瘢痕是創(chuàng)傷愈合的必然結(jié)果,可一旦增生過度,尤其是在面頸部及四肢等關(guān)節(jié)部位不僅影響外觀而且會引起功能障礙,給患者身心健康帶來嚴重危害。而瘢痕疙瘩(keloid,KD)為病理性瘢痕的一種,是由于膠原過度沉積而導(dǎo)致的纖維增生性疾病,常超過損傷邊界的正常皮膚,伴瘙癢和疼痛,由于KD的發(fā)病機制十分復(fù)雜,目前對它的治療仍無突破性進展。近年來,大量的與KD相關(guān)的基因數(shù)據(jù)被報道,而本文就與KD相關(guān)的信號通路及功能基因的研究進展綜述如下。
1 凋亡和促蛋白激酶(Mitogen-activated protein kinase,MAPK)信號通路
細胞凋亡是KD發(fā)生的重要機制之一。Nassiri 等[1]選擇了三條相互聯(lián)系的信號通路,涉及凋亡,細胞因子和核因子kB (Nuclear factor-kappa B, NFkB) 通路,將KD組織與正常皮膚組織進行微陣列分析觀察基因表達情況,發(fā)現(xiàn)了9個在KD中高表達的基因,其中4個基因涉及細胞因子或細胞因子間的交互,4個基因參與了MAPK信號通路,2個參與了與細胞凋亡重要相關(guān)的caspase信號通路。邊曦等[2]通過研究發(fā)現(xiàn)共有34個相關(guān)基因參與調(diào)控KD的細胞凋亡,其中包括上調(diào)的p53、caspase-14和下調(diào)的caspase-6。Xia等[3]和Kuo[4]均提出MAPK信號通路參與了KD的發(fā)病機制,但具體機制仍未清晰。Xia等[3]發(fā)現(xiàn)通過體外血清刺激,KD成纖維細胞中p38 MAPK磷酸化而正常皮膚成纖維細胞并未出現(xiàn)p38 MAPK的磷酸化,而p38 MAPK的高表達又促進了KD中TGF-β2的表達,并且發(fā)現(xiàn)阻斷p38 MAPK 的表達亦會阻斷TGF-β2的表達。Kuo等[4]發(fā)現(xiàn)p38 MAPK抑制劑可以下調(diào)TGF-β1的表達。
2 轉(zhuǎn)化生長因子-β(TGF-β,transforming growth factor-β)信號通路
TGF-β主要參與調(diào)節(jié)細胞增殖和分化,參與胚胎發(fā)育調(diào)節(jié),促進細胞外基質(zhì)形成和抑制免疫反應(yīng)等,基質(zhì)金屬蛋白酶-2( matrix metallo- proteinase, MMPs),MMP-9[5],纖溶酶[6]被認為是TGF-β的激活劑。TGF-β在哺乳動物中有3個亞型,分別是TGF-β1,TGF-β2和TGF-β3,不同亞型在參與創(chuàng)傷愈合過程中所需不同的受體和具有不同的生物作用。TGF-β1和TGF-β2在KD中表達增高[7]且被認為促進纖維化及瘢痕形成,而TGF-β3被發(fā)現(xiàn)在小鼠線性瘢痕模型中減少瘢痕形成[8]以及在胎兔外傷模型中與增加傷口周圍組織攣縮有關(guān)[9]。Seifert等[10]提出在KD中造成TGF-β表達增加促進細胞外基質(zhì)沉積增加的原因,可能是缺乏SMAD6和SMAD7的抑制劑并與SMAD信號通路相關(guān)。有大量研究試圖建立KD與TGF-β1,TGF-β2,TGF-β3,TGF-βRⅠ, TGF-βRⅡ, TGF-βRⅢ和SMAD3,SMAD6,SMAD7之間的關(guān)系[11-15]。Fujiwara[16]和Lee[17]的研究均發(fā)現(xiàn)KD中TGF-β1的基因和蛋白表達水平較正常皮膚中表達增高。而Bayat[11]卻發(fā)現(xiàn)KD患者與對照組血液中TGF-β1表達量無統(tǒng)計學差異。同樣在KD中TGF-β2,TGF-βRⅠ和TGF-βRⅡ的蛋白表達水平亦較對照組增高[17]。通過微陣列研究發(fā)現(xiàn)TGF-βRⅢ在KD組織中低表達[18]。孫慧娟等[19]發(fā)現(xiàn)miRNA-200c明顯抑制經(jīng)TGF-β1誘導(dǎo)的人KD成纖維細胞的增殖和膠原合成;亦能明顯降低磷酸化SMAD2和SMAD3的蛋白表達水平及抑制博來霉素誘導(dǎo)的TGF-β1的分泌,故而推測miR-200c抑制人KD成纖維細胞增殖及膠原合成可能是通過靶向抑制TGF-β/SMAD通路上的關(guān)鍵因子實現(xiàn)的。除了關(guān)注TGF-β信號通路在KD組織及細胞中的表達情況,亦有研究提出TGF-β信號通路與KD異常的表皮-間質(zhì)相互作用的發(fā)病機制相關(guān)[20]。另有研究關(guān)注于KD成纖維細胞中TGF-β與Fas基因相關(guān)的細胞調(diào)亡[21],以及TGF-β與細胞外基質(zhì)沉積的關(guān)系[22]。
