杜 文 王 謙 王佳堃 劉建新
(浙江大學奶業(yè)科學研究所,動物分子營養(yǎng)學教育部重點實驗室,杭州 310058)
木聚糖是D-木糖通過β-1,4-木糖苷鍵連接而成的一種多聚五碳糖,是植物細胞壁中常見的半纖維素多糖,占植物碳水化合物總量的1/3,含量僅次于纖維素,是自然界中第2豐富的可利用資源[1]。在飼料工業(yè)中,由于單胃動物缺少降解半纖維素的酶,因此木聚糖對單胃動物幾乎沒有營養(yǎng)作用,而且沒有消化的纖維物質(zhì)會增加食物的黏性,干擾消化酶的作用及營養(yǎng)的吸收[2];反芻動物由于瘤胃微生物的存在,對木聚糖具有一定的降解能力[3],但是,實際生產(chǎn)中仍需要補充外源酶制劑,進一步提高其對粗飼料的消化率[4-5]。木聚糖酶是能專一水解木聚糖為主體的低聚木糖和D-木糖的一類糖苷水解酶的總稱[6],主要包括:β -D-1,4- 內(nèi)切木聚糖酶(endo-1,4-β-D-xylanxylanohydrolase,E.C.3.2.1.8)、β -木糖苷酶(β-xylosidase,E.C.3.2.1.37)和 β -1,4- 外切木聚糖酶(E.C.3.2.1.7)。木聚糖酶在天然材料中基因表達水平低、活性差、生產(chǎn)成本高,嚴重限制了它的推廣應用[5]。為了滿足飼用酶制劑的生產(chǎn)需要、開發(fā)半纖維類生物能源,利用體外定向進化技術(shù)改良木聚糖酶基因,提高木聚糖酶的催化活性和熱穩(wěn)定性,以獲得高活性高產(chǎn)量的木聚糖酶就成了目前研究的熱點。
自1983年Bernier等[7]從枯草芽孢桿菌(Bacillus subtilis)中分離得到木聚糖酶基因,到目前為止,國內(nèi)外已報道了300余種不同菌株來源的木聚糖酶基因,其中近百種基因被克隆和表達在合適的宿主中[2,8]。不同來源的木聚糖酶,酶學性質(zhì)差別較大(表1)[9-25]。細菌木聚糖酶的分子質(zhì)量在22.5~60.0 ku,最適溫度范圍為40~75℃,最適pH范圍為6.0~8.0,其中以7.0居多;熱穩(wěn)定性在40℃附近較好,pH穩(wěn)定性范圍為4.5~11.0,主要集中于6.0~9.0。一些放線菌也能產(chǎn)生木聚糖酶,如橄欖綠鏈霉菌A1(Streptomyces olivaceoviridis A1)[15]和耐鹽高溫雙歧菌YIM 90462T(Thermobifida halotolerans YIM 90462T)[16],其酶分子質(zhì)量分別為20.8和34.0ku,最適溫度分別為60和90℃,最適pH分別為5.2和9.0;熱穩(wěn)定性在60℃附近較好,pH穩(wěn)定性范圍分別為4.0~8.8和7.0~8.0。真菌木聚糖酶的酶分子質(zhì)量在20.0~31.6 ku,最適溫度主要集中于50℃(50~65℃),最適pH范圍為3.0~6.0;熱穩(wěn)定性范圍為40~60℃,平均在50℃左右,pH穩(wěn)定性范圍為2.5~10.0,主要集中于3.5~7.5。在木聚糖酶產(chǎn)量方面,真菌與細菌相比具有明顯的優(yōu)勢[26];各類產(chǎn)木聚糖酶微生物里都有木聚糖酶活性較高的代表,如細菌里的中度嗜鹽菌 AX2000(Bacillus alcalophilus AX2000)[12],它產(chǎn)生的木聚糖酶活性高達25 000 U/mg;放線菌里的橄欖綠鏈霉菌 A1[15],它產(chǎn)生的木聚糖酶活性高達15 000 U/mL;真菌里的青霉菌 Pol6(Penicillium occitanis Pol6)[23]和黑曲霉BCC14405(Aspergillus niger BCC14405)[21],它們產(chǎn)生的木聚糖酶活性分別為8 549.85和8 007 U/mg。
隨著分子生物學技術(shù)的發(fā)展,越來越多的產(chǎn)木聚糖酶微生物被發(fā)現(xiàn),然而環(huán)境中還有很多微生物資源不能通過純培養(yǎng)技術(shù)分離得到,近年來發(fā)展起來的宏基因組技術(shù)解決了這一難題,它通過免培養(yǎng)技術(shù),研究生境中全部微生物遺傳物質(zhì)的總和,挖掘未培養(yǎng)微生物的基因資源[27],在木聚糖酶基因的開發(fā)上顯示出了巨大的潛力。表2[28-37]列舉了 2008—2013 年間以環(huán)境樣本構(gòu)建宏基因組文庫篩選到的木聚糖酶,樣品來源于反芻動物瘤胃[29,31-32,34-36]、土壤[28,33,37]和堆肥[30,37],其中以反芻動物瘤胃居多。常用的文庫載體是質(zhì)粒BAC[29,32]和FOS[30,33-36],宿主是大腸桿菌[28-31,32-37]。文庫平均插入片段 在5.5 ~54.5 kb之間,篩選到的克隆數(shù)大都在10 000以上,木聚糖酶陽性率最高可達0.14%。
