吳自明,譚雪明,陳慧珍,2,韓瑞才,石慶華,潘曉華
(1.江西農(nóng)業(yè)大學(xué) 作物生理生態(tài)與遺傳育種教育部重點實驗室 江西省作物生理生態(tài)與遺傳育種重點實驗室,江西 南昌 330045; 2.江西省萍鄉(xiāng)市農(nóng)業(yè)科學(xué)研究所,江西 萍鄉(xiāng) 337000)
鹽角草(Salicorniaeuropaea)又稱歐洲海蓬子,系藜科鹽角草屬,是一種葉片退化而莖肉質(zhì)化,不具有鹽腺和鹽囊泡,可以在1 mol·L-1NaCl下生存,一年生雙子葉草本鹽生植物,可作為無公害蔬菜、動物青飼料和生物能源物質(zhì)栽培應(yīng)用,在我國廣為分布,具有很強的經(jīng)濟價值和生態(tài)價值[1-6]。過去沿?;哪畾夂虻貐^(qū)曾把鹽角草作為油料作物通過海水灌溉種植[7-8],而今由于其生長在不毛之地的鹽堿地,無病蟲藥害,富含極高營養(yǎng)價值及保健功能,具有降低血液中膽固醇及減肥作用,成為餐桌上的有機和無公害海水蔬菜。據(jù)報道,墨西哥和厄立特里亞已在荒漠沿海地區(qū)大面積種植鹽角草[9],且歐洲國家最近啟動了鹽角草高產(chǎn)育種和栽培項目[10]。我國海岸線長,可種植鹽角草的海涂面積巨大,但迄今為止,在海邊灘涂推廣的面積極少。利用海水灌溉大面積種植鹽角草,對于促進海邊灘涂農(nóng)業(yè)生產(chǎn)具有重要的意義[11]。
1.1材料種植 選用RN生態(tài)型鹽角草為試驗材料,種子從以色列本古里安大學(xué)獲得,種植在可控溫室。溫度控制在20~30 ℃。光照時長用100 W標準燈補充光照時長至少15 h,防止短日照促進鹽角草開花。用20 L裝有珍珠巖介質(zhì)的籃筐放入充氣的海水溶液中培養(yǎng)鹽角草。分別設(shè)計3個鉬營養(yǎng)水平(0、3、6 μmol·L-1葉面噴施)和每周3 μmol·L-1鉬營養(yǎng)溶液水培,每2周換一次營養(yǎng)液,中間添加營養(yǎng)液以補充由于蒸騰或蒸發(fā)減少的營養(yǎng)液。每個鉬營養(yǎng)和N源小區(qū)處理重復(fù)3次。鹽角草種子50%海水澆灌在珍珠巖上,出苗后4周,逐漸增加鹽的濃度至海水濃度。苗數(shù)控制在1 000株·m-2,播種12周后,將鮮嫩的可食莖枝(菜用質(zhì)量)剪下稱量;之后每月收割1次,連續(xù)6次,計算單位面積累計的鮮質(zhì)量。
1.2營養(yǎng)液配制 按照Hoagland營養(yǎng)液配置方法[18],用海鹽配置33 g·L-1的海水溶液,內(nèi)含5 mmol·L-1硝態(tài)氮或5 mmol·L-1的銨態(tài)氮作為N源,無鉬素營養(yǎng)(表1),兩種營養(yǎng)液不添加鉬素營養(yǎng)的為對照。為減少NH4+的硝化作用,營養(yǎng)液中加入0.09 μmol·L-1雙氰胺(Sigma Chemicals,D-8275)[19]。
表1 兩種N素形態(tài)和NO3--N)營養(yǎng)液的配制
1.3葉綠素及胡蘿卜色素測定 采用80%的丙酮提取色素,30 mg肉質(zhì)莖研磨勻漿,然后在7 000 r·min-1下離心10 min,用紫外可見分光光度計(Beckman DU800)測定663、645和470 nm下的吸光值,按Lichtenthaler和Wellburn[20]的方法,測定和計算單位鮮質(zhì)量葉綠素(Chl)和β-胡蘿卜素(β-Car)的含量。葉綠素a濃度Ca=12.21A663-2.81A646;葉綠素b濃度Cb=20.13A646-5.03A663;葉黃素和類胡蘿卜素濃度Cx+c=(1 000A470-3.27Ca-104Cb)/229。
1.4硝酸還原酶活性測定 硝酸還原酶活性測定按照Ventura的方法[21],第1次收割地上莖后4周,在噴施鉬素和更換鉬素營養(yǎng)液后,次日09:00-11:00收集莖的頂部(約2 cm長),稱量,按照1∶20(W∶V)比率浸入加有0.1 mol·L-1KNO3和0.1%異丙醇的50 mmol·L-1磷酸鉀緩沖液中,泵真空,使莖充分浸潤在溶液中。NH4+培養(yǎng)的鹽角草NR活性也是在不含0.1 mol·L-1KNO3-反應(yīng)混合液中測定。30 ℃暗反應(yīng)30 min,消除起始樣品中亞硝酸鹽。最后,按照1∶1(V∶V)加入3 mmol·L-1HCl 溶解1%的磺胺和0.02%N-1-萘基乙二胺,540 nm分光光度計讀數(shù)。通過計算反應(yīng)液酶催化產(chǎn)生的亞硝態(tài)氮(NO2-)總量就可得出硝酸還原酶活性。
1.5黃嘌呤脫氫酶活性及酰脲類物質(zhì)測定 第1次收割地上莖后5周,分別收集根和莖的頂部(約2 cm長),稱量,液氮速凍超低溫貯藏用于XDH活性及Ureides測定。
XDH活性測定采用提取液分別按照1∶2(V∶V)和1∶6的比例,研磨根系和肉質(zhì)莖蛋白,15 000 r·min-1離心,取上清液,蛋白的定量參照Bradford的方法[22],用Bio-Rad試劑微量分析和結(jié)晶牛血清蛋白做標準曲線。XDH活性分析,采用非變性PAGE膠電泳分離,與底物反應(yīng),產(chǎn)物顯色的方法具體參照Brychlova等[23]的方法。XDH與底物反應(yīng)顯色條帶相對強度通過Bio-Rad Quantity One Version 4.5軟件估計。
酰脲類物質(zhì)測定采用80%的乙醇按照1∶4(V∶V)的比例,研磨提取Ureides,尿囊素和尿囊酸的具體測定方法分別參照Vogels等[24]的方法。
1.6數(shù)據(jù)分析 數(shù)據(jù)處理利用DPS和Excel軟件,用t測驗對同一因素的處理與對照間差異進行顯著性檢驗。
圖1 不同氮素形態(tài)營養(yǎng)液和鉬素水平培養(yǎng)的鹽角草色素含量Fig.1 Pigments content of Salicornia europaea under different nitrogen sourece and different molybodate level
圖2 鉬素水平對和NH4+-N營養(yǎng)液培養(yǎng)的鹽角草硝酸還原酶活性的影響
