亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        自動(dòng)變速器匹配對(duì)純電動(dòng)汽車能耗影響的研究*

        2014-10-11 07:42:00王小軍蔡源春周云山
        汽車工程 2014年7期
        關(guān)鍵詞:速比整車變速器

        王小軍,蔡源春,周云山,高 帥

        (1.湖南大學(xué),汽車車身先進(jìn)設(shè)計(jì)制造國(guó)家重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410082;2.吉林大學(xué)汽車工程學(xué)院,長(zhǎng)春 130025)

        前言

        目前國(guó)內(nèi)外電動(dòng)汽車主要是以匹配單擋變速器為主,對(duì)于電機(jī)匹配多擋自動(dòng)變速器的構(gòu)型研究較少。文獻(xiàn)[1]中分析了不同變速器對(duì)能耗的影響,但沒(méi)有對(duì)速比和換擋策略進(jìn)行優(yōu)化;文獻(xiàn)[2]中采用粒子群優(yōu)化算法對(duì)兩擋自動(dòng)變速器的速比進(jìn)行動(dòng)力性和經(jīng)濟(jì)性雙目標(biāo)函數(shù)的優(yōu)化,但未涉及換擋策略以及與其他變速器的比較;文獻(xiàn)[3]中以整車動(dòng)力性為約束,以ECE循環(huán)工況最小能耗為目標(biāo)對(duì)兩擋自動(dòng)變速器的速比和換擋策略進(jìn)行優(yōu)化并與單擋變速器進(jìn)行了比較,但沒(méi)有涉及與3擋和無(wú)級(jí)變速器的比較。

        為進(jìn)一步研究不同自動(dòng)變速器匹配對(duì)電動(dòng)汽車能耗的影響,本文中基于LF620純電動(dòng)汽車模型以整車原地起步加速時(shí)間作為動(dòng)力性約束,以3種循環(huán)工況綜合能耗最低為目標(biāo)對(duì)傳動(dòng)系統(tǒng)的參數(shù)進(jìn)行優(yōu)化,并制定了以電機(jī)工作點(diǎn)效率最大化為原則的換擋和速比控制策略,然后基于優(yōu)化結(jié)果討論了不同自動(dòng)變速器匹配對(duì)整車能耗的影響。

        1 電動(dòng)汽車建模

        電動(dòng)汽車的結(jié)構(gòu)示意圖如圖1所示。

        由圖可見(jiàn),純電動(dòng)汽車模型主要由駕駛員、主控制器、電池、電機(jī)、變速器和整車等模塊組成。

        1.1 駕駛員模塊

        駕駛員模塊為駕駛員模擬器的控制系統(tǒng),在閉環(huán)控制的情況下,可轉(zhuǎn)化為對(duì)加速踏板行程的PI控制和對(duì)制動(dòng)踏板行程的PID控制[4]。具體為

        式中:Δv為目標(biāo)車速與實(shí)際車速之差;vdesired為理想工況車速;vactual為實(shí)際車速;αe為加速踏板行程;kpt和kit為PI控制器中的比例和積分系數(shù)。

        式中:βe為制動(dòng)踏板行程;kdt為PID控制器的微分系數(shù)。

        1.2 電機(jī)模塊

        電機(jī)模塊主要是根據(jù)駕駛員意圖得到所需的電機(jī)轉(zhuǎn)矩,然后通過(guò)電機(jī)的效率MAP圖轉(zhuǎn)化為實(shí)際需求的功率后輸出到電池和變速器模塊。

        式中:Treq為工況需求轉(zhuǎn)矩;nm為電機(jī)轉(zhuǎn)速;ig為變速器速比;i0為主減速比;r為車輪半徑;ηm為電機(jī)的效率。

        1.3 電池模塊

        電池模塊主要根據(jù)充放電功率計(jì)算電池電量、電壓、電流和內(nèi)阻等狀態(tài)信息的變化情況[5]。本文中選用LiFePO4電池,單體電池電壓隨SOC和充放電倍率的變化特性曲線如圖2所示。

        電池的SOC估計(jì)采用改進(jìn)的安時(shí)計(jì)量法[6]:

        式中:CN為電池的可用容量;i為電池電流,放電時(shí)為正,充電時(shí)為負(fù);ηb為電池效率。

        1.4 變速器模塊

        變速器模塊主要是把電機(jī)輸出的可用轉(zhuǎn)矩經(jīng)過(guò)不同的速比變換傳遞到整車動(dòng)力學(xué)模型中,其中換擋策略采用基于加速踏板行程和車速并考慮電機(jī)效率的兩參數(shù)換擋:

        式中:Tout為變速器輸出轉(zhuǎn)矩;Tin為變速器輸入轉(zhuǎn)矩;ηt為變速器效率。

        1.5 整車模塊

        汽車在平直道路上滑行時(shí),整車的行駛阻力可簡(jiǎn)化為

        式中:δ為旋轉(zhuǎn)質(zhì)量換算系數(shù);G為汽車重力;f0、f1、f2為滾動(dòng)阻力系數(shù);Cd為風(fēng)阻系數(shù);Ad為迎風(fēng)面積。

        利用LF620汽車在同一路面上采集多次道路滑行數(shù)據(jù),并對(duì)濾波后的實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合,得到整車的行駛阻力曲線如圖3所示。

        1.6 再生制動(dòng)模塊

        再生制動(dòng)模塊主要是基于理想的制動(dòng)力分配曲線,如果制動(dòng)時(shí)前后輪同時(shí)抱死,則路面附著利用率會(huì)比較高,汽車制動(dòng)方向穩(wěn)定性也會(huì)較好。前后軸理想制動(dòng)力應(yīng)滿足:

        式中:Fu1、Fu2分別為前后輪制動(dòng)力;φ為路面附著系數(shù);L1為質(zhì)心至前軸的距離;L2為質(zhì)心至后軸的距離;hg為質(zhì)心高度。

        目前再生制動(dòng)力分配控制策略主要有最佳制動(dòng)感覺(jué)控制策略、最大能量回收控制策略和并聯(lián)制動(dòng)控制策略[7],如圖4~圖6所示。

        圖中:Ffreg為前輪的再生制動(dòng)力,F(xiàn)fmec為前輪的機(jī)械制動(dòng)力,F(xiàn)rmec為后輪的機(jī)械制動(dòng)力,F(xiàn)freg_max為電機(jī)能夠施加至前輪的最大再生制動(dòng)力,F(xiàn)freg_range為最大能量回收控制策略中在u=0.8且j/g=0.6的情況下前后輪制動(dòng)力分配允許的波動(dòng)區(qū)間。由圖可見(jiàn):最佳制動(dòng)感覺(jué)控制策略是在保證車輛具有最佳前后制動(dòng)力分配的前提下盡可能多地回收制動(dòng)能量;最大能量回收控制策略是在滿足整車制動(dòng)要求且前后輪都不抱死的情況下,前輪分配盡可能多的再生制動(dòng)力,從而實(shí)現(xiàn)更多的能量回收;而并聯(lián)制動(dòng)控制策略是機(jī)械制動(dòng)和再生制動(dòng)同時(shí)、并行地施加制動(dòng)力于前輪,若制動(dòng)強(qiáng)度超過(guò)某一閾值,則前輪完全采用機(jī)械制動(dòng),以實(shí)現(xiàn)快速制動(dòng)。

        2 模型驗(yàn)證

        根據(jù)上述思路,利用理論建模和數(shù)值建模相結(jié)合的方法,建立LF620純電動(dòng)汽車前向仿真模型,如圖7所示。

        建模過(guò)程中用到的整車和電機(jī)參數(shù)見(jiàn)表1。

        表1 整車和電機(jī)參數(shù)

        為驗(yàn)證模型的合理性,將仿真得到的數(shù)據(jù)與實(shí)車測(cè)試數(shù)據(jù)進(jìn)行對(duì)比,如圖8~圖12所示。

        由圖可見(jiàn),在加速踏板行程輸入相同的情況下,模型仿真數(shù)據(jù)與實(shí)車數(shù)據(jù)基本一致,說(shuō)明所建模型能夠合理模擬實(shí)車行駛時(shí)的工作狀態(tài),可用于進(jìn)一步的優(yōu)化和仿真分析。

        3 傳動(dòng)系參數(shù)優(yōu)化

        電動(dòng)汽車傳動(dòng)系參數(shù)的選擇和匹配直接影響整車性能的發(fā)揮[8],因此本文中基于所建立的LF620電動(dòng)汽車模型,對(duì)自動(dòng)變速器的匹配進(jìn)行優(yōu)化。

        3.1 優(yōu)化變量的確定

        對(duì)于兩擋和3擋自動(dòng)變速器,其優(yōu)化變量均為各擋速比和換擋點(diǎn)。兩擋自動(dòng)變速器優(yōu)化模型的設(shè)計(jì)變量為