蛋白質(zhì)工程技術(shù),包含蛋白質(zhì)的理性設(shè)計和非理性設(shè)計2種方法。傳統(tǒng)的理性設(shè)計需要預先知道蛋白質(zhì)的結(jié)構(gòu)、活性位點、催化機制等信息,在清楚結(jié)構(gòu)與功能的前提下,定點突變改變蛋白質(zhì)分子中個別氨基酸殘基,產(chǎn)生新性狀的蛋白質(zhì)[38]。然而,在實際應用中,蛋白質(zhì)的結(jié)構(gòu)信息很難獲取,結(jié)構(gòu)與功能的關(guān)系異常復雜,因此理性設(shè)計具有很強的限制性[39]。蛋白質(zhì)的非理性設(shè)計,即體外定向進化,它模擬達爾文的自然進化論,利用基因的突變和重組,從體外改造酶的基因,產(chǎn)生基因多樣性,并結(jié)合定向的篩選最終獲得預期性質(zhì)的進化酶,因它不需要預先知道蛋白質(zhì)的三維結(jié)構(gòu)信息,彌補了理性設(shè)計的不足[40]。它主要包括突變文庫的構(gòu)建、功能表達和文庫篩選(選擇)3個步驟[41],其核心是突變文庫的構(gòu)建和文庫篩選(圖1)。
突變文庫的庫容及多樣性是酶分子體外定向進化的基礎(chǔ)。構(gòu)建突變文庫的方法有很多,如易錯PCR(error-prone PCR)、DNA重排(DNA shuffling),以及基于DNA重排的原理,圍繞基因片段重組這一思想產(chǎn)生的交錯延伸法(staggered extension process,StEP)、隨機引物體外重組(randompriming in vitro recombination,RPR)、退火低核苷酸基因重排(degenerate oligonucleotide gene shuffling,DOGS)、外顯子重組(exon shuffling)、酵母增強組合文庫(combinatorial libraries enhanced by recombination in yeast,CLERY)、隨機片段交換法(random insertional-deletional strand exchange mutagenesis,RAISE)等[38,40],常用的是易錯PCR和DNA 重排(表 3)[43-50]。
易錯PCR是定向進化最早采用的一種建庫方法,由 Leung 等[51]提出,后經(jīng) Cadwell等[52]改良,其原理是在體外擴增目的基因時改變PCR的條件,使堿基產(chǎn)生錯配,導致目的基因隨機突變。Stephens等[43]用易錯PCR產(chǎn)生基因突變,改良1個來自疏棉狀嗜熱絲孢菌(Thermomyces lanuginosus)的耐熱木聚糖酶基因XynA,以提高木聚糖酶熱穩(wěn)定性,其最優(yōu)突變體酶2B7-10發(fā)生1處點突變(Y58F),該突變使其在80℃孵育60 min還能保持71%的活性,遠高于親本酶XynA。McHunu等[44]利用易錯PCR提高另一個來自疏棉狀嗜熱絲孢菌(Thermomyces lanuginosus)的木聚糖酶的耐堿性,其突變體酶在60℃,pH 10.0的堿性條件下孵育60 min,還能保持84%的活性,而親本酶同樣處理后僅剩22%的活性。Wang等[45]利用易錯PCR提高1株雜合木聚糖酶ATx的催化活性,1處氨基酸替換(L49P)使突變體酶的催化活性提高。易錯PCR的原理簡單,操作簡便,對親本基因的限制條件不多,而且可以和其他突變方法結(jié)合使用,因此應用十分廣泛,但該方法屬于無性突變,遺傳只發(fā)生在單一分子內(nèi)部,一般適用于較小的基因片段(<800 bp)[40]。
表2 利用宏基因組文庫篩選到的木聚糖酶Table 2 Xylanases screening from the metagenomic library
