亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類條件不等式的控制證明與應(yīng)用

        2013-06-27 05:45:01石煥南張靜
        關(guān)鍵詞:凸性北京聯(lián)合大學(xué)張靜

        石煥南,張靜

        (1.北京聯(lián)合大學(xué)師范學(xué)院電氣信息系,北京 100011;2.北京聯(lián)合大學(xué)基礎(chǔ)部,北京 100101)

        一類條件不等式的控制證明與應(yīng)用

        石煥南1,張靜2

        (1.北京聯(lián)合大學(xué)師范學(xué)院電氣信息系,北京 100011;2.北京聯(lián)合大學(xué)基礎(chǔ)部,北京 100101)

        通過(guò)判斷相關(guān)函數(shù)的Schur凸性、Schur幾何凸性和Schur調(diào)和凸性,證明并推廣了一類條件不等式,并據(jù)此建立了某些單形不等式.

        Schur凸性;Schur調(diào)和凸性;Schur幾何凸性;條件不等式;單形

        DO I:10.3969/j.issn.1008-5513.2013.05.001

        1 定義和引理

        2 主要結(jié)果及其證明

        3 幾何應(yīng)用

        證明由定理3的(13)式可得證.

        致謝作者感謝張晗方教授給予本文的熱情幫助.

        [1]M arshall A W,Olkin I,A rnold B C.Inequalities:Theory of Ma jorization and Its App lication[M].2nd ed. New York:Sp ringer Press,2011.

        [2]王伯英.控制不等式基礎(chǔ)[M].北京:北京師范大學(xué)出版社,1990.

        [3]張小明.幾何凸函數(shù)[M].合肥:安徽大學(xué)出版社,2004.

        [4]Chu Yum ing,L¨u Yupei.The Schur harmonic convexity of the Ham y symmetric function and its app lications[J].Journal of Inequalities and Applications,2009,13:29-38.

        [5]石煥南.受控理論與解析不等式[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2012.

        [6]Chu Yum ing,Sun T ianchuan.The Schur harm onic convexity for a class of symm etric functions[J].Acta M athematica Scientia,2010,30B(5):1501-1506.

        [7]Chu Y M,Wang G D,Zhang X H.The Schur mu ltiplicative and harmonic convexities of the comp lete symmetric function[J].M athematische Nachrichten,2011,284(5/6):653-663.

        [8]Guan Kaizhong,Guan Ruke.Som e properties of a generalized Ham y symm etric function and its app lications[J].Journal of M athematical Analysis and App lications,2011,376(2):494-505.

        [9]ShiHuannan.Two Schur-convex functions related to Hadamard-type integral inequalities[J].Pub licationes M athem aticae Debrecen,2011,78(2):393-403.

        [11]Xia W eifeng,Chu Yum ing.The Schur convexity of G inimean values in the sense of harmonic mean[J]. A cta M athem atica Scien tia,2011,31B(3):1103-1112.

        [12]Yang Zhenhang.Schur harmonic convexity of Ginimeans[J].International Mathematical Forum,2011,6 (16):747-762.

        [13]Chu Yum ing,Xia Weifeng.Necessary and su f cient conditions for the Schur harmonic convexity of the Generalized M uirhead M ean[J].Proceed ings of A.Razm adze M athem atical Institu te,2010,152:19-27.

        [14]Wu Y ing,QiFeng.Schur-harmonic convexity for dif erences of somemeans[J].Analysis,2012,32(4):263-270.

        [15]Chu Yum ing,X iaWeifeng,Zhang Xiaohui.The Schur concavity,Schurmu ltip licative and harmonic convexities of the second dual form of the Ham y symm etric function w ith app lications[J].Jou rnal of M u ltivariate Analysis,2012,105(1):412-421.

        [16]X iaWeifeng,Chu Yum ing,Wang Gendi.Necessary and suf cient conditions for the Schur harmonic convexity or concavity of theextendedmean values[J].Revista De La Uni`on M atem′atica Argentina,2010,51(2):121-132.

        [17]夏衛(wèi)鋒,褚玉明.一類對(duì)稱函數(shù)的Schur凸性與應(yīng)用[J].數(shù)學(xué)進(jìn)展,2012,41(4):436-446.

