朱偉平李中和綜述 史 偉審校
·腎臟病基礎·
鈉磷協同轉運蛋白與慢性腎臟病礦物質和骨異常
朱偉平1李中和1綜述 史 偉2審校
礦物質和骨異常(MBD)是慢性腎臟病(CKD)常見的并發(fā)癥。以往對CKD-MBD的研究主要集中在鈣離子代謝紊亂,并證實血鈣水平主要受甲狀旁腺激素(PTH)和1,25(OH)2D3的調控。近年研究發(fā)現CKD患者血清磷水平與血管鈣化、心血管死亡風險存在明顯相關性。無機磷參與細胞結構組成和許多重要的生物功能,在細胞中活躍地進行逆化學和電勢梯度跨細胞膜運輸。無機磷的轉運由鈉磷協同轉運蛋白(Npt)完成,位于細胞膜的Npt利用Na+濃度梯度所提供的自由能作為驅動力增加磷的攝入。目前至少已從哺乳動物細胞分離出三種Npt,成骨細胞和破骨細胞表面都有Npt的表達。Npt是體內無機磷的一種重要轉運蛋白,通過對Npt參與體內磷代謝調控機制的研究,可能為礦物質和骨代謝紊亂的治療帶來新的切入靶點。
慢性腎臟病 鈉磷協同轉運蛋白 礦物質和骨異常
隨著慢性腎臟?。–KD)的進展,腎小球濾過率降至30 ml/(min·1.73m2)后,腎小管對磷的重吸收減少至低限,磷的排泄不再增加,于是出現高磷血癥,并刺激甲狀旁腺細胞增生,甲狀旁腺激素(PTH)分泌增加,持續(xù)高水平的PTH增加破骨細胞活性,促進骨吸收,使破骨與成骨過程之間的平衡失調,導致礦物質和骨異常(CKD-MBD)。以往對CKD-MBD的研究主要集中在鈣離子代謝紊亂,近年研究發(fā)現CKD患者血清磷水平與血管鈣化、心血管死亡的風險存在明顯相關性,從而引發(fā)人們對磷代謝的關注。
正常飲食攝入的磷為1 000~1 200 mg/d,經腸道排泄約150 mg/d,其余主要通過尿液排出體外[1]。其實CKD患者早期已經存在磷酸鹽代謝紊亂,只是腎小球濾過率>60 ml/(min·1.73m2)時,磷的高負荷狀態(tài)往往容易被忽略,直至出現高磷血癥。而CKD晚期患者腎臟已喪失排泄功能,依賴于透析進行清除體內的磷酸鹽。然而遺憾的是,無論是血液透析或腹膜透析(前者清除約300 mg/d,后者清除約423 mg/d),都不能充分清除體內的無機磷[2,3]。已有體外試驗證實,胞外高水平的磷酸鹽可以刺激平滑肌細胞轉分化為成骨樣細胞,繼而出現鈣化。Yamamoto等[4]觀察到磷負荷可損害血管內皮功能,導致左心室質量增加。臨床橫斷面研究也證明透析患者的高磷血癥與血管鈣化密切相關[5]。最近一項涉及47個隊列研究共327 644例患者的薈萃分析發(fā)現,血清磷水平每升高1 mg/dl,死亡風險增加18%[6]。另一項對25 588例血液透析患者的前瞻性研究提示,血清磷水平3.6~5 mg/dl者心血管死亡風險較低,而血清磷水平超過7 mg/dl者心血管死亡風險最高[7]。因此,高磷血癥是血管鈣化、左心室肥厚和心血管死亡事件的危險因素。
無機磷參與細胞結構的組成和許多重要的生物功能,包括存儲和釋放能量的代謝,氧氣運送至外周組織,肌肉收縮,神經系統的功能,電解質的運輸和維持骨的完整性[8]。無機磷酸鹽在細胞中活躍地進行逆化學和電勢梯度跨細胞膜運輸。在哺乳動物細胞中,這個任務是由Npt完成,利用Na+濃度梯度所提供的自由能作為驅動力,增加磷的攝入。