隨著人們對酶的進化期望越來越大,定向進化技術(shù)也在不斷的成熟和發(fā)展。1994年,Stemmer[53-54]提出 DNA 重排(DNA shuffling)并成功運用,為體外定向進化技術(shù)的飛躍做出了巨大貢獻。其原理是用脫氧核糖核酸酶Ⅰ(DNaseⅠ)切割一組含有不同點突變的基因片段,產(chǎn)生不同大小的隨機片段,這些片段再經(jīng)重新組合、擴增形成全長的基因,實現(xiàn)不同基因片段的重組。其優(yōu)勢是可以有效積累有益突變,排除有害和中性突變,同時也能實現(xiàn)蛋白質(zhì)多種特性的共進化[55]。在木聚糖酶基因定向進化研究上,也有不少應用該技術(shù)的例子。Xia等[46]利用DNA重排改良1個來自變鉛青鏈霉菌(Streptomyces lividans)的木聚糖酶B的熱穩(wěn)定性和耐堿性,得到的最優(yōu)突變體酶在70℃可以維持活性時長達6 h,而親本酶處理3 min后就喪失了50%的活性,此外,突變體酶在pH 9.0的條件下穩(wěn)定性增加,這些都顯示了突變體酶在熱穩(wěn)定性和耐堿性上的極大優(yōu)勢。
DNA重排的前提是存在1組含有不同點突變的基因片段,因而常將DNA重排和易錯PCR等進化方法結(jié)合使用。Miyazaki等[47]將易錯 PCR、飽和誘變、DNA重排3種方法結(jié)合改良1個來自枯草芽孢桿菌的木聚糖酶的熱穩(wěn)定性,最終得到1個含有3個氨基酸替換的優(yōu)勢突變體Xylst,該突變使其熱穩(wěn)定性顯著增加,在60℃條件下,突變體酶活性可維持2 h,然而親本型5 min內(nèi)就失去了活性。Zhang等[48]利用易錯PCR和基于DNA重排的家族重排(family shuffling)技術(shù),與蛋白質(zhì)半理性設(shè)計相結(jié)合改良1個來源于嗜熱脂肪芽孢桿菌(Geobacillus stearothermophilus)的木聚糖酶XT6的熱穩(wěn)定性,穩(wěn)定性最佳的突變體酶含有13個氨基酸的替換,該替換導致其半衰期是親本型的52倍,最適溫度從77℃上升至87℃,催化效率提高90%。
圖1 酶定向進化的突變文庫構(gòu)建(A)和高通量文庫篩選(B)策略Fig.1 Strategies for the directed evolution of enzymes involving generation of variant gene libraries(A)and high-throughput screening of libraries(B)[42]
表3 定向進化技術(shù)成功改良的微生物木聚糖酶Table 3 Successfully optimized microbial xylanases by directed evolution
續(xù)表3
木聚糖酶基因突變文庫構(gòu)建之后,確定一個高通量、高選擇性、高靈敏度的篩選方法是快速成功地從龐大的突變庫中篩選到目的產(chǎn)物的重要保證[56]。目前常用的篩選方法有平板篩選和基于熒光或顯色反應的篩選2種。其中平板篩選最為簡便,針對木聚糖酶的平板篩選有RBB-xylan法和剛果紅染色法,它是基于木聚糖酶的催化活性和底物分解前后性質(zhì)的改變,在固體平板中加入木聚糖底物,將克隆點種在相應的選擇平板上,宿主菌表達木聚糖酶水解木聚糖形成透明圈,根據(jù)透明圈的有無、大小,初步確定是否陽性克隆或優(yōu)勢突變體。但這種篩選局限于底物特異性、酶活性等突變方向的篩選,并且在篩選酶活高的突變體時,也只能作為初步的篩選。對于酶的最適pH、最適溫度、穩(wěn)定性等突變方向,仍需要以可測定的酶促反應結(jié)果來篩選,即基于熒光或顯色反應的方法,該方法也用于復篩酶活提高的突變體,常用的如3,5-二硝基水楊酸(3,5-dinitrosalicylic acid,DNS)法,它的原理是DNS與木聚糖酶水解木聚糖后產(chǎn)生的還原糖發(fā)生氧化還原反應,產(chǎn)物在煮沸條件下顯棕紅色,且在一定范圍內(nèi)顏色深淺與還原糖含量成比例關(guān)系,利用比色法測定還原糖含量,以達到篩選突變體的目的。該方法需要結(jié)合96孔板、酶標儀等設(shè)備以提高篩選效率[57]。
不同生物來源的木聚糖酶,其酶學性質(zhì)差別較大,各類產(chǎn)木聚糖酶微生物里都有酶活較高的代表。宏基因組技術(shù)在開發(fā)環(huán)境木聚糖酶基因上顯示了巨大的潛力。隨著體外定向進化技術(shù)的進一步發(fā)展和完善,酶的突變、重組、篩選等過程進一步改進,木聚糖酶基因的改良將得到更快的發(fā)展。宏基因組技術(shù)和體外定向進化技術(shù)相結(jié)合必將加速木聚糖酶基因的開發(fā)和產(chǎn)業(yè)化應用,推動半纖維類生物能源的利用。