        [18]邵志華.一類對(duì)稱函數(shù)的Schur-幾何凸性Schur-調(diào)和凸性[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2012,42(16):199-206.

        [19]匡繼昌.常用不等式[M].4版.濟(jì)南:山東科學(xué)技術(shù)出版社,2010.

        [20]楊學(xué)枝.數(shù)學(xué)奧林匹克不等式研究[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2009.

        [21]M itrinovi′c D S,Peˇcri′c J E,Volenec V.Recent Advances in Geometric Inequalities[M].Dord recht:K luwer Academ ic Pub lishers,1989.

        [22]石煥南.一個(gè)有理分式不等式的加細(xì)[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2006,22(2):256-262.

        [23]張晗方.幾何不等式導(dǎo)引[M].北京:中國(guó)科學(xué)文化出版社,2003.

        M a jorized p roof and app lications for a class of cond itional inequality

        Shi Huannan1,Zhang Jing2

        (1.Departm ent of E lectronic Inform ation,Teacher′s College of Beijing Union University,
        Beijing 100011,China;
        2.Basic Courses Department,Beijing Union University,Beijing 100101,China)

        To determ ine Schur convexity,Schur-geometric and harmonic convexities of the related function,a class of conditional inequality is p roved.As an application,several sim plex inequalities are obtained.

        Schu r-convexity,Schu r harm onic convexity,Schu r geom etric convexity,cond itional inequality, sim p lex

        O178

        A

        1008-5513(2013)05-0441-09

        2013-05-22.

        北京市屬高等學(xué)校人才強(qiáng)教計(jì)劃資助項(xiàng)目(PHR 201108407).

        石煥南(1948-),教授,研究方向:解析不等式.

        張靜(1975-),副教授,研究方向:解析不等式、優(yōu)化理論、數(shù)學(xué)模型.

        2010 MSC:26D 15

        猜你喜歡
        凸性北京聯(lián)合大學(xué)張靜
        讀圖
        臺(tái)灣現(xiàn)代文學(xué)發(fā)展的歷史輪廓
        ——評(píng)《中國(guó)現(xiàn)代文學(xué)三十年》臺(tái)灣文學(xué)部分
        Self—redemption in Desire—Analysis of Desire under the Elms
        趙堅(jiān)室內(nèi)設(shè)計(jì)作品
        專升本會(huì)計(jì)專業(yè)畢業(yè)論文存在的問(wèn)題及改進(jìn)建議——以北京聯(lián)合大學(xué)生物化學(xué)工程學(xué)院為例
        A Study of Current English Learning and Teaching for College Art Majors and a Brief Discussion of Art—based English Teaching Strategy
        三上悠亚亚洲精品一区| 久久久久久久无码高潮| 精选麻豆国产AV| 国产不卡在线免费视频| 全国一区二区三区女厕偷拍| 久久天堂精品一区二区三区四区| 亚洲第一最快av网站| 久久精品国产99久久久| 中文字幕日韩一区二区不卡| 国产亚洲av人片在线观看| 538亚洲欧美国产日韩在线精品| 日韩精品免费观看在线| 日本一区二区在线高清观看| 人人摸人人搞人人透| 少妇饥渴xxhd麻豆xxhd骆驼| 性色av一区二区三区四区久久| 亚洲国产中文字幕精品| 狠狠躁夜夜躁av网站中文字幕 | 山外人精品影院| 欧美丰满熟妇乱xxxxx图片| 在线a人片免费观看高清| 最好的99精品色视频大全在线 | 夜夜夜夜曰天天天天拍国产| 国产 字幕 制服 中文 在线| Y111111国产精品久久久 | 97久久超碰国产精品2021| 久久久久无码精品国| 国产精品一区二区夜色不卡| 婷婷四虎东京热无码群交双飞视频| 无码日韩精品一区二区三区免费 | 日韩在线视频专区九区| 中文字幕色偷偷人妻久久一区| 韩国三级在线观看久| 越南女子杂交内射bbwxz| 色婷婷精品综合久久狠狠| 午夜桃色视频在线观看| 欧美xxxxx在线观看| 久久av高潮av无码av喷吹| 制服无码在线第一页| 蜜桃视频在线在线观看| 国产又黄又硬又粗|