Npt的表達 目前至少已從哺乳動物細胞分離出Npt-1、Npt-2、Npt-3三種Npt。Npt-1的基因位于染色體6p22,由465個氨基酸組成,最早是從兔子的腎皮質分離出來,主要表達于肝臟、腎臟和大腦[9]。Npt-2包括2a、2b和2c三種亞型[10]。Npt-2a在大鼠、人、負鼠和小鼠分別曾被命名為NaPi-2、NaPi-3、NaPi-4、NaPi-7,其基因位于染色體5q35,含640個氨基酸,主要表達于近端腎小管上皮細胞的頂膜,在大腦、軟骨細胞和破骨細胞中也有少量表達;Npt-2b的基因位于4號染色體,在非洲爪蟾亦稱為NaPi-5,含690個氨基酸,定位于腸上皮細胞的頂膜;Npt-2c的基因位于2號染色體,含601個氨基酸,主要在腎臟表達[11]。Npt-3蛋白最初是在1990年被O’Hara等[12]研究者作為長臂猿白血病病毒受體(GLVR1)在小鼠和人類中分離出來,而在大鼠中是以雙嗜性小鼠逆轉錄病毒的受體(Ram-1)分離出來。根據發(fā)現的這些病毒受體的功能特性,GLVR1和Ram-1分別被稱為Pit-1和Pit-2,其基因分別位于2、8號染色體,均含683個氨基酸,分布在細胞基底側膜,在組織中廣泛表達(如肝、肺、橫紋肌、心臟、腦和骨髓)[13]。Pit-1 mRNA在成年大鼠含有豐富的高度極化小腸和肺上皮細胞的組織中的表達最豐富,Pit-2 mRNA表達水平最高的是心臟,但具有細胞類型特異性的 Npt只在骨、腎和小腸中表達[14]。Pit-1和Pit-2約有60%的氨基酸序列相同,但它們與1型或2型Npt并無顯著的整體序列同源性[15]。Pit-1是由2890-bp的互補DNA編碼的蛋白質,與小鼠和人的Pit-1的序列同源性分別為97%和93%[15]。Pit的家庭成員還包括非哺乳動物,如釀酒酵母的Pho89、大腸桿菌的質子依賴性磷轉運體PiTA和PiTB、植物擬南芥的Pth2_1等[8,16,17]。
Npt的功能及調節(jié) Npt-1屬于溶質轉運蛋白家族17(SLC17)磷轉運蛋白家族,在腎臟介導近端腎小管上皮細胞頂膜Na+依賴的磷轉運,其功能受胰島素的調控,但對該蛋白的深入研究較少[18]。Npt-1表達可誘導非洲爪蟾卵母細胞的Cl-轉運,該作用可被Cl-通道抑制劑阻斷。在缺乏Cl-的情況下,有機陰離子酚紅,青霉素G和丙磺舒能誘導外向性的電流,而且此作用同樣能被Cl-通道抑制劑阻斷。說明Npt-1不僅是Cl-的一種新型離子通道,且對有機陰離子的轉移也起作用。這種在近端腎小管上皮細胞頂膜的陰離子通道對Cl-的運輸和生物異源性有機陰離子的排泄起重要作用[19,20]。研究發(fā)現Npt-1還參與大腦谷氨酸的攝?。?1],與Npt-2不同的是Npt-1表達不受飲食中磷含量和PTH的調節(jié),僅在細胞外存在高濃度的磷(>3 mmol/L)時才產生生電性離子轉運。
Npt-2屬于SLC34的磷轉運蛋白家族,主要轉運HPO2-4,在維持體內磷代謝平衡的過程中起著關鍵作用[22]。大腦表達的Npt-2a在中樞神經系統Pi穩(wěn)態(tài)調節(jié)中發(fā)揮作用。Npt-2b參與肝臟初級膽汁中磷的重吸收;在唾液腺,Npt-2b還參與唾液中磷的分泌。食物中的磷主要在小腸吸收,小腸上皮細胞頂端膜的Npt-2b通過鈉磷協同轉運作用將磷運輸至體內;而血循環(huán)中的磷主要由近端腎小管重吸收,并經腎臟形成尿液排出體外。腎小管上皮細胞刷狀緣膜頂端的Npt-2與Na+結合后發(fā)生構型改變,對磷酸鹽的親和力增強,使磷酸鹽隨Na+一起轉運入細胞內。腎臟通過調節(jié)尿磷重吸收保持體內磷平衡。由此可見,Npt-2a與Npt-2c是血漿磷水平和尿磷排泄的主要決定因素[21]。該載體受生理因素調控,例如限制磷的飲食和1,25(OH)2D3可使Npt-2a蛋白水平增加,而成纖維細胞生長因子23(FGF23)、PTH或高磷飲食可使Npt-2a蛋白水平下降[23,24]。FGF23正常為10~50 ng/L[25],是生理性的體液因子,能抑制近端腎小管刷狀緣膜上Npt-2a和Npt-2c型的表達,減少尿液中磷酸鹽重吸收,增加尿磷排泄。