林志陽等
摘 要: 為了減小正交頻分復用(OFDM)系統(tǒng)的高峰值平均功率比(PAPR),提出一種基于量子進化算法(QEA)的低復雜度部分傳輸系列(PTS)聯(lián)合方法。該方法通過循環(huán)移位對傳統(tǒng)的PTS進行改進,利用OFDM系統(tǒng)提供的額外自由度將循環(huán)移位與獨立旋轉(zhuǎn)相位進行組合優(yōu)化,并采用QEA來搜索最優(yōu)相位因子,使得PAPR最小。仿真結(jié)果表明,與傳統(tǒng)的方法比較,這里提出的QEA?PTS的聯(lián)合方法更加有效地減小系統(tǒng)的PAPR,同時降低了計算復雜度。
關(guān)鍵詞: 正交頻分復用; 峰值平均功率比; 部分傳輸系列; 量子進化算法
中圖分類號: TN911?34 文獻標識碼: A 文章編號: 1004?373X(2015)08?0070?04
QEA?PTS combined method to reduce PAPR of OFDM system
LIN Zhi?yang1, WANG Zhao?hui1, REN Jia1, DING Jie1, ZHANG Chun?yuan1, ZHOU You?ling1, ZHANG Li2
(1.College of Information Science and Technology, Hainan University, Haikou 570228, China;
2. Southwest University of Science and Technology, Mianyang 621010, China)
Abstract: In order to reduce the peak average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system, a low complexity partial transmit series (PTS) method based on the quantum evolutionary algorithm (QEA) is proposed, with which the traditional PTS is improved by means of cyclic shift. The additional degrees of freedom provided by OFDM system is adopted to make combination optimization of the cyclic shift and independent rotating phase. The QEA is used to search for the optimal phase factor to make the PAPR minimum. The simulation results show that, compared with traditional method, the QEA?PTS method proposed in this paper can reduce the systems PAPR more effectively while lowering the computational complexity.
Keyword: OFDM; PAPR; PTS; QEA
正交頻分復用(OFDM)是一種多載波調(diào)制技術(shù),由于具有多徑衰落魯棒性、高頻譜率和低復雜度等優(yōu)勢,被廣泛應用于高速率的無線通信技術(shù)領域[1]。但它的多載波特性,使OFDM系統(tǒng)產(chǎn)生高的峰值平均功率比,既降低了發(fā)射機功率放大器的效率,也降低了了數(shù)/模轉(zhuǎn)換器和模/數(shù)轉(zhuǎn)換器(ADC和DAC)的信號量化噪聲比(SQNR)[2?3]。目前,已經(jīng)提出了許多降低PAPR的方法,大致可分為確定性和概率性技術(shù)[3]。削波限幅[4]是一種典型的確定性技術(shù),它是一種有效降低PAPR的方法,但它是一種非線性過程,能引起帶內(nèi)失真,既降低誤碼率(BER)性能,又產(chǎn)生帶外噪聲[1]。概率性技術(shù)采用統(tǒng)計特性避免了信號失真,典型的有選擇性映射(SLM)和部分傳輸系列(PTS)。SLM技術(shù)需要M(不同相位序列)次IFFT運算,對于每個數(shù)據(jù)塊需要發(fā)送[[log2M]]比特的邊信息(SI)(其中[·]為小于“·”的最大整數(shù)),使得該方法的計算復雜度較高。PTS技術(shù)是一種有效降低OFDM系統(tǒng)PAPR的優(yōu)化方法,在搜索最優(yōu)相位因子時,搜索的復雜度會隨子塊數(shù)的增加呈指數(shù)上升?,F(xiàn)有的改進PTS方法需要發(fā)射邊信息來恢復出原始符號,不僅受子塊數(shù)和允許的相位因子的影響,而且受子塊分割的影響,不但計算復雜度較高,且會降低系統(tǒng)的頻譜利用率[4]。
針對傳統(tǒng)PTS和現(xiàn)有改進PTS方法自身存在的局限性,本文提出一種基于QEA?PTS的聯(lián)合方法降低OFDM系統(tǒng)的PAPR。通過仿真實驗表明,基于QEA?PTS的聯(lián)合方法更加有效地減小系統(tǒng)的PAPR,同時降低了計算復雜度。
1 峰值平均功率比的定義
考慮一個MIMO?OFDM系統(tǒng),一個OFDM符號表示為:
4 結(jié) 語
本文提出的QEA?PTS聯(lián)合方法是一種有效降低OFDM系統(tǒng)PAPR的同時,也減小了計算復雜度。本文是使用改進的PTS技術(shù)獲得全局最優(yōu)解,然后利用QEA算法搜索最優(yōu)相位因子。通過Matlab仿真與性能分析,結(jié)果表明,該聯(lián)合方法在性能上明顯優(yōu)于PSO?PTS[14]和GA? PTS[15] 方法,但計算復雜度上還沒達到理想的效果,仍需進一步研究。