[1]DEUTSCHMANN R,DEKKER R F H.From plant biomass to bio-based chemicals:latest developments in xylan research[J].Biotechnology Advances,2012,30(6):1627-1640.
[2]張世敏,劉寅,劉新育,等.木聚糖酶基因研究進展[J].微生物學雜志,2006,26(4):61-67.
[3]朱崇淼,毛勝勇,孫云章,等.產(chǎn)木聚糖酶厭氧真菌菌株篩選及產(chǎn)酶培養(yǎng)條件研究[J].微生物學通報,2004,31(3):11-15.
[4]楊培龍,姚斌.飼料用酶制劑的研究進展與趨勢[J].生物工程學報,2009,25(12):1844-1851.
[5]懷文輝,何秀萍,郭文潔,等.微生物木聚糖降解酶研究進展及應用前景[J].微生物學通報,2000,27(2):137-139.
[6]方洛云,鄒曉庭,許梓榮.木聚糖酶基因的分子生物學與基因工程[J].畜禽業(yè),2002(2):2-3.
[7]BERNIER R,Jr,DRIGUEZ H,DESROCHERS M.Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli[J].Gene,1983,26(1):59-65.
[8]岳曉禹,賀小營,牛天貴,等.木聚糖酶的研究進展[J].釀酒科技,2007(4):113-115,120.
[9]YEASMIN S,KIM C H,PARK H J,et al.Cell surface display of cellulase activity-free xylanase enzyme on Saccharomyces Cerevisiae EBY100[J].Applied Biochemistry and Biotechnology,2011,164(3):294-304.
[10]BAI W Q,XUE Y F,ZHOU C,et al.Cloning,expression and characterization of a novel salt-tolerant xylanase from Bacillus sp.SN5[J].Biotechnology Letters,2012,34(11):2093-2099.
[11]CANAKCI S,CEVHER Z,INAN K,et al.Cloning,purification and characterization of an alkali-stable endoxylanase from thermophilic Geobacillus sp.71[J].World Journal of Microbiology &Biotechnology,2012,28(5):1981-1988.
[12]LEE D S,LEE K H,CHO E J,et al.Characterization and pH-dependent substrate specificity of alkalophilic xylanase from Bacillus alcalophilus[J].Journal of Industrial Microbiology & Biotechnology,2012,39(10):1465-1475.
[13]WANG S Y,HU W,LIN X Y,et al.A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1:gene cloning,expression,and enzymatic characterization[J].Applied Microbiology and Biotechnology,2012,93(4):1503-1512.
[14]CORRêA J M,GRACIANO L,ABRAH?O J,et al.Expression and characterization of a GH39β-xylosidase Ⅱ from Caulobacter crescentus[J].Applied Biochemistry and Biotechnology,2012,168(8):2218-2229.
[15]WANG Y R,ZHANG H L,HE Y Z,et al.Characterization,gene cloning,and expression of a novel xylanase XYNB from Streptomyces olivaceoviridis A1[J].Aquaculture,2007,267(1/2/3/4):328-334.