Moz等[26]動物實驗證明,低血磷可使大鼠近端腎小管Npt-2的mRNA表達增加,而PTH和FGF23則明顯抑制Npt-2的mRNA表達。FGF23轉基因小鼠中觀察到尿磷排泄增加,血磷降低,近端腎小管Npt-2a蛋白表達顯著減少。而FGF23基因敲除小鼠身上可見磷的最大轉運率增加,近端腎小管Npt-2a蛋白水平明顯升高[27]。有研究表明,FGF23不僅能抑制近端腎小管的Npt-2a蛋白,同時還可以抑制腸內Npt-2b水平,但此作用可能依賴于維生素D受體[28]。此外,1,25(OH)2D3可上調腸上皮細胞的磷轉運活性和Npt-2b蛋白的水平[23,29]。
哺乳動物的Npt-3是具有鈉磷協同轉運與逆轉錄病毒受體雙重功能的蛋白質,屬于SLC20的磷轉運蛋白家族[30],主要轉運H2PO-4。Pit-1和Pit-2都在極化的上皮細胞的基底外側膜上表達,能從間質液中吸收磷酸,以發(fā)揮正常的細胞功能,是幾種組織磷酸鹽運輸的基礎。堿性pH值和膦甲酸鈉(PFA)對Pit-1和Pit-2均有抑制作用。盡管Pit-1和Pit-2的基因啟動子已被克隆,但不同細胞類型的Pit蛋白的確切作用尚未明確,可以肯定的是,他們參與骨、主動脈平滑肌細胞、甲狀旁腺、腎和小腸的重要生理通路[14,15]。
Npt相關的疾病 除了無機磷外,Npt-1還能依賴膜內正電位轉運有機陰離子,包括阿司匹林、尿酸等。當Npt-1基因發(fā)生突變使氨基酸殘基中第138位精氨酸變?yōu)楸彼岷?,產生的蛋白將喪失轉運這些陰離子的功能。異源性表達和純化的人Npt-1攜帶的單核苷酸多態(tài)性變異使其尿酸轉運活性降低32%,痛風發(fā)生的風險增加[31,32]。Npt-2a基因敲除小鼠呈現出高磷酸鹽尿表型,其功能異??蓪е耎-連鎖低磷血癥(XLH)和常染色體顯性低血磷性佝僂病(ADHR),后者表現為高尿鈣,低血磷,骨痛,肌肉無力,生長發(fā)育遲緩,佝僂病和骨軟化。然而,目前尚未發(fā)現與 Npt-2a基因突變有關的人類疾?。?3]。Npt-2a基因缺失純合子小鼠的腎臟仍可保留30%的磷吸收功能,這部分功能可能與Npt-2c有關。Npt-2b在附睪表達異常可引起雄性小鼠不孕不育;Npt-2b還表達于肺泡Ⅱ型細胞,并證實該基因突變將引發(fā)肺微石癥[34]。另有研究稱Npt-2b功能障礙可能導致其他組織器官中形成微細結石,特別是含有磷酸鈣的微鈣化乳腺組織比無磷酸鹽成分者更多地呈現惡性傾向[35]。而Npt-2c基因的突變可導致高尿鈣性低血磷性佝僂?。?2]。Npt-3的成員之一Pit-1在發(fā)育中的長骨表達非常豐富,該基因在Wistar大鼠(TG)的過表達將影響鈣磷代謝,表現出低血鈣、高血磷、PTH水平升高及成骨細胞堿性磷酸酶活性降低,但不影響骨骼的礦化和發(fā)育[36]。
人體的骨組織中主要含有成骨細胞和破骨細胞。骨骼是一種需要不斷重塑的組織,骨重塑是由骨吸收和骨形成兩個過程共同協調完成,這是一個持續(xù)的生理過程,在任何的時間都有5%~25%的骨面在進行骨重塑[37]。骨重塑是破骨與成骨的偶聯形式,兩者保持著動態(tài)平衡,任何不平衡因素都會導致骨質和骨量的改變。破骨細胞是主要的骨吸收細胞,有許多不規(guī)則的皺褶緣呈波浪型接觸骨的表面,并經整合素結合到骨的表面,包圍吸附區(qū)的骨質,然后通過碳酸酐酶Ⅱ系統產生氫離子,胞質膜上的質子泵將胞質中的氫離子泵至破骨細胞與骨質之間的間隙中,降低局部的pH值,使羥磷灰石晶體溶解成無定型的磷酸鈣,并進一步釋放出鈣與無機磷,基質中的有機成分則被酸性蛋白水解酶分解[38,39](圖1)。當骨吸收減弱時,破骨細胞從吸收窩消失,成骨細胞則在骨面準備利用鈣與無機磷合成羥磷灰石,形成新骨。隨著成骨細胞在骨吸收窩的形成,骨重塑周期結束,骨質保持休眠狀態(tài),直到下一個周期。