        式中:i1為1擋速比;i2為2擋速比;s為換擋點(diǎn)。

        3.2 優(yōu)化目標(biāo)函數(shù)的建立

        通常情況下,滿足加速性能要求的整車也能滿足最高車速和最大爬坡度的需求,因此將汽車原地起步加速時(shí)間作為動(dòng)力性約束條件,以3種典型循環(huán)工況(日本1015、NEDC、US06)整車綜合能耗最低為優(yōu)化目標(biāo)建立數(shù)學(xué)模型:

        式中:w1、w2和w3分別為日本1015、NEDC和US06循環(huán)工況能耗的加權(quán)因子;Ei為相應(yīng)循環(huán)工況下整車能耗;Pb(t)為電池瞬時(shí)功率;Δt為采樣時(shí)間;Fmax為最大驅(qū)動(dòng)力;ve為換擋點(diǎn)的對(duì)應(yīng)車速,在本場(chǎng)合即為電機(jī)額定轉(zhuǎn)速對(duì)應(yīng)的車速。

        由于NEDC工況兼顧了城市和城郊行駛工況,且平均車速與國(guó)內(nèi)城市統(tǒng)計(jì)數(shù)據(jù)較為接近[9-10],因此在能耗評(píng)價(jià)中相對(duì)重要,取加權(quán)因子為0.4,而US06和日本1015分別屬于高速和城市擁堵工況,評(píng)價(jià)重要性相當(dāng),因此加權(quán)因子各取0.3。

        3.3 優(yōu)化流程與結(jié)果

        自動(dòng)變速器優(yōu)化流程如圖13所示。

        3.3.1 多擋自動(dòng)變速器換擋策略優(yōu)化

        多擋自動(dòng)變速器的換擋策略采用了基于加速踏板行程和車速并考慮電機(jī)效率的兩參數(shù)換擋規(guī)律,當(dāng)汽車在一定加速踏板行程以某車速運(yùn)行時(shí),選取各擋位中效率最高者作為當(dāng)前擋位,為了避免循環(huán)換擋,降擋在升擋的基礎(chǔ)上采用等延遲的換擋策略。圖14和圖15分別為某速比下兩擋和3擋變速器的最佳經(jīng)濟(jì)性換擋特性曲線。

        3.3.2 無(wú)級(jí)變速器速比控制策略優(yōu)化

        汽車以某一功率需求運(yùn)行時(shí),無(wú)級(jí)變速器利用其速比可無(wú)級(jí)連續(xù)變化的特性,在允許的速比范圍內(nèi)調(diào)節(jié)速比使電機(jī)的目標(biāo)工作點(diǎn)處于該功率需求下最高效率點(diǎn),圖16和圖17分別為根據(jù)電機(jī)的等效率特性曲線優(yōu)化得到的電機(jī)最佳工作曲線。

        3.3.3 速比優(yōu)化結(jié)果

        根據(jù)上述優(yōu)化流程得到不同變速器傳動(dòng)比優(yōu)化結(jié)果如表2所示。

        表2 速比優(yōu)化結(jié)果

        由于CVT的速比范圍受到金屬帶及帶輪尺寸的影響,因此CVT只對(duì)速比控制策略進(jìn)行優(yōu)化,不對(duì)速比范圍進(jìn)行優(yōu)化。本文中所采用CVT數(shù)據(jù)為某公司自主研發(fā)生產(chǎn)的金屬帶式CVT數(shù)據(jù),其速比范圍為0.44~2.43,主減速比為5.28。

        4 變速器匹配對(duì)能耗影響的分析

        4.1 變速器對(duì)電機(jī)工作點(diǎn)的影響

        采用表2中優(yōu)化速比在NEDC循環(huán)工況下對(duì)匹配不同自動(dòng)變速器的整車進(jìn)行仿真,其中再生制動(dòng)控制策略采用并聯(lián)制動(dòng)形式,得到電機(jī)的工作點(diǎn)如圖18~圖21所示。

        由圖可以看出,相比于單擋變速器,擋位數(shù)的增加可以降低工況對(duì)電機(jī)最高轉(zhuǎn)速的要求,使電機(jī)更多工作在高效區(qū)域,而由于換擋策略的影響,3擋變速器的最高轉(zhuǎn)速要高于兩擋。NEDC工況下不同變速器的最高轉(zhuǎn)速如表3所示。此外,由圖21可知,由于并聯(lián)制動(dòng)策略分配給電機(jī)的制動(dòng)力較小,且受制于CVT速比范圍的限制,電機(jī)的工作點(diǎn)不能時(shí)刻很好地遵循優(yōu)化后電機(jī)的最佳工作曲線。

