亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        伴隨飽和感染率和分布時滯并具有體液免疫的病毒感染模型的全局動力學(xué)研究

        2014-10-23 12:19:20王蓉

        王蓉

        摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細(xì)胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細(xì)胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

        關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

        中圖分類號O29文獻(xiàn)標(biāo)識碼A文章編號10002537(2014)04007705

        體液免疫是一種以B淋巴細(xì)胞產(chǎn)生抗體來達(dá)到保護(hù)目的的免疫機(jī)制, 對于瘧疾等一些傳染病,體液免疫比細(xì)胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

        2平衡點的存在性分析

        3全局穩(wěn)定性

        4數(shù)值模擬

        5結(jié)論

        參考文獻(xiàn):

        [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

        [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

        [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

        [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

        [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

        [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

        [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

        [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

        [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

        [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

        [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

        [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

        [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

        [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

        摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細(xì)胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細(xì)胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

        關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

        中圖分類號O29文獻(xiàn)標(biāo)識碼A文章編號10002537(2014)04007705

        體液免疫是一種以B淋巴細(xì)胞產(chǎn)生抗體來達(dá)到保護(hù)目的的免疫機(jī)制, 對于瘧疾等一些傳染病,體液免疫比細(xì)胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

        2平衡點的存在性分析

        3全局穩(wěn)定性

        4數(shù)值模擬

        5結(jié)論

        參考文獻(xiàn):

        [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

        [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

        [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

        [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

        [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

        [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

        [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

        [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

        [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

        [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

        [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

        [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

        [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

        [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

        摘要提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤11時, 攜帶B細(xì)胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下, 感染為慢性的且伴隨持久的B細(xì)胞反應(yīng). 最后, 利用數(shù)值仿真來證實以上結(jié)論分析的正確性.

        關(guān)鍵詞全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯

        中圖分類號O29文獻(xiàn)標(biāo)識碼A文章編號10002537(2014)04007705

        體液免疫是一種以B淋巴細(xì)胞產(chǎn)生抗體來達(dá)到保護(hù)目的的免疫機(jī)制, 對于瘧疾等一些傳染病,體液免疫比細(xì)胞免疫更加有效[16], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[711]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.

        2平衡點的存在性分析

        3全局穩(wěn)定性

        4數(shù)值模擬

        5結(jié)論

        參考文獻(xiàn):

        [1]〖ZK(#〗NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):7479.

        [2]ZHU H, ZOU X. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511524.

        [3]WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443448.

        [4]WANG K, WANG W, PANG H, et al. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197208.

        [5]ANDERSON R, MAY R, GUPTA S. Nonlinear phenomena in hostparasite interactions [J]. Parasitology, 1989(Suppl),99:5979.

        [6]MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogenimmune interaction dynamics [J]. J Math Biol, 2005,51(3):247267.

        [7]WODARZ D, MAY R, NOWAK M. The role of antigenindependent persistence of memory cytotoxic T lymphocytes [J]. Int Immunol, 2000,12(4):467477.

        [8]CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143163.

        [9]PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):2836.〖ZK)〗

        [10]〖ZK(#〗BONHOEFFER S, MAY R, SHAW G, et al. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):1427.

        [11]KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879883.

        [12]WANG S, ZOU D. Global stability of inhost viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):13131322.

        [13]KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993.

        [14]XU R. Global dynamics of an HIV1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):27992805.

        久久久久香蕉国产线看观看伊| 大陆少妇一区二区三区| 中国久久久一级特黄久久久| 国产三区在线成人av| 久久人人爽av亚洲精品| 国产午夜手机精彩视频| 免费观看又污又黄的网站| 欧美在线综合| 在线观看av国产自拍| 日本一区二区三区精品不卡| 日本一区二区三区精品免费| 女人张开腿让男人桶爽| 国产乱子伦农村xxxx| 欧美做受视频播放| 亚洲女同成av人片在线观看| 牛仔裤人妻痴汉电车中文字幕| 国产在线观看午夜视频| 小辣椒福利视频导航| 乌克兰粉嫩xxx极品hd| 亚洲另类自拍丝袜第五页| 亚洲AV无码久久精品国产老人| 日本少妇爽的大叫高潮了| 色综合悠悠88久久久亚洲| 日韩aⅴ人妻无码一区二区| 波多野结衣亚洲一区二区三区| 精品日产一区2区三区| 亚洲综合中文字幕综合| 中文字幕+乱码+中文字幕一区| 亚洲免费av电影一区二区三区| 国产精品一区二区三密桃| 国产国拍精品亚洲av在线观看| 偷看农村妇女牲交| 成年免费视频黄网站zxgk| 好爽受不了了要高潮了av| 色综合久久五十路人妻| 澳门蜜桃av成人av| 精品国产这么小也不放过| 狠狠躁夜夜躁无码中文字幕| 日韩精品免费在线视频| 一本大道道久久综合av| 变态 另类 欧美 大码 日韩 |