無機磷是骨形成的關鍵。在成骨細胞中磷運輸主要是由Na+依賴性磷轉運蛋白完成的。目前在成骨細胞僅鑒別出 Npt-3[14]。Palmer等[40]研究表明Npt3參與軟骨細胞和成骨細胞的礦化和異位鈣化。另一項對培養(yǎng)未轉化的細胞系小鼠胚胎成骨細胞系(MC3T3-E1)向成骨細胞分化過程中Pit-1和Pit-2穩(wěn)態(tài)mRNA水平的研究發(fā)現,Pit-2 mRNA總是在較低水平表達,Pit-1 mRNA水平則在成骨細胞分化過程中伴隨著骨鈣素mRNA增加而增加[41,42]。此外,Pit-1 mRNA水平的增加也與培養(yǎng)的成骨細胞可觀察到礦化的時間有關,僅在適合成骨細胞分化的生長條件下觀察到Pit-1 mRNA表達水平隨著時間的推移而增加。證明成骨細胞分化的調節(jié)依賴于Npt的表達。Pit-1和Pit-2都參與前成骨細胞和成骨細胞的磷運輸,Pit-1介導的磷轉運與成骨細胞的分化有關,可作為成骨細胞成熟的標記[41]。Suzuki等[36]在Pit-1轉基因大鼠上觀察到Pit-1過表達影響大鼠骨和鈣磷的代謝,血清鈣離子濃度的下降與血清PTH水平增加有關,血清磷的變化與FGF23呈負相關,而1,25(OH)2D3并未受到Pit-1過度表達的影響;同時,TG大鼠顱蓋骨成骨細胞磷的吸收增強,伴堿性磷酸酶的活性顯著下降,鈣的沉積和膠原基質的鈣化正常,骨礦化和骨形成并不受影響。
圖1 破骨細胞的骨吸收[39]
破骨細胞是負責骨吸收的主要細胞,在骨吸收的過程中暴露于高濃度的無機磷環(huán)境,它們擁有特殊的磷運輸系統能夠處理骨吸收過程中釋放出的磷,限制磷攝入可減少體外破骨細胞介導的骨吸收[43]。Gupta等[13]應用大鼠的多克隆Npt-2抗體發(fā)現破骨細胞表達Npt-2a,這種蛋白質的分子量約95 kD,定位于非極化破骨細胞的離散囊泡。該研究的免疫熒光結果提示這種蛋白質在極化的破骨細胞中只分布在基底外側膜,并與Na/H泵共處于一個區(qū)域。后來證實破骨細胞Npt-2的cDNA序列與近端腎小管的相同,并不是其異構體。敲除Npt-2基因的純合子 (Npt2-/-)的小鼠展現出與年齡相關的獨特骨表型,表現為骨畸形、破骨細胞減少和低磷血癥[43]。此外,Khadeer等[44]通過RT-PCR分析在小鼠破骨細胞中發(fā)現,一個Npt家族成員Pit-1的表達分布在極化破骨細胞的基底外側膜,類似于破骨細胞中Npt2a的分布,且破骨細胞中Pit-1可能與腎臟中發(fā)現的相同。Ito等[45]在研究由核因子κB受體活化子配體(RANKL)誘導單核巨噬細胞(RAW264.7)分化而來的破骨細胞樣細胞時觀察到,在未分化的單核巨噬細胞中磷進入細胞是Na+依賴性的,加入RANKL后鈉磷轉運顯著增加;與中性pH值相比,pH值5.5時破骨細胞樣細胞Na+依賴性磷運輸系統的活性顯著增強,骨顆粒也顯著增加破骨細胞樣細胞的Na+依賴性磷轉運活性。但有趣的是,經免疫組化和 Western Blot檢測出這些Na+依賴性磷轉運體是Npt-3,而Npt-2a的表達是陰性的。無論是Npt-2a或是Npt-3,它們都有強大的Na+依賴性磷轉運特性,由此推測磷轉運的目的可能是為破骨細胞骨吸收提供所需的能量底物[43,45]。
綜上所述,Npt是體內無機磷的一種重要轉運蛋白,維持礦物質和骨代謝穩(wěn)定的成骨細胞和破骨細胞表面都有Npt表達并承擔無機磷轉運的任務。通過對Npt參與體內磷代謝調控機制的研究,可能為礦物質和骨代謝紊亂的治療帶來新的切入靶點。
