和玲超+龐晶
摘要利用行波變換把(2+1)維KP方程化成常微分方程,再運(yùn)用簡(jiǎn)單方程法求解(2+1)維KP方程的行波解. 文中選取 Bernoulli方程為簡(jiǎn)單方程.將由KP方程所化成的常微分方程分成兩部分:一部分包含導(dǎo)數(shù)項(xiàng),另一部分為方程其他部分. 然后, 平衡最高次冪的非線性項(xiàng)所產(chǎn)生的最高次數(shù)和最高階導(dǎo)數(shù)項(xiàng)所產(chǎn)生的最高項(xiàng)的次數(shù),得到平衡方程,確定解的形式. 最后解得(2+1)維KP方程的行波解.
關(guān)鍵詞 簡(jiǎn)單方程法;(2+1)維KP方程;精確行波解
中圖分類號(hào)O175.29文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04008205
在過去的30年里, 非線性偏微分方程數(shù)學(xué)模型廣泛應(yīng)用于自然現(xiàn)象和社會(huì)現(xiàn)象中. 比如流體力學(xué)和湍流理論, 神經(jīng)學(xué),混沌理論和生態(tài)學(xué),孤子理論,生物學(xué),動(dòng)力系統(tǒng)理論等. 模型中的偏微分方程的精確解在以下幾方面有著重要的用途. 首先這些解描述了不同類型的波. 在研究海底暗流,石油鉆探和海洋開發(fā)等方面有廣泛的應(yīng)用. 其次,在所研究的系統(tǒng)中,特解可以作為程序模擬過程中計(jì)算機(jī)的初始條件,為計(jì)算機(jī)軟件的開發(fā)提供理論支撐. 求解偏微分方程精確解中著名的方法有反散射變換和Hirota方法[1]. 在多年研究課題中,許多獲得非線性偏微分方程精確解的方法已經(jīng)得到了發(fā)展. 通過這些方法,許多方程的精確解已經(jīng)獲得. 比如KuramotoSivasinsky方程[2], sineGordon 方程[35],Kortewegde Vries方程[6],種群動(dòng)態(tài)模型方程,PoissonBoltzmann方程[7]等.而獲得非線性偏微分方程的精確解和近似解的一個(gè)直接的方法是簡(jiǎn)單方程方法[812]. 該方法或修正的簡(jiǎn)單方程方法已應(yīng)用于許多非線性偏微分方程,如Fisher方程,反應(yīng)類擴(kuò)散和反應(yīng)的電報(bào)方程[13],廣義KuramotoSivasinsky方程[14],廣義SwiftHohenberg方程和廣義Rayleigh方程[15].在本文中,作者將運(yùn)用簡(jiǎn)單方程方法得到(2+1)維KadomtsevPetviashvili方程的精確行波解.
1方法的引入
1.1用簡(jiǎn)單方程法研究非線性偏微分方程.
1.2平衡方程法
2應(yīng)用Bernoulli型簡(jiǎn)單方程求(2+1)維KP方程的精確行波解
3結(jié)束語
近年來, 簡(jiǎn)單方程法首先由Kudryashov等人提出, 并應(yīng)用于一些偏微分方程的求解, 得到許多孤子解. 本文主要研究(2+1)維KP方程, 目的是求得它的精確行波解. 簡(jiǎn)單方程法是一種有效的求偏微分方程精確解的方法, 本文選取了比較熟悉的Bernoulli方程為簡(jiǎn)單方程, 求得KP方程的新解, 由于方程中的系數(shù)α,γ,ε是自由參數(shù), 所以求得的解是一系列方程的解,對(duì)于研究水波運(yùn)動(dòng)有重要意義. 該方法的核心是平衡方程思想的運(yùn)用. 本文用k=2去平衡, 而進(jìn)一步的研究可以選k=3,k=4,…的情形, 求得KP方程更多的解. 本文所得到的解是新解與文獻(xiàn)[16~17]中的解不同,所解的KP方程自由參數(shù)更多,得到更一般的解. 更重要的是運(yùn)用本文的思想可以研究更多的非線性偏微分方程, 求得它們的精確解, 為工程計(jì)算,人口學(xué),計(jì)算科學(xué)等學(xué)科的非線性偏微分方程模型研究工作提供求得此類精確解的理論依據(jù).
參考文獻(xiàn):
[1]〖ZK(#〗HIROTA R. Exact solution of Kortewegde Vries equation for multiple collisions of solitons[J]. Phys Rev Lett, 1971,27(18):11921194.
[2]KUDRYASHOV N A. Exact solutions of the generalized KuramotoSivashinsky equation[J]. Phys Lett A, 1990,147(56):287291.
[3]LOU S. Symmetry analysis and exact solutions of the 2+1dimensional sineGordon system[J]. J Math Phys, 2000,41(9):65096524.
[4]MARTINOV N, VITANOV N. On some solutions of the twodimensional sineGordon equation[J]. J Phys A: Math Gen, 1992,25(5):L41926.
[5]VITANOV N K, MARTINOV N K. On the solitary waves in the sineGordon model of the twodimensional Josephson junction[J]. Z Phys B, 1996,100 (1):129135.
[6]PANG J, BIAN C Q, CHAO L. A new auxiliary equation method for finding travelling wave solutions to KdV equation[J]. Appl Math Mech, 2010,31(7):929936.
[7]MARTINOV N, VITANOV N. On the correspondence between the selfconsistent 2D PoissonBoltzmann structures and the sineGordon waves[J]. J Phys A: Math Gen, 1992,25(2): L516.
