沈小玲
摘要圖的最小斜秩問題是確定圖的所有斜對(duì)稱矩陣在域F上的秩的最小值.利用構(gòu)造矩陣和零強(qiáng)迫集的方法刻畫了毛毛蟲圖的〖WTBX〗r次冪的最小斜秩.設(shè)毛毛蟲Tn有n個(gè)節(jié)點(diǎn),n和r都是正整數(shù),r是奇數(shù),那么
1預(yù)備知識(shí)
2主要結(jié)論
參考文獻(xiàn):
[1]〖ZK(#〗BARIOLI F, BARRETT W, BUTLER S, et al. Zero forcing sets and the minimum rank of graphs[J]. Linear Algera Appl, 2008,428(7):16281648.
[2]BERMAN A, FRIEDLAND S, HOGBEN L, et al. An upper bound for the minimum rank of a graph[J]. Linear Algera Appl, 2008,429(7):16291638.
[3]BARIOLI F, FALLAT S M, HERSHKOWITZ D, et al. On the minimal rank of not necessarily symmetric matrices: a preliminary study[J]. Electron J Linear Algebra, 2009,18:126145.
[4]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two[J]. Electron J Linear Algera, 2004,11:258280.
[5]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two: the finite fields case[J]. Electron J Linear Algebra, 2005,14:3242.
[6]BARRETTE W, GROUT J, LOEWY R. The minimal rank problem over the finite field of order 2:minimum rank 3[J]. Linear Algebra Appl, 2009,431(4):890923.
[7]DEALBA L, GROUT J, HOGBEN L, et al. Universally optimal matrices and field indepence of the minimum rank of a graph[J]. Electron J Linear Algebra, 2009,18:403419.
[8]FALLAT S M, HOGBEN L. The minimum rank of symmetric matrices described by a graph: a survey[J]. Linear Algera Appl, 2007,426(23):558582.
[9]HOGBEN L. Minimum rank problems[J]. Linear Algera Appl, 2010,432(8):19611974.〖ZK)〗
[10]〖ZK(#〗SHEN X, HOU Y, SHENG L. On the minimum rank of third power of a starlike tree[J]. Linear Algera Appl, 2012,436(12):45034511.
[11]ALLISON M, BODINE E, DEALBA L M, et al. Minimum rank of skewsymmetric matrices described by a graph[J]. Linear Algebra Appl, 2010,432(10):2457472.
[12]DEALBA L, KERZNER E, TUCKER S. A note on the minimum skew rank of powers of paths[EB/OL]. http://cn.arxiv.org/abs/1107.2450v1.
摘要圖的最小斜秩問題是確定圖的所有斜對(duì)稱矩陣在域F上的秩的最小值.利用構(gòu)造矩陣和零強(qiáng)迫集的方法刻畫了毛毛蟲圖的〖WTBX〗r次冪的最小斜秩.設(shè)毛毛蟲Tn有n個(gè)節(jié)點(diǎn),n和r都是正整數(shù),r是奇數(shù),那么
1預(yù)備知識(shí)
2主要結(jié)論
參考文獻(xiàn):
[1]〖ZK(#〗BARIOLI F, BARRETT W, BUTLER S, et al. Zero forcing sets and the minimum rank of graphs[J]. Linear Algera Appl, 2008,428(7):16281648.
[2]BERMAN A, FRIEDLAND S, HOGBEN L, et al. An upper bound for the minimum rank of a graph[J]. Linear Algera Appl, 2008,429(7):16291638.
[3]BARIOLI F, FALLAT S M, HERSHKOWITZ D, et al. On the minimal rank of not necessarily symmetric matrices: a preliminary study[J]. Electron J Linear Algebra, 2009,18:126145.
[4]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two[J]. Electron J Linear Algera, 2004,11:258280.
[5]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two: the finite fields case[J]. Electron J Linear Algebra, 2005,14:3242.
[6]BARRETTE W, GROUT J, LOEWY R. The minimal rank problem over the finite field of order 2:minimum rank 3[J]. Linear Algebra Appl, 2009,431(4):890923.
[7]DEALBA L, GROUT J, HOGBEN L, et al. Universally optimal matrices and field indepence of the minimum rank of a graph[J]. Electron J Linear Algebra, 2009,18:403419.
[8]FALLAT S M, HOGBEN L. The minimum rank of symmetric matrices described by a graph: a survey[J]. Linear Algera Appl, 2007,426(23):558582.
[9]HOGBEN L. Minimum rank problems[J]. Linear Algera Appl, 2010,432(8):19611974.〖ZK)〗
[10]〖ZK(#〗SHEN X, HOU Y, SHENG L. On the minimum rank of third power of a starlike tree[J]. Linear Algera Appl, 2012,436(12):45034511.
[11]ALLISON M, BODINE E, DEALBA L M, et al. Minimum rank of skewsymmetric matrices described by a graph[J]. Linear Algebra Appl, 2010,432(10):2457472.
[12]DEALBA L, KERZNER E, TUCKER S. A note on the minimum skew rank of powers of paths[EB/OL]. http://cn.arxiv.org/abs/1107.2450v1.
摘要圖的最小斜秩問題是確定圖的所有斜對(duì)稱矩陣在域F上的秩的最小值.利用構(gòu)造矩陣和零強(qiáng)迫集的方法刻畫了毛毛蟲圖的〖WTBX〗r次冪的最小斜秩.設(shè)毛毛蟲Tn有n個(gè)節(jié)點(diǎn),n和r都是正整數(shù),r是奇數(shù),那么
1預(yù)備知識(shí)
2主要結(jié)論
參考文獻(xiàn):
[1]〖ZK(#〗BARIOLI F, BARRETT W, BUTLER S, et al. Zero forcing sets and the minimum rank of graphs[J]. Linear Algera Appl, 2008,428(7):16281648.
[2]BERMAN A, FRIEDLAND S, HOGBEN L, et al. An upper bound for the minimum rank of a graph[J]. Linear Algera Appl, 2008,429(7):16291638.
[3]BARIOLI F, FALLAT S M, HERSHKOWITZ D, et al. On the minimal rank of not necessarily symmetric matrices: a preliminary study[J]. Electron J Linear Algebra, 2009,18:126145.
[4]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two[J]. Electron J Linear Algera, 2004,11:258280.
[5]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two: the finite fields case[J]. Electron J Linear Algebra, 2005,14:3242.
[6]BARRETTE W, GROUT J, LOEWY R. The minimal rank problem over the finite field of order 2:minimum rank 3[J]. Linear Algebra Appl, 2009,431(4):890923.
[7]DEALBA L, GROUT J, HOGBEN L, et al. Universally optimal matrices and field indepence of the minimum rank of a graph[J]. Electron J Linear Algebra, 2009,18:403419.
[8]FALLAT S M, HOGBEN L. The minimum rank of symmetric matrices described by a graph: a survey[J]. Linear Algera Appl, 2007,426(23):558582.
[9]HOGBEN L. Minimum rank problems[J]. Linear Algera Appl, 2010,432(8):19611974.〖ZK)〗
[10]〖ZK(#〗SHEN X, HOU Y, SHENG L. On the minimum rank of third power of a starlike tree[J]. Linear Algera Appl, 2012,436(12):45034511.
[11]ALLISON M, BODINE E, DEALBA L M, et al. Minimum rank of skewsymmetric matrices described by a graph[J]. Linear Algebra Appl, 2010,432(10):2457472.
[12]DEALBA L, KERZNER E, TUCKER S. A note on the minimum skew rank of powers of paths[EB/OL]. http://cn.arxiv.org/abs/1107.2450v1.