1 Gonzalez-Parra E,Tu?ón J,Egido J,etal.Phosphate:a stealthier killer than previously thought?Cardiovasc Pathol,2012,21(5):372-381.
2 Uribarri J.Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake.Semin Dial,2007,20(4):295-301.
3 Hutchison AJ.Oral phosphate binders.Kidney Int,2009,75(9):906-914.
4 Yamamoto KT,Robinson-Cohen C,de Oliveira MC,et al.Dietary phosphorus is associated with greater left ventricular mass.Kidney Int,2013,83(4):707-714.
5 Toussaint ND,Pedagogos E,Tan SJ,et al.Phosphate in early chronic kidney disease:associations with clinical outcomes and a target to reduce cardiovascular risk.Nephrology(Carlton),2012,17(5):433-444.
6 Palmer SC,Hayen A,Macaskill P,et al.Serum levels of phosphorus,parathyroid hormone,and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease:a systematic review and meta-analysis.JAMA,2011,305(11):1119-1127.
7 Tentori F,Blayney MJ,Albert JM,et al.Mortality risk for dialysis patientswith different levels of serum calcium,phosphorus,and PTH:the Dialysis Outcomes and Practice Patterns Study(DOPPS).Am J Kidney Dis,2008,52(3):519-530.
8 Beck L,Leroy C,Salaün C,et al.Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity.JBiol Chem,2009,284(45):31363-31374.
9 Tenenhouse HS,Sabbagh Y.Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders.Pflugers Arch,2002,444(3):317-326.
10 Tenenhouse HS.Phosphate transport:molecular basis,regulation and pathophysiology.J Steroid Biochem Mol Biol,2007,103(3-5):572-577.
11 Miyamoto K,Segawa H,Ito M,et al.Physiological regulation of renal sodium-dependent phosphate cotransporters.Jpn J Physiol,2004,54(2):93-102.