參考文獻
[1] PANDURANGAN M, PERUMAL D. Modified PTS with FECs for PAPR reduction in MIMO?OFDM system with different subblocks and subcarriers [J]. IJCSI International Journal of Computer Science Issues, 2011, 2(8): 444?452.
[2] JIANG T, WU Y. An overview: Peak?to?average power ratio reduction techniques for OFDM signals [J]. IEEE Transactions on Broadcasting, 2008, 2(54): 257?268.
[3] LIM D W, HEO S J, NO J S. An overview of peak?to?average power ratio reduction schemes for OFDM signals [J]. Journal of Communications and Networks, 2009, 3(11): 229?239.
[4] 林志陽.一種減小OFDM系統(tǒng)PAPR的算法分析[J].廣西大學學報:自然科學版,2014,39(5):1169?1173.
[5] JIANG T, WU Y. An overview: peak?to?average power ratio reduction techniques for OFDM signals [J]. IEEE Transactions on Broadcasting, 2008, 2(54): 257?268.
[6] FISCHER R F H, HOCH M. Peak?to?average power ratio reduction in MIMO OFDM [C]// Proceedings of IEEE International Conference, Glasgow: IEEE press, 2007: 762?767.
[7] PALICOT J, LOUET Y. Power ratio definitions and analysis in single carrier modulations [M]. Antalya: Academic press, 2005.
[8] MULLER S H, HUBER J B. OFDM with reduced peak?to?average power ratio by optimum combination of partial transmit sequences[J]. Electronics Letters,1996, 32(22): 2056?2057.
[9] SRINIVASARAO K, PRABHAKARARAO B, SAIRAM M V S. Peak?to?average power reduction in MIMO OFDM systems using sub?optimal algorithm [J]. International Journal of Distributed and Parallel Systems (IJDPS), 2012, 3(3): 216?273.
[10] HAN K H, PARK K H, LEE C H. Parallel quantum inspired genetic algorithm for combinatorial optimization problem [J]. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 1422?1429.
[11] 錢潔,鄭建國,張超群,等.量子進化算法研究現(xiàn)狀綜述[J].控制與決策,2011,26(3):321?326.
[12] 王凌.量子進化算法研究進展[J].控制與決策,2008,23 (12):1321?1326
[13] SCHENK T, SMULDERS P, FLEDDERUS E. The application of spatial shifting for peak?to?average power ratio reduction in MIMO OFDM systems [C]// Proceedings of Vehcular Technology Conference on VTC. Melbourne: IEEE Press, 2006: 1859?1863.
[14] HUNG H L, HUANG Y F, YEH C M, et al. Performance of particle swarm optimization techniques on PAPR reduction for OFDM Systems [C]// 2008. IEEE International Conference on Systems, Man and Cybernetics, Singapore: IEEE International Press, 2008: 2390?2395.
[15] KIM S S, KIM M J, GULLIVER T A. PAPR reduction of OFDM signals using genetic algorithm PTS technique [J]. IEICETransactions on Communications, 2008, 4(91): 1194?1197.