        表3 NEDC工況電機(jī)最高轉(zhuǎn)速 r/min

        4.2 不同循環(huán)工況下變速器對(duì)能耗的影響

        不同循環(huán)工況功率需求差異較大,因此對(duì)整車的能耗也有較大影響[11]??紤]到自動(dòng)變速器的效率對(duì)能耗的影響,設(shè)定各變速器效率值如表4所示。

        表4 變速器效率

        則并聯(lián)制動(dòng)時(shí)代表不同路況的3種典型循環(huán)工況整車能耗如表5~表7所示。

        表5 日本1015工況整車能耗

        表6 NEDC工況整車能耗

        表7 USO6工況整車能耗

        由上述分析可知,兩擋和3擋變速器的能耗均有改善,而CVT由于效率較低,其能耗比單擋變速器要高。此外,隨著車速的增加,整車能耗基本呈現(xiàn)逐漸增加的趨勢(shì),而能耗改善的百分比則逐漸降低。由電機(jī)的等效率特性曲線可知,中低轉(zhuǎn)速段電機(jī)效率變化較為明顯,而高轉(zhuǎn)速段效率值比較接近,對(duì)于平均車速較高的循環(huán)工況,電機(jī)工作在高轉(zhuǎn)速區(qū)的時(shí)間較多,因此能耗改善沒(méi)有平均車速較低的循環(huán)工況明顯。

        4.3 變速器效率對(duì)能耗的影響

        變速器的傳動(dòng)效率對(duì)整車的能耗影響較大,圖22和圖23為不同傳動(dòng)效率對(duì)整車能耗的影響。

        由圖可見(jiàn),在兩種循環(huán)工況下,若各變速器的效率提升5%,則整車的100km能耗降低5.5%左右。此外,在相同效率條件下,CVT能耗最低,相比于優(yōu)化后的單擋變速器能耗改善達(dá)4%,但相比于3擋變速器,能耗提升并不很明顯,其原因在于所匹配的電機(jī)在中高轉(zhuǎn)速段效率差并不明顯。

        4.4 變速器對(duì)能量回收的影響

        根據(jù)再生制動(dòng)3種控制策略,采用表4中效率數(shù)據(jù),在NEDC循環(huán)工況、不同自動(dòng)變速器在不同再生制動(dòng)控制策略下,仿真得到的整車能量回收如圖24所示。

        由圖可以看出,3擋變速器能量回收最佳,CVT由于效率偏低,能量回收效果不理想。若各變速器效率相同,則能耗回收如圖25所示。

        由圖可見(jiàn),效率相同時(shí),CVT的能量回收效果優(yōu)于其它變速器,且回收的能量越多,優(yōu)勢(shì)越明顯。

        5 結(jié)論

        基于LF620電動(dòng)汽車模型,以整車原地起步加速時(shí)間作為動(dòng)力性約束,以3種循環(huán)工況綜合能耗最低為優(yōu)化目標(biāo),對(duì)自動(dòng)變速器和電機(jī)的匹配進(jìn)行優(yōu)化。根據(jù)優(yōu)化后的速比和換擋特性曲線,分析了不同變速器對(duì)整車能耗的影響。結(jié)果表明,相比于單擋變速器,裝備兩擋和3擋變速器的電動(dòng)汽車能夠降低對(duì)驅(qū)動(dòng)電機(jī)的要求并改善能耗,如果CVT傳動(dòng)效率低于其他變速器,則裝備CVT的電動(dòng)汽車在能耗方面并無(wú)優(yōu)勢(shì);若效率相同時(shí),其能耗最低。

        [1] Ren Q,Crolla D A,Morris A.Effect of Transmission Design on E-lectric Vehicle Performance[C].5th IEEE Vehicle Power and Propulsion Conference,Michigan,USA:VPPC,2009:1260 -1265.

        [2] 周兵,江清華,楊易.兩擋變速器純電動(dòng)汽車動(dòng)力性經(jīng)濟(jì)性雙目標(biāo)的傳動(dòng)比優(yōu)化[J].汽車工程,2011,33(9):792 -797.