12 O'Hara B,Johann SV,Klinger HP,et al.Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ,1990,1(3):119-127.
13 Gupta A,Guo XL,Alvarez UM,et al.Regulation of sodium-dependent phosphate transport in osteoclasts.J Clin Invest,1997,100(3):538-549.
14 Zoidis E,Ghirlanda-Keller C,Gosteli-Peter M,et al.Regulation of phosphate(Pi)transport and NaPi-III transporter(Pit-1)mRNA in rat osteoblasts.JEndocrinol,2004,181(3):531-540.
15 Tatsumi S,Segawa H,Morita K,etal.Molecular cloning and hormonal regulation of PiT-1,a sodium-dependent phosphate cotransporter from rat parathyroid glands.Endocrinology,1998,139(4):1692-1699.
16 B?ttger P,Pedersen L.Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life.BMC Biochem,2011,12:21.
17 Werner A,Kinne RK.Evolution of the Na-P(i)cotransport systems. Am JPhysiol Regul Integr Comp Physiol,2001,280(2):R301-R312.
18 Segawa H,Aranami F,Kaneko I,et al.The roles of Na/Pi-II transporters in phosphate metabolism.Bone,2009,45(Suppl 1):S2-S7.
19 Verri T,Markovich D,Perego C,et al.Cloning of a rabbit renal Na-Pi cotransporter,which is regulated by dietary phosphate.Am JPhysiol,1995,268(4 Pt2):F626-F633.
20 Busch AE,Schuster A,Waldegger S,etal.Expression of a renal type I sodium/phosphate transporter(NaPi-1)induces a conductance in Xenopus oocytes permeable for organic and inorganic anions.Proc Natl Acad Sci U SA,1996,93(11):5347-5351.
21 Murer H,Hernando N,Forster L,et al.Molecular mechanisms in proximal tubular and small intestinal phosphate reabsorption(plenary lecture).Mol Membr Biol,2001,18(1):3-11.
22 Virkki LV,Biber J,Murer H,et al.Phosphate transporters:a tale of two solute carrier families.Am J Physiol Renal Physiol,2007,293(3):F643-F654.
23 Tenenhouse HS.Regulation of phosphorus homeostasis by the type iia na/phosphate cotransporter.Annu Rev Nutr,2005,25:197-214.
24 Lanzano L,Lei T,Okamura K,et al.Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone.Am J Physiol Cell Physiol,2011,301(4):C850-C861.
25 Yamashita H,Yamashita T,Miyamoto M,etal.Fibroblastgrowth factor(FGF)-23 in patients with primary hyperparathyroidism.Eur J Endocrinol,2004,151(1):55-60.
26 Moz Y,Levi R,Lavi-Moshayoff V,et al.Calcineurin Abeta is central to the expression of the renal type IINa/Pi co-transporter gene and to the regulation of renal phosphate transport,JAm Soc Nephrol,2004,15(12):2972-2980.
27 Shimada T,Urakawa I,Yamazaki Y,et al.FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa.Biochem Biophys Res Commun,2004,314(2):409-414.
28 Miyamoto K,Ito M,Kuwahata M,etal.Inhibition of intestinal sodiumdependent inorganic phosphate transport by fibroblast growth factor 23.Ther Apher Dial,2005,9(4):331-335.
29 Segawa H,Yamanaka S,Ohno Y,et al.Correlation between hyperphosphatemia and type IINa-Pi cotransporter activity in klotho mice.Am JPhysiol Renal Physiol,2007,292(2):F769-F779.
30 Collins JF,Bai L,Ghishan FK.The SLC20 family of proteins:dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Arch,2004,447(5):647-652.
31 Urano W,Taniguchi A,Anzai N,et al.Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout.Ann Rheum Dis,2010,69(6):1232-1234.
32 Iharada M,Miyaji T,Fujimoto T,et al.Type 1 sodium-dependent phosphate transporter(SLC17A1 Protein)is a Cl(-)-dependenturate exporter.JBiol Chem,2010,285(34):26107-26113.
33 Jones A,Tzenova J,Frappier D,et al.Hereditary hypophosphatemic rickets with hypercalciuria is not caused by mutations in the Na/Pi cotransporter NPT2 gene.JAm Soc Nephrol,2001,12(3):507-514.