[16]ZHANG F,CHEN J J,REN W Z,et al.Cloning,expression,and characterization of an alkaline thermostable GH11 xylanase from Thermobifida halotolerans YIM 90462(T)[J].Journal of Industrial Microbiology & Biotechnology,2012,39(8):1109-1116.
[17]ZHOU C Y,BAI J Y,DENG S S,et al.Cloning of a xylanase gene from Aspergillus usamii and itsexpression in Escherichia coli[J].Bioresource Technology,2008,99(4):831-838.
[18]HE J,YU B,ZHANG K Y,et al.Expression of a Trichoderma reeseiβ-xylanase gene in Escherichia coli and activity of the enzyme on fiber-bound substrates[J].Protein Expression and Purification,2009,67(1):1-6.
[19]WAKIYAMA M,TANAKA H,YOSHIHARA K,et al.Purification and properties of family-10 endo-1,4-β-xylanase from Penicillium citrinum and structural organization of encoding gene[J].Journal of Bioscience and Bioengineering,2008,105(4):367-374.
[20]PARACHIN N S,SIQUEIRA S,F(xiàn)ARIA F P D,et al.Xylanases from Cryptococcus flavus isolate I-11:Enzymatic profile,isolation and heterologous expression of CfXYN1 in Saccharomyces cerevisiae[J].Journal of Molecular Catalysis B:Enzymatic,2009,59(1/2/3):52-57.
[21]RUANGLEK V,SRIPRANG R,RATANAOHAN N,et al.Cloning,expression,characterization,and high cell-density production of recombinant endo-1,4-βxylanase from Aspergillus niger in Pichia pastoris[J].Enzyme and Microbial Technology,2007,41(1/2):19-25.
[22]ZHAO N,GUO R F,YU H W,et al.Expression and characterization of a thermostable xylanase gene xynA from a themophilic fungus in Pichia pastoris[J].Agricultural Sciences in China,2011,10(3):343-350.
[23]DRISS D,BHIRI F,GHORBEL R,et al.Cloning and constitutive expression of His-tagged xylanase GH 11 from Penicillium occitanis Pol6 in Pichia pastoris X33:purification and characterization[J].Protein Expression and Purification,2012,83(1):8-14.
[24]HMIDA-SAYARI A,TAKTEK S,ELGHARBI F,et al.Biochemical characterization,cloning and molecular modeling of a detergent and organic solvent-stable family 11 xylanase from the newly isolated Aspergillus niger US368 strain[J].Process Biochemistry,2012,47(12):1839-1847.
[25]FU G H,WANG Y T,WANG D D,et al.Cloning,expression,and characterization of an GHF 11 xylanase from Aspergillus niger XZ-3S[J].Indian Journal of Microbiology,2012,52(4):682-688.
[26]AHMED S,RIAZ S,JAMIL A.Molecular cloning of fungal xylanases:an overview[J].Applied Microbiol-ogy and Biotechnology,2009,84(1):19-35.
[27]王佳堃,安培培,劉建新.宏基因組學用于瘤胃微生物代謝的研究進展[J].動物營養(yǎng)學報,2010,22(3):527-535.
[28]HU Y,ZHANG G M,LI A Y,et al.Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach[J].Applied Microbiology and Biotechnology,2008,80(5):823-830.
[29]ZHAO S G,WANG J Q,BU D P,et al.Novel glycoside hydrolases identified by screening a Chinese Holstein dairy cow rumen-derived metagenome library[J].Applied and Environmental Microbiology,2010,76(19):6701-6705.
[30]KWON E J,JEONG Y S,KIM Y H,et al.Construction of a metagenomic library from compost and screening of cellulase-and xylanase-positive clones[J].Journal of the Korean Society for Applied Biological Chemistry,2010,53(6):702-708.
[31]CHANG L,DING M Z,BAO L,et al.Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms[J].Applied Microbiology and Biotechnology,2011,90(6):1933-1942.
[32]GONG X,GRUNINIGER R J,F(xiàn)ORSTER R J,et al.Biochemical analysis of a highly specific,pH stable xylanase gene identified from a bovine rumen-derivedmetagenomic library[J].Applied Microbiology and Biotechnology,2013,97(6):2423-2431.
[33]NACKE H,ENGELHAUPT M,BRADY S,et al.I-dentification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes[J].Biotechnology Letters,2012,34(4):663-675.