3 細胞外基質(zhì)蛋白及其降解
KD的一大特點是細胞外基質(zhì)的過度沉積,主要是大量細胞外基質(zhì)蛋白的過表達,包括Ⅰ型膠原(type I collagen),纖連蛋白和彈性蛋白等[7]。PAI-1是與KD發(fā)生過程中細胞外基質(zhì)產(chǎn)生及其降解的重要信號通路。在PAI-1基因敲除小鼠中發(fā)現(xiàn)其較野生型小鼠肺纖維化明顯減少[23]。PAI-1抑制尿激酶纖維蛋白溶酶原( urokinase-mediat- edplasminogenactivation, uPA)的激活,uPA參與纖維蛋白降解,在組織塑形、細胞遷移和血管化過程中起重要作用。通過抑制MMP的表達PAI-1的表達降低從而影響KD細胞外基質(zhì)的產(chǎn)生。Tuan等[24]在無血清培養(yǎng)條件下,觀察到正常皮膚成纖維細胞纖維蛋白發(fā)生降解,而KD成纖維細胞并無這一現(xiàn)象。與此同時正常皮膚成纖維細胞有高水平的uPA和低水平的PAI-1表達,而瘢痕疙瘩成纖維細胞中這兩個蛋白出現(xiàn)相反的表達水平[24-25]。此外,在培養(yǎng)基中加入TGF-β1,正常成纖維細胞中纖維蛋白降解被抑制[24]。Tuan等[26]通過小RNA抑制過表達PAI-1的正常成纖維細胞及瘢痕疙瘩成纖維細胞中PAI-1的表達,發(fā)現(xiàn)抑制PAI-1的表達可以降低正常或瘢痕疙瘩成纖維細胞中膠原蛋白的過度沉積積聚。在瘢痕疙瘩中異常表達的眾多基因如TGF-β,胰島素生長因子-1(insulin growth factor, IGF)和血小板衍生生長因子(PDGF)均可調(diào)節(jié)PAI-1基因的表達。IGF-1受體亦在KD中過表達并有增強瘢痕疙瘩成纖維細胞侵襲的作用[27]。除了生長因子及細胞因子等對于PAI-1表達的促進作用,缺氧同樣促進PAI-1的表達[28]。在KD患者自身病變組織與正常組織比較發(fā)現(xiàn)中PAI-1和HIF-1A在病變組織中表達增高[18]。抑制PAI-1和HIF-1A的表達可以減少瘢痕疙瘩成纖維細胞中的膠原沉積[25]。研究發(fā)現(xiàn)有眾多信號通路參與到HIF-1A的激活,包括ERK1/2,PI3-K/Akt和PTKs[29]。Wu等[30]發(fā)現(xiàn)血管內(nèi)皮生長因子(endothelial growth factor ,VEGF)是HIF-1A的一個靶基因,VEGF不僅在瘢痕疙瘩成纖維細胞中蛋白和基因水平均增高,且其促進PAI-1的表達與劑量-時間成正比相關(guān)。
4 脂質(zhì)代謝及機械力
脂質(zhì)是細胞膜的必要組成部分,脂質(zhì)及其內(nèi)源性的代謝產(chǎn)物可作為抗炎因子及二級信使,從而推斷在KD的發(fā)病過程中,脂質(zhì)代謝通過影響細胞內(nèi)信號的傳導(dǎo)從而致病[31]。KD是一種纖維過度增生的皮膚疾病,且其與局部的機械張力密切相關(guān),而力傳導(dǎo)的過程是機械外力轉(zhuǎn)化為生化信號,進而參與細胞反應(yīng)。在KD的發(fā)生過程中,參與力傳導(dǎo)過程的信號通路有TGF-β/Smad,MAPK,integrin,RhoA/ROCK,Wnt/β-catenin和TNF-α/NF-κB 信號通路[32]。
目前,隨著分子生物學、遺傳生物學和細胞生物學的發(fā)展,使得我們對于KD的發(fā)病機制有了較深刻的理解,但多種生物學及遺傳學因素影響著瘢痕疙瘩的發(fā)生過程,各種生物活性因子間的相互作用相互影響,形成錯綜復(fù)雜的網(wǎng)絡(luò)關(guān)系。對于KD發(fā)病過程中多條信號通路及重要分子功能的深入研究,進一步分析有助于揭示KD的發(fā)病機制,并為臨床治療提供新的思路和方向。
[參考文獻]
[1]Nassiri M,Woolery-Lloyd H,Ramos S,et al.Gene expression profiling reveals alteration of caspase 6 and 14 transcripts in normal skin of keloid-prone patients[J].Arch Dermatol Res,2009,301(2):183-188.
[2]邊曦,黃琛,李博侖,等.瘢痕疙瘩相關(guān)基因的生物信息學分析[J].中國微創(chuàng)外科雜志,2012,12(5):444-449,467.