34 Huqun,Izumi S,Miyazawa H,et al.Mutations in the SLC34A2 gene are associated with pulmonary alveolarmicrolithiasis.Am JRespir Crit Care Med,2007,175(3):263-268.
35 Corut A,Senyigit A,Ugur SA,et al.Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicularmicrolithiasis.Am JHum Genet,2006,79(4):650-656.
36 Suzuki A,Ammann P,Nishiwaki-Yasuda K,etal.Effects of transgenic Pit-1 overexpression on calcium phosphate and bone metabolism.J Bone Miner Metab,2010,28(2):139-148.
37 Parfitt AM.Osteonal and hemi-osteonal remodeling:the spatial and temporal framework for signal traffic in adult human bone.J Cell Biochem,1994,55(3):273-286.
38 Yoshida S,Domon T,Wakita M.Studies of the clear zone of osteoclasts:immunohistological aspects of its form and distribution.Arch Histol Cytol,1989,52(5):513-520.
39 Blair HC,Athanasou NA.Recent advances in osteoclast biology and pathological bone resorption.Histol Histopathol,2004,19(1):189-199.
40 Palmer G,Zhao J,Bonjour J,et al.In vivo expression of transcripts encoding the Glvr-1 phosphate transporter/retrovirus receptor during bone development.Bone,1999,24(1):1-7.
41 Nielsen LB,Pedersen FS,Pedersen L.Expression of type III sodiumdependent phosphate transporters/retroviral receptors mRNAs during osteoblast differentiation.Bone,2001,28(2):160-166.
42 Choi JY,Lee BH,Song KB,et al.Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells.JCell Biochem,1996,61(4):609-618.
43 Gupta A,Tenenhouse HS,Hoag HM,etal.Identification of the type II Na(+)-Pi cotransporter(Npt2)in the osteoclast and the skeletal phenotype of Npt2-/-mice.Bone,2001,29(5):467-476.
44 Khadeer MA,Tang Z,Tenenhouse HS,et al.Na+-dependent phosphate transporters in the murine osteoclast:cellular distribution and protein interactions.Am J Physiol Cell Physiol,2003,284(6):C1633-C1644.
45 Ito M,Matsuka N,Izuka M,et al.Characterization of inorganic phosphate transport in osteoclast-like cells.Am JPhysiol Cell Physiol,2005,288(4):C921-C931.
Sodium-phosphate cotransporter proteins and chronic kidney disease-m ineral and bone disorders
ZHUWeiping1,LIZhonghe1,SHIWei21Division ofNephrology,the Fifth Affiliated Hospital of Sun Yat-Sen University,Zhuhai519000,China2Division ofNephrology,Guangdong General Hospital,Guangzhou 510030,China
Mineral and bone disorders(MBD)is a common complication of chronic kidney disease(CKD). Previous studies of CKD-MBD weremainly concentrated in calcium metabolism disorder,and have confirmed that the serum calcium levels of CKD patients were regulated by PTH and 1,25(OH)2VitD3.In recent years,it have been found that hyperphosphorus is obviously associated with vascular calcification and cardiovascular death risk in end stage renal disease patients.Inorganic phosphorus participates in the composition of cell structures and many important biological functions in the cells.It is actively transported in inverse electrochemicaland potential gradientacross the cellmembrane,and by sodium phosphorus cotransporter(Npt)which in the plasma membrane utilize the free energy provided by Na+concentration gradient as a driving force to increase the phosphorus intake.Now three types of Npt are isolated from themammalian cells at least.Npt is an important transport protein to inorganic phosphorus in the body and is also expressed in themembrane of osteoblast and osteoclast.Through the research of Npt involved in phosphatemetabolism regulatorymechanism,itmay bring a new target for the treatment of CKD-MBD.
chronic kidney disease sodium-phosphate cotransporter proteins mineral and bone disorders
2013-04-17
(本文編輯 心 平)
1中山大學附屬第五醫(yī)院腎臟內科(珠海,519000);2廣東省人民醫(yī)院腎內科