亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        伴隨飽和感染率和分布時滯并具有體液免疫的病毒感染模型的全局動力學(xué)研究

        2014-10-23 12:19:20王蓉

        王蓉

        摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細(xì)胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細(xì)胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

        關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

        中圖分類號O29文獻(xiàn)標(biāo)識碼A文章編號10002537(2014)04007705

        體液免疫是一種以B淋巴細(xì)胞產(chǎn)生抗體來達(dá)到保護(hù)目的的免疫機(jī)制, 對于瘧疾等一些傳染病,體液免疫比細(xì)胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

        2平衡點的存在性分析

        3全局穩(wěn)定性

        4數(shù)值模擬

        5結(jié)論

        參考文獻(xiàn):

        [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

        [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

        [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

        [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

        [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

        [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

        [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

        [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

        [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

        [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

        [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

        [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

        [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

        [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

        摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細(xì)胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細(xì)胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

        關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

        中圖分類號O29文獻(xiàn)標(biāo)識碼A文章編號10002537(2014)04007705

        體液免疫是一種以B淋巴細(xì)胞產(chǎn)生抗體來達(dá)到保護(hù)目的的免疫機(jī)制, 對于瘧疾等一些傳染病,體液免疫比細(xì)胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

        2平衡點的存在性分析

        3全局穩(wěn)定性

        4數(shù)值模擬

        5結(jié)論

        參考文獻(xiàn):

        [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

        [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

        [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

        [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

        [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

        [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

        [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

        [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

        [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

        [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

        [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

        [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

        [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

        [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

        摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細(xì)胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細(xì)胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

        關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

        中圖分類號O29文獻(xiàn)標(biāo)識碼A文章編號10002537(2014)04007705

        體液免疫是一種以B淋巴細(xì)胞產(chǎn)生抗體來達(dá)到保護(hù)目的的免疫機(jī)制, 對于瘧疾等一些傳染病,體液免疫比細(xì)胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

        2平衡點的存在性分析

        3全局穩(wěn)定性

        4數(shù)值模擬

        5結(jié)論

        參考文獻(xiàn):

        [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

        [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

        [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

        [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

        [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

        [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

        [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

        [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

        [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

        [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

        [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

        [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

        [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

        [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

        精品久久久亚洲中文字幕| 日韩成精品视频在线观看| 亚洲精品午夜精品国产| 黄片午夜免费观看视频国产 | 国产福利97精品一区二区| 国产成人综合久久三区北岛玲| 日韩精品一区二区亚洲观看av| 日本九州不卡久久精品一区| 国产成人精品无码免费看| 久久无码专区国产精品s| 最新国产在线精品91尤物| 国产av一区二区三区香蕉| 黄片视频免费观看蜜桃| 国产成本人片无码免费2020| 亚洲欧美日韩中文无线码| 久9热免费精品视频在线观看| 久久中文字幕av第二页| 一本色道久久88—综合亚洲精品| 日产亚洲一区二区三区| 欧美精品一级| 淫秽在线中国国产视频| 亚洲av三级黄色在线观看| 狠狠精品久久久无码中文字幕 | 伊人久久大香线蕉av不变影院| 国产精品亚洲综合色区| 麻豆AⅤ无码不卡| 成在线人免费视频播放| 亚洲精品中文字幕乱码| 久久人人爽爽爽人久久久| 韩国19禁主播深夜福利视频| 日韩精品一区二区亚洲av性色| 国产精品麻豆一区二区三区| 国产av国片精品有毛| 少妇厨房愉情理伦片bd在线观看| 久久精品国产亚洲av麻豆四虎| 91色老久久偷偷精品蜜臀懂色| 国产婷婷色综合av蜜臀av| 国产偷国产偷亚洲欧美高清| 国产丝袜长腿在线看片网站| 久久精品国产精品亚洲| 内谢少妇xxxxx8老少交|