        [3] 秦大同,周保華.兩擋電動(dòng)汽車動(dòng)力傳動(dòng)系統(tǒng)的參數(shù)設(shè)計(jì)[J].重慶大學(xué)學(xué)報(bào),2011,34(1):1 -6.

        [4] 蔡源春,周云山,張飛鐵.基于硬件在環(huán)仿真技術(shù)的無(wú)級(jí)變速器試驗(yàn)系統(tǒng)研究[J].儀器儀表學(xué)報(bào),2009,30(5):960 -966.

        [5] 劉輝,王偉達(dá),何嬌,等.基于模糊控制的混合動(dòng)力電動(dòng)車再生制動(dòng)系統(tǒng)的建模與仿真[J].汽車工程,2012,34(1):51 -56.

        [6] 林成濤,陳全世,王軍平,等.用改進(jìn)的安時(shí)計(jì)量法估計(jì)電動(dòng)汽車動(dòng)力電池 SOC[J].清華大學(xué)學(xué)報(bào),2006,46(2):247 -251.

        [7] Ehsani Mehrdad,Gao Yimin,Emadi Ali.Modern Electric,Hybrid Electric,and Fuel Cell Vehicles Fundamentals,Theory and Design[M].London:Routledge,2009:420-429.

        [8] 杜發(fā)榮,吳志新.電動(dòng)汽車傳動(dòng)系統(tǒng)參數(shù)設(shè)計(jì)和續(xù)駛里程研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(11):9 -11.

        [9] Keith Wipke,Tony Markel,Doug Nelson.Optimization Energy Management Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV[C].EVS-18 Berlin,German,October 2001.

        [10] 張開(kāi)斌,阮廷勇.中國(guó)六城市汽車行駛工況的統(tǒng)計(jì)分析[J].汽車研究與開(kāi)發(fā),2005(12):33-36.

        [11] 王震坡,孫逢春.電動(dòng)汽車能耗分配及影響因素分析[J].北京理工大學(xué)學(xué)報(bào),2004,24(4):306-310.

        猜你喜歡
        速比整車變速器
        基于六自由度解耦分析的整車懸置設(shè)計(jì)
        上汽通用VT40E變速器簡(jiǎn)介(一)
        考慮耦合特性的CVT協(xié)同控制算法研究*
        汽車工程(2016年11期)2016-04-11 10:57:53
        按行程速比系數(shù)綜合雙曲柄機(jī)構(gòu)新思路
        英菲尼迪QX60無(wú)級(jí)變速器保養(yǎng)和診斷
        渦輪增壓發(fā)動(dòng)機(jī)與雙離合變速器的使用
        整車低頻加速噪聲研究及改進(jìn)
        CVT速比響應(yīng)特性的實(shí)驗(yàn)研究及其應(yīng)用*
        汽車工程(2014年7期)2014-10-11 07:42:02
        奔馳9G-TRONIC自動(dòng)變速器描述(上)
        HFF6127G03EV純電動(dòng)客車整車開(kāi)發(fā)
        亚州毛色毛片免费观看| 亚洲人成网站色7799| 色综合久久久久综合99| 亚洲日本中文字幕天天更新| 伊人久久大香线蕉在观看| 国产免费的视频一区二区| 偷拍视频这里只有精品| 亚洲一区二区三区乱码在线中国 | 巨大巨粗巨长 黑人长吊| 午夜精品久久久久久中宇| 午夜免费福利一区二区无码AV| av二区三区在线观看| 日本成年一区久久综合| a级国产乱理伦片| 欧美国产一区二区三区激情无套| 91产精品无码无套在线| 性感人妻av在线播放| 精品在线观看一区二区视频| 免费网站内射红桃视频| 300部国产真实乱| 天天插天天干天天操| 男女视频在线观看一区二区| 少妇无套裸按摩呻吟无呜| 精东天美麻豆果冻传媒mv| 国产91在线免费| av一区二区不卡久久| 日本女优激情四射中文字幕| 亚洲日韩中文字幕在线播放| 国产呦系列呦交| 久久久精品免费国产四虎| 我也色自拍俺也色自拍| 国产成人91久久麻豆视频| 亚洲国产天堂一区二区三区| 亚洲AV秘 片一区二区三| 色婷婷精品国产一区二区三区| 很黄很色的女同视频一区二区| 精品久久人妻av中文字幕| 欧美xxxx黑人又粗又长精品| 资源在线观看视频一区二区| 一区二区三区免费观看日本| 亚洲av无一区二区三区久久|