郭柏壽
【摘要】勻速圓周運(yùn)動加速度公式的證明要涉及微分求導(dǎo)知識,因此,在高中物理教學(xué)中只求學(xué)生熟記,不要求掌握證明過程.顯然,這種教學(xué)方式不利于學(xué)生對物理公式的深入理解,也不利于學(xué)生培養(yǎng)從數(shù)學(xué)角度解決物理問題的理念.基于此,提出采用平面幾何和矢量代數(shù)知識、三角函數(shù)余弦定理及極限概念證明勻速圓周運(yùn)動加速度和向心力公式的方法.所用知識點(diǎn)均能被高中學(xué)生理解和掌握,希冀對高中物理教學(xué)有所借鑒.
【關(guān)鍵詞】極限概念;勻速圓周運(yùn)動;加速度;向心力;證明
數(shù)學(xué)和物理學(xué)密不可分,自從牛頓在其經(jīng)典論著《自然哲學(xué)之?dāng)?shù)學(xué)原理》里系統(tǒng)引用數(shù)學(xué)知識解決物理問題以來,麥克斯韋的電磁理論、愛因斯坦的相對論學(xué)說以及量子力學(xué)理論的建立都離不開數(shù)學(xué)工具的應(yīng)用.一個學(xué)說能不能被廣泛承認(rèn)與接受,檢驗指標(biāo)之一就是所建立的數(shù)學(xué)模型可否完美解決實際問題并準(zhǔn)確預(yù)測尚未發(fā)現(xiàn)的事實.可見數(shù)學(xué)作為基礎(chǔ)工具學(xué)科的重要性.
在高中物理教學(xué)中,勻速圓周運(yùn)動加速度的公式僅要求學(xué)生熟記,而不求了解其證明過程.原因在于該公式的證明需要運(yùn)用微分求導(dǎo)知識,這些知識超出高中學(xué)生所應(yīng)掌握的范圍.比如,哈里德等學(xué)者在《物理學(xué)基礎(chǔ)》中給出的證明方法就涉及微分求導(dǎo).
為了加深高中學(xué)生對物理知識的深入理解,樹立從數(shù)學(xué)角度解決物理問題的理念,提出采用平面幾何和矢量代數(shù)知識、三角函數(shù)余弦定理及極限概念證明勻速圓周運(yùn)動加速度和向心力公式的方法,這些知識點(diǎn)均可被高中學(xué)生理解和掌握,僅供教學(xué)時參考.
求證:勻速圓周運(yùn)動之物體加速度a=v2r,向心力F=mv2r
證明:如圖1所示,設(shè)勻速圓周運(yùn)動的物體之圓形軌跡的圓心為O,半徑為r,線速度為v,該物體所受向心力為F,質(zhì)量為m.
證畢.
【參考文獻(xiàn)】
[1]牛頓.自然哲學(xué)之?dāng)?shù)學(xué)原理[M].王克迪,譯.北京:北京大學(xué)出版社,2008.
[2]麥克斯韋.電磁通論[M].戈革,譯.北京:北京大學(xué)出版社,2010:1-621.
[3]愛因斯坦.狹義與廣義相對論淺說[M].楊潤殷,譯.北京:北京大學(xué)出版社,2013.
[4]汪德新.量子力學(xué)[M].第3版.北京:科學(xué)出版社,2008.
[5]哈里德,瑞斯尼克,沃克.物理學(xué)基礎(chǔ)[M].第6版.張三慧,李椿,滕小瑛,等譯.北京:機(jī)械工業(yè)出版社,2013:67-78.