[8]VITANOV N K. Application of simplest equations of Bernoulli and Riccati kind for obtaining exact travelingwave solutions for a class of PDEs with polynomial nonlinearity[J]. Commun Nonliner Sci Numer Simul, 2010,15(8): 20502060.
[9]KHADIJO R A, CHAUDRY M K. Exact solutions and conservation laws of ZakharovKuznetsov modified equal width equation with power law nonlinearity[J]. Nonlinear Anal: Real World Appl, 2012,13(4):16921702.〖ZK)〗
[10]〖ZK(#〗KUDRYASHOV N A. Simplest equation method to look for exact solutions of nonlinear differential equations[J]. Chaos Solitons Fract, 2005,24(5):12171231.
[11]VITANOV N K. On modified method of simplest equation for obtaining exact and approximate solutions of nonlinear PDES: the role of the simplest equation [J]. Commun Nonlinear Sci Numer Simul, 2011,16(11):42154231.
[12]KUDRYASHOV N A, LOGUINOVA N B. Extended simplest equation method for nonlinear differential equations[J]. Appl Math Comput, 2008,205(1):396402.
[13]VITANOV N K, DIMITROVA Z I. Application of the method of simplest equation for obtaining exact travelingwave solutions for two classes of model PDEs from ecology and population dynamics[J]. Commun Nonlinear Sci Numer Simul, 2010,15(10):28362845.
[14]VITANOV N K, DIMITROVA Z I, KANTZ H. Modified method of simplest equation and its application to nonlinear PDEs[J]. Appl Math Comput, 2010,216(9):25872595.
[15]劉玉堂, 李富志. 指數(shù)函數(shù)方法及其在非線性發(fā)展方程中的應(yīng)用[J]. 計(jì)算機(jī)工程與應(yīng)用, 2009,45(2):6870.
[8]VITANOV N K. Application of simplest equations of Bernoulli and Riccati kind for obtaining exact travelingwave solutions for a class of PDEs with polynomial nonlinearity[J]. Commun Nonliner Sci Numer Simul, 2010,15(8): 20502060.
[9]KHADIJO R A, CHAUDRY M K. Exact solutions and conservation laws of ZakharovKuznetsov modified equal width equation with power law nonlinearity[J]. Nonlinear Anal: Real World Appl, 2012,13(4):16921702.〖ZK)〗
[10]〖ZK(#〗KUDRYASHOV N A. Simplest equation method to look for exact solutions of nonlinear differential equations[J]. Chaos Solitons Fract, 2005,24(5):12171231.
[11]VITANOV N K. On modified method of simplest equation for obtaining exact and approximate solutions of nonlinear PDES: the role of the simplest equation [J]. Commun Nonlinear Sci Numer Simul, 2011,16(11):42154231.
[12]KUDRYASHOV N A, LOGUINOVA N B. Extended simplest equation method for nonlinear differential equations[J]. Appl Math Comput, 2008,205(1):396402.
[13]VITANOV N K, DIMITROVA Z I. Application of the method of simplest equation for obtaining exact travelingwave solutions for two classes of model PDEs from ecology and population dynamics[J]. Commun Nonlinear Sci Numer Simul, 2010,15(10):28362845.
[14]VITANOV N K, DIMITROVA Z I, KANTZ H. Modified method of simplest equation and its application to nonlinear PDEs[J]. Appl Math Comput, 2010,216(9):25872595.
[15]劉玉堂, 李富志. 指數(shù)函數(shù)方法及其在非線性發(fā)展方程中的應(yīng)用[J]. 計(jì)算機(jī)工程與應(yīng)用, 2009,45(2):6870.
[8]VITANOV N K. Application of simplest equations of Bernoulli and Riccati kind for obtaining exact travelingwave solutions for a class of PDEs with polynomial nonlinearity[J]. Commun Nonliner Sci Numer Simul, 2010,15(8): 20502060.
[9]KHADIJO R A, CHAUDRY M K. Exact solutions and conservation laws of ZakharovKuznetsov modified equal width equation with power law nonlinearity[J]. Nonlinear Anal: Real World Appl, 2012,13(4):16921702.〖ZK)〗
[10]〖ZK(#〗KUDRYASHOV N A. Simplest equation method to look for exact solutions of nonlinear differential equations[J]. Chaos Solitons Fract, 2005,24(5):12171231.
[11]VITANOV N K. On modified method of simplest equation for obtaining exact and approximate solutions of nonlinear PDES: the role of the simplest equation [J]. Commun Nonlinear Sci Numer Simul, 2011,16(11):42154231.
[12]KUDRYASHOV N A, LOGUINOVA N B. Extended simplest equation method for nonlinear differential equations[J]. Appl Math Comput, 2008,205(1):396402.
[13]VITANOV N K, DIMITROVA Z I. Application of the method of simplest equation for obtaining exact travelingwave solutions for two classes of model PDEs from ecology and population dynamics[J]. Commun Nonlinear Sci Numer Simul, 2010,15(10):28362845.
[14]VITANOV N K, DIMITROVA Z I, KANTZ H. Modified method of simplest equation and its application to nonlinear PDEs[J]. Appl Math Comput, 2010,216(9):25872595.
[15]劉玉堂, 李富志. 指數(shù)函數(shù)方法及其在非線性發(fā)展方程中的應(yīng)用[J]. 計(jì)算機(jī)工程與應(yīng)用, 2009,45(2):6870.