[3]Xia W,Longaker MT,Yang GP.P38 MAP kinase mediates transforming growth factor-beta2 transcription in human keloid fibroblasts[J].Am J Ohysiol Regulatory, Integrative and comparative physiology,2006,290(3):R501-508.
[4]Kuo YR,Wu WS,Wang FS.Flashlamp pulsed-dye laser suppressed TGF-beta1 expression and proliferation in cultured keloid fibroblasts is mediated by MAPK pathway[J].Lasers Surg Med,2007,39(4):358-364.
[5]Yu Q,Stamenkovic I.Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis[J].Genes Develop,2000, 14(2):163-176.
[6]Sato Y,Rifkin DB.Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture[J].J Cell Diolog,1989,109(1):309-315.
[7]Sidgwick GP,Bayat A.Extracellular matrix molecules implicated in hypertrophic and keloid scarring[J].JEADV,2012,26(2):141-152.
[8]Shah M,F(xiàn)oreman DM,F(xiàn)erguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring[J].J Cell Sci, 1995,108(Pt3):985-1002.
[9]Lanning DA,Diegelmann RF,Yager DR.Myofibroblast induction with transforming growth factor-beta1 and -beta3 in cutaneous fetal excisional wounds[J].J Pediatr Surg,2000,35(2):183-187;discussion 187-188.
[10]Seifert O,Mrowietz U.Keloid scarring: bench and bedside[J].Arch Dermatolog Res,2009,301(4):259-272.
[11]Bayat A,Bock O,Mrowietz U.Genetic susceptibility to keloid disease and hypertrophic scarring: transforming growth factor beta1 common polymorphisms and plasma levels[J]. Plast Reconstr Surg,2003,111(2):535-543;discussion 544-536.
[12]Bayat A,Bock O,Mrowietz U,et al.Genetic susceptibility to keloid disease and transforming growth factor beta 2 polymorphisms[J].Bri J Plast Surg,2002, 55(4):283-286.
[13]Bayat A,Walter JM,Bock O,et al.Genetic susceptibility to keloid disease: mutation screening of the TGFbeta3 gene[J].Bri J Plast Surg,2005,58(7):914-921.
[14]Bayat A,Bock O,Mrowietz U,et al.Genetic susceptibility to keloid disease: transforming growth factor beta receptor gene polymorphisms are not associated with keloid disease[J]. Exper Dermatol,2004,13(2):120-124.
