亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        伴隨飽和感染率和分布時滯并具有體液免疫的病毒感染模型的全局動力學(xué)研究

        2014-10-23 12:19:20王蓉

        王蓉

        摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細(xì)胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細(xì)胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

        關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

        中圖分類號O29文獻(xiàn)標(biāo)識碼A文章編號10002537(2014)04007705

        體液免疫是一種以B淋巴細(xì)胞產(chǎn)生抗體來達(dá)到保護(hù)目的的免疫機(jī)制, 對于瘧疾等一些傳染病,體液免疫比細(xì)胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

        2平衡點的存在性分析

        3全局穩(wěn)定性

        4數(shù)值模擬

        5結(jié)論

        參考文獻(xiàn):

        [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

        [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

        [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

        [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

        [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

        [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

        [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

        [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

        [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

        [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

        [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

        [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

        [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

        [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

        摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細(xì)胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細(xì)胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

        關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

        中圖分類號O29文獻(xiàn)標(biāo)識碼A文章編號10002537(2014)04007705

        體液免疫是一種以B淋巴細(xì)胞產(chǎn)生抗體來達(dá)到保護(hù)目的的免疫機(jī)制, 對于瘧疾等一些傳染病,體液免疫比細(xì)胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

        2平衡點的存在性分析

        3全局穩(wěn)定性

        4數(shù)值模擬

        5結(jié)論

        參考文獻(xiàn):

        [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

        [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

        [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

        [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

        [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

        [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

        [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

        [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

        [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

        [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

        [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

        [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

        [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

        [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

        摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細(xì)胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細(xì)胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

        關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

        中圖分類號O29文獻(xiàn)標(biāo)識碼A文章編號10002537(2014)04007705

        體液免疫是一種以B淋巴細(xì)胞產(chǎn)生抗體來達(dá)到保護(hù)目的的免疫機(jī)制, 對于瘧疾等一些傳染病,體液免疫比細(xì)胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

        2平衡點的存在性分析

        3全局穩(wěn)定性

        4數(shù)值模擬

        5結(jié)論

        參考文獻(xiàn):

        [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

        [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

        [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

        [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

        [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

        [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

        [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

        [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

        [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

        [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

        [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

        [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

        [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

        [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

        亚洲综合欧美色五月俺也去| 日本最新一区二区三区视频| 亚洲精品中文字幕一二三| 亚洲男女内射在线播放| 女邻居的大乳中文字幕| 最新精品亚洲成a人在线观看| 看全色黄大黄大色免费久久| 久久亚洲中文字幕乱码| 天天狠天天添日日拍| 亚洲国产毛片| 日韩在线精品视频观看| 中文字幕一区久久精品| 国产99在线 | 亚洲| 99精品视频免费热播| 亚洲中文字幕在线第二页| 久久狼精品一区二区三区| 欧美a级毛欧美1级a大片免费播放| 正在播放国产多p交换视频| 国产一区二区三区视频了| 久久一二区女厕偷拍图| 无码国模国产在线观看| 中文字幕久无码免费久久| 亚洲人妻av综合久久| 日本欧美大码a在线观看| 丰满的少妇xxxxx青青青| 天堂AV无码AV毛片毛| 美女露出奶头扒开内裤的视频| 免费无码av一区二区三区| 久久网视频中文字幕综合| 一区二区三区熟妇人妻18| 国产人妻熟女高跟丝袜| 亚洲色www成人永久网址| www.久久av.com| 久久夜色精品国产噜噜噜亚洲av | 思思99热精品免费观看| 国产特黄1区2区3区4区| 曰批免费视频播放免费| 日韩乱码人妻无码中文字幕视频| 国语精品视频在线观看不卡| 亚洲国产女性内射第一区二区| 尤物网址在线观看|