圖3 不同鉬素水平對和NH4+-N營養(yǎng)液培養(yǎng)的鹽角草肉質(zhì)莖黃嘌呤脫氫酶活性的影響Fig.3 Effects of different molybdate level on XDH activity of Salicornia europaea in
圖4 鉬素水平對和營養(yǎng)液培養(yǎng)的鹽角草肉質(zhì)莖尿囊素和尿囊酸含量的影響Fig.4 Effects of molybdate application on allantion and allantoate content of Salicornia europaea in NO3--N and NH4+-N solution
圖5 不同氮素形態(tài)和鉬素水平對鹽角草生物量的影響Fig.5 Effects of molybdate application on yield of Salicornia europaea in NO3--N and NH4+-N solution
[1] Glenn E P.SalicorniabigeloviiTorr:A seawater-irrigated forage for goats[J].Animal Feed Science Technology,1992,40:21-30.
[2] Glenn E P,Brown J J,O’Leary J W.Irrigating crops with seawater[J].Scientific American,1998,279:76-81.
[3] 張莉.全海水灌溉的作物——海蓬子[J].廣西熱帶農(nóng)業(yè),2001(4):27-35.
[4] 張頌培.鹽生油料植物海蓬子的開發(fā)利用[J].北京農(nóng)業(yè)科學(xué),2001(6):28-29.
[5] 李銀芳,夏訓(xùn)誠,劉兆松,等.鹽角草種子的油脂成分與營養(yǎng)評價[J].干旱區(qū)研究,2007,24(1):34-36.
[6] 周泉澄,華春,張玉飛,等.海水對畢氏海蓬子種子萌發(fā)及幼苗生長的影響[J].南京曉莊學(xué)院學(xué)報,2006,8(6):48-52.
[7] Lu Z,Hodges R M,Mota-Urbina C J,etal.Salicorniabigelovii(Chenopodiaceae)-a seawater irrigated crop with versatile commercial products[C].Atlanta,GA:The 5th New Crops Symposium,2001.
[8] Eganathan P S R,Subramanian H M,Latha R,etal.Oil analysis in seeds ofSalicorniabrachiata[J].Crop Production,2006,23:177-179.
[9] Lu Z,Hodges R M,Mota-Urbina C J,etal.Nutrient constituents of salicornia (SalicorniabigeloviiTorr.) A seawater-irrigated new green vegetable[J].Hortscience,2001,36:484.
[10] Zerai D B,Glenn E P,Chatervedi R,etal.Potential for the improvement ofSalicorniabigeloviithrough selective breeding[J].Ecological Engineering,2010,36:730-739.
[11] 趙惠明.鹽生植物鹽角草的資源特點及開發(fā)利用[J].科技通報,2004,20(2):167-171.
[12] Kaiser B N.The role of molybdenum in agricultural plant production[J].Annals of Botany,2005,96(5):745-754.
[13] Kulathilake A I,Chatt A.Determination of molybdenum in sea and estuarine water with-naphthoin oxime and neutron activation[J].Analytical Chemistry,1980,52,828-833.
[14] Albasel N,Pratt P F.Guidelines for molybdenum in irrigation waters[J].Journal of Environmental Quality,1989,18:259-264.
[15] Howarth R W,Marino R,Cole J J.Nitrogen fixation in freshwater,estuarine,and marine ecosystems.2.Biogeochemical controls[J].Limnology and Oceanography,1988,33:688-701.
[16] Sagi M,Savidov N A,L’vov N P,etal.Nitrate reductase and molybdenum cofactor in annual ryegrass as affected by salinity and nitrogen source[J].Physiol ogia Plantarum,1997,99:546-553.
[17] Sagi M,Omarov R T,Lips S H.The Mo-hydroxylases xanthine dehydrogenaseand aldehyde oxidase in ryegrass as affected by nitrogen and salinity[J].Plant Science,1998,135:125-135.
[18] Hoagland D R,Arnon D I.The Water Culture Method for Growing Plants without Soil[