黃介武
摘要通過(guò)利用一個(gè)算子恒等式和關(guān)于多個(gè)算子的Bohr不等式,得到了關(guān)于有界線性算子的幾個(gè)不等式,所得結(jié)果是同行前期結(jié)果的改進(jìn).同時(shí),通過(guò)利用改進(jìn)的幾何算術(shù)平均值不等式,得到了關(guān)于算子幾何均值和算術(shù)均值的一個(gè)不等式,所得結(jié)果推廣了現(xiàn)有的一個(gè)不等式.
關(guān)鍵詞有界線性算子;Bohr不等式;幾何算術(shù)平均值不等式
中圖分類號(hào)O15121文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04009204
1主要結(jié)果
參考文獻(xiàn):
[1]〖ZK(#〗BHATIA R. Positive denite matrices[M]. Princeton:Princeton University Press, 2007.
[2]FUJII J I, KAMEI E. Relative operator entropy in noncommutative information theory [J]. Math Japon, 1989,34(3):341348.
[3]BOHR H. Zur Theorie der fastperiodischen funktionen I[J]. Acta Math, 1924,45(1):29127.
[4]HIRZALLAH O. Noncommutative operator Bohr inequality[J]. J Math Anal Appl, 2003,282(2):578583.
[5]CHEUNG W, PECARIC J. Bohrs inequalities for Hilbert space operators[J]. J Math Anal Appl, 2006,323(1):403412.
[6]ZHANG F. On the Bohr inequality of operators[J]. J Math Anal Appl, 2007, 333(2):12641271.
[7]CHANSANGIAM P, HEMCHOTE P, PANTARAGPHONG P. Generalizations of Bohr inequality for Hilbert space operators[J]. J Math Anal Appl, 2009,356(2):525536.
[8]ABRAMOVICH S, BARIC J, PECARIC J. A new proof of an inequality of Bohr for Hilbert space operators[J].Linear Algebra Appl, 2009,430(4):14321435.
[9]FUJII M, ZUO H. Matrix order in Bohr inequality for operators[J]. Banach J Math Anal, 2010,4(1):2127.
[10]ZOU L, HE C. On operator Bohr type inequalities[J]. Math Inequal Appl, 2014,17(3):11611169.
[11]MERRIS R, PIERCE S. Monotonicity of positive semidenite Hermitian matrices[J]. Proc Amer Math Soc, 1972,31(2):437440.
摘要通過(guò)利用一個(gè)算子恒等式和關(guān)于多個(gè)算子的Bohr不等式,得到了關(guān)于有界線性算子的幾個(gè)不等式,所得結(jié)果是同行前期結(jié)果的改進(jìn).同時(shí),通過(guò)利用改進(jìn)的幾何算術(shù)平均值不等式,得到了關(guān)于算子幾何均值和算術(shù)均值的一個(gè)不等式,所得結(jié)果推廣了現(xiàn)有的一個(gè)不等式.
關(guān)鍵詞有界線性算子;Bohr不等式;幾何算術(shù)平均值不等式
中圖分類號(hào)O15121文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04009204
1主要結(jié)果
參考文獻(xiàn):
[1]〖ZK(#〗BHATIA R. Positive denite matrices[M]. Princeton:Princeton University Press, 2007.
[2]FUJII J I, KAMEI E. Relative operator entropy in noncommutative information theory [J]. Math Japon, 1989,34(3):341348.
[3]BOHR H. Zur Theorie der fastperiodischen funktionen I[J]. Acta Math, 1924,45(1):29127.
[4]HIRZALLAH O. Noncommutative operator Bohr inequality[J]. J Math Anal Appl, 2003,282(2):578583.
[5]CHEUNG W, PECARIC J. Bohrs inequalities for Hilbert space operators[J]. J Math Anal Appl, 2006,323(1):403412.
[6]ZHANG F. On the Bohr inequality of operators[J]. J Math Anal Appl, 2007, 333(2):12641271.
[7]CHANSANGIAM P, HEMCHOTE P, PANTARAGPHONG P. Generalizations of Bohr inequality for Hilbert space operators[J]. J Math Anal Appl, 2009,356(2):525536.
[8]ABRAMOVICH S, BARIC J, PECARIC J. A new proof of an inequality of Bohr for Hilbert space operators[J].Linear Algebra Appl, 2009,430(4):14321435.
[9]FUJII M, ZUO H. Matrix order in Bohr inequality for operators[J]. Banach J Math Anal, 2010,4(1):2127.
[10]ZOU L, HE C. On operator Bohr type inequalities[J]. Math Inequal Appl, 2014,17(3):11611169.
[11]MERRIS R, PIERCE S. Monotonicity of positive semidenite Hermitian matrices[J]. Proc Amer Math Soc, 1972,31(2):437440.
摘要通過(guò)利用一個(gè)算子恒等式和關(guān)于多個(gè)算子的Bohr不等式,得到了關(guān)于有界線性算子的幾個(gè)不等式,所得結(jié)果是同行前期結(jié)果的改進(jìn).同時(shí),通過(guò)利用改進(jìn)的幾何算術(shù)平均值不等式,得到了關(guān)于算子幾何均值和算術(shù)均值的一個(gè)不等式,所得結(jié)果推廣了現(xiàn)有的一個(gè)不等式.
關(guān)鍵詞有界線性算子;Bohr不等式;幾何算術(shù)平均值不等式
中圖分類號(hào)O15121文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04009204
1主要結(jié)果
參考文獻(xiàn):
[1]〖ZK(#〗BHATIA R. Positive denite matrices[M]. Princeton:Princeton University Press, 2007.
[2]FUJII J I, KAMEI E. Relative operator entropy in noncommutative information theory [J]. Math Japon, 1989,34(3):341348.
[3]BOHR H. Zur Theorie der fastperiodischen funktionen I[J]. Acta Math, 1924,45(1):29127.
[4]HIRZALLAH O. Noncommutative operator Bohr inequality[J]. J Math Anal Appl, 2003,282(2):578583.
[5]CHEUNG W, PECARIC J. Bohrs inequalities for Hilbert space operators[J]. J Math Anal Appl, 2006,323(1):403412.
[6]ZHANG F. On the Bohr inequality of operators[J]. J Math Anal Appl, 2007, 333(2):12641271.
[7]CHANSANGIAM P, HEMCHOTE P, PANTARAGPHONG P. Generalizations of Bohr inequality for Hilbert space operators[J]. J Math Anal Appl, 2009,356(2):525536.
[8]ABRAMOVICH S, BARIC J, PECARIC J. A new proof of an inequality of Bohr for Hilbert space operators[J].Linear Algebra Appl, 2009,430(4):14321435.
[9]FUJII M, ZUO H. Matrix order in Bohr inequality for operators[J]. Banach J Math Anal, 2010,4(1):2127.
[10]ZOU L, HE C. On operator Bohr type inequalities[J]. Math Inequal Appl, 2014,17(3):11611169.
[11]MERRIS R, PIERCE S. Monotonicity of positive semidenite Hermitian matrices[J]. Proc Amer Math Soc, 1972,31(2):437440.