[34]WANG JK,SUN Z Y,ZHOU Y,et al.Screening of a xylanase clone from a Fosmid library of rumen microbiota in Hu sheep[J].Animal Biotechnology,2012,23(3):156-173.
[35]王佳堃,安培培,陳振明,等.湖羊瘤胃微生物Fosmid文庫的構(gòu)建和分析[J].動物營養(yǎng)學報,2010,22(2):341-345.
[36]RASHAMUSE K J,VISSER D F,HENNESSY F,et al.Characterisation of two bifunctional cellulase-xylanase enzymes isolated from a bovine rumen metagenome library[J].Current Microbiology,2013,66(2):145-151.
[37]VERMA D,KAWARABAYASI Y,MIYAZAKI K,et al.Cloning,expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene(mxyl)retrieved from compost-soil metagenome[J].PLoS One,2013,8(1):e52459.
[38]王黎,袁紅霞,曾家豫,等.酶分子定向進化的最新研究進展及應用[J].甘肅醫(yī)藥,2009,28(1):24-27.
[39]徐卉芳,張先恩,張用梅.體外分子定向進化研究進展[J].生物化學與生物物理進展,2002,29(4):518-522.
[40]方柏山,鄭媛媛.酶體外定向進化(Ⅰ)突變基因文庫構(gòu)建技術(shù)及其新進展[J].華僑大學學報:自然科學版,2004,25(4):337-342.
[41]BRAKMANN S.Discovery of superior enzymes by directed molecular evolution[J].ChemBioChem,2001,2(12):865-871.
[42]TURNER N J.Directed evolution of enzymes for applied biocatalysis[J].Trends in Biotechnology,2003,21(11):474-478.
[43]STEPHENS D E,RUMBOLD K,PERMAUL K,et al.Directed evolution of the thermostable xylanase from Thermomyces lanuginosus[J].Journal of Biotechnology,2007,127(3):348-354.
[44]MCHUNU N P,SINGH S,PERMAUL K.Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli[J].Journal of Biotechnology,2009,141(1/2):26-30.
[45]WANG Q,ZHAO L L,SUN J Y,et al.Enhancing catalytic activity of a hybrid xylanase through single substitution of Leu to Pro near the active site[J].World Journal of Microbiology and Biotechnology,2012,28(3):929-935.
[46]XIA T,WANG Q.Directed evolution of Streptomyces lividans xylanase B toward enhanced thermal and alkaline pH stability[J].World Journal of Microbiology and Biotechnology,2009,25(1):93-100.
[47]MIYAZAKI K,TAKENOUCHI M,KONDO H,et al.Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution[J].The Journal of Biological Chemistry,2006,281(15):10236-10242.
[48]ZHANG Z G,YI Z L,PEI X Q,et al.Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis[J].Bioresource Technology,2010,101(23):9272-9278.
[49]CHEN Y L,TANG T Y,CHENG K J.Directed evolution to produce an alkalophilic variant from a Neo-callimastix patriciarum xylanase[J].Canadian Journal of Microbiology,2001,47(12):1088-1094.
[50]TREVIZANO L M,VENTORIN R Z,DE REZENDE S T,et al.Thermostability improvement of Orpinomyces sp.xylanase by directed evolution[J].Journal of Molecular Catalysis B:Enzymatic,2012,81:12-18.
[51]LEUNG D W,CHEN E,GOEDDEL D V.A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction[J].Technique,1989,1(1):11-15.
[52]CADWELL R C,JOYCE G F.Randomization of genes by PCR mutagenesis[J].Genome Research,1992,2(1):28-33.
[53]STEMMER W P C.DNA shuffling by random fragmentation and reassembly:in vitro recombination for molecular evolution[J].Proceedings of National A-cademy of Sciences of the United States of America,1994,91(22):10747-10751.
[54]STEMMER W P C.Rapid evolution of a protein in vitro by DNA shuffling[J].Nature,1994,370:389-391.
[55]謝晚彬,謝和芳.蛋白質(zhì)定向進化的研究技術(shù)及應用[J].中國生物工程雜志,2005,25(S1):16-18.
[56]方柏山,洪燕,夏啟容.酶體外定向進化(Ⅱ)文庫篩選的方法及其應用[J].華僑大學學報:自然科學版,2005,26(2):113-116.
[57]王楠,馬榮山.酶分子體外定向進化的研究進展[J].生物技術(shù)通報,2007(2):63-66.