[15]Brown JJ,Ollier W,Arscott G,et al.Genetic susceptibility to keloid scarring: SMAD gene SNP frequencies in Afro-Caribbeans[J].Exper Dermatol,2008,17(7):610-613.
[16]Fujiwara M,Muragaki Y,Ooshima A.Upregulation of transforming growth factor-beta1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity[J].Arch Dermatol Rese,2005,297(4):161-169.
[17]Lee TY,Chin GS,Kim WJ,et al.Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids[J].Ann Plast Surg,1999,43(2):179-184.
[18]Seifert O,Bayat A,Geffers R,et al.Identification of unique gene expression patterns within different lesional sites of keloids[J].Wound repair and regeneration:official publication of the Wound Healing Society [and] the European Tissue Repair Society,2008,16(2):254-265.
[19]孫慧娟,蒙喜永,胡純婷.MicroRNA-200c通過TGF-β/Smad通路抑制瘢痕疙瘩成纖維細胞增殖和膠原合成[J].中國美容醫(yī)學,2012,21(9):1539-1542.
[20]Phan TT,Lim IJ,Aalami O,et al.Smad3 signalling plays an important role in keloid pathogenesis via epithelial-mesenc hymal interactions[J].J Pathol,2005,207(2):232-242.
[21]Chodon T,Sugihara T,Igawa HH,et al.Keloid-derived fibroblasts are refractory to Fas-mediated apoptosis and neutralization of autocrine transforming growth factor-beta1 can abrogate this resistance[J].Am J Patholog,2000,157(5):1661-1669.
[22]Wang Z,Gao Z,Shi Y,et al. Inhibition of Smad3 expression decreases collagen synthesis in keloid disease fibroblasts[J].JPRAS,2007,60(11):1193-1199.
[23]Eitzman DT,McCoy RD,Zheng X,et al.Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene[J].J Clin Investigat,1996,97(1):232-237.
[24]Tuan TL,Zhu JY,Sun B,et al. Elevated levels of plasminogen activator inhibitor-1 may account for the altered fibrinolysis by keloid fibroblasts[J].J Investiga Dermatol,1996,106(5):1007-1011.
[25]Tuan TL,Wu H,Huang EY,et al.Increased plasminogen activator inhibitor-1 in keloid fibroblasts may account for their elevated collagen accumulation in fibrin gel cultures[J].Am J Pathol,2003,162(5):1579-1589.
[26]Tuan TL,Hwu P,Ho W,et al.Adenoviral overexpression and small interfering RNA suppression demonstrate that plasminogen activator inhibitor-1 produces elevated collagen accumulation in normal and keloid fibroblasts[J]. Am J Pathol 2008,173(5):1311-1325.
[27]Ohtsuru A,Yoshimoto H,Ishihara H,et al.Insulin-like growth factor-I (IGF-I)/IGF-I receptor axis and increased invasion activity of fibroblasts in keloid[J].Endocrine J 2000,47 Suppl:S41-S44.
[28]Zhang Q,Wu Y,Ann DK,et al.Mechanisms of hypoxic regulation of plasminogen activator inhibitor-1 gene expression in keloid fibroblasts[J]. J Investigat dermatol,2003,121(5):1005-1012.
[29]Zhang Q,Wu Y,Chau CH,et al.Crosstalk of hypoxia-mediated signaling pathways in upregulating plasminogen activator inhibitor-1 expression in keloid fibroblasts[J].J Cellul Physiol,2004,199(1):89-97.
[30]Wu Y,Zhang Q,Ann DK,et al.Increased vascular endothelial growth factor may account for elevated level of plasminogen activator inhibitor-1 via activating ERK1/2 in keloid fibroblasts[J].Am J Physiol Cell Physiol,2004,286(4):C905-C912.
[31]Huang C,Ogawa R.Roles of lipid metabolism in keloid development[J].Lipid Health disea,2013,12:60.
[32]Huang C,Ogawa R.Fibroproliferative disorders and their mechanobiology[J]. Connect Tissue Res,2012,53(3):187-196.
編輯/李陽利