí)測電力噪聲分布的窄帶電力噪聲建模
        基于CAZAC序列的MIMOOFDM定時同步算法
        WiMAX系統(tǒng)的載波聚合技術(shù)
        OFDM系統(tǒng)基于重復(fù)共軛對稱序列的時頻同步算法研究
        色呦呦九九七七国产精品| 99精品久久久中文字幕| 国产三级精品三级在线观看粤语 | 99在线视频精品费观看视| 日本一区二区日韩在线| 亚洲国产精品高清一区| 无码吃奶揉捏奶头高潮视频| 国产精品日韩欧美一区二区区 | 亚洲中文字幕第15页| 午夜精品久久久久久久无码| 97久久精品人人做人人爽| 亚洲欧洲国无码| 杨幂一区二区系列在线| 国产亚洲精品久久久闺蜜| 国产在线精品一区二区不卡| 亚洲AV无码一区二区三区精神| 最新天堂一区二区三区| 天天碰免费上传视频| 国产成人无码aⅴ片在线观看| 99久久无色码中文字幕鲁信| 在线观看亚洲av每日更新影片 | 亚洲色图视频在线观看网站| 精品国产免费一区二区久久| 乱人伦精品视频在线观看| 黄又色又污又爽又高潮动态图| 中文字幕亚洲区第一页| 亚洲色图专区在线视频| 果冻传媒2021精品一区| 国产精品亚洲A∨天堂| 偷拍一区二区三区黄片| 色哟哟最新在线观看入口| 八戒网站免费观看视频| 国产日韩午夜视频在线观看| 亚洲一区二区三区2021| 日韩国产成人无码av毛片蜜柚| 最新精品国偷自产在线婷婷| 亚洲综合小综合中文字幕| 中国无码人妻丰满熟妇啪啪软件 | 国产午夜精品理论片| 国产av三级精品车模| 在线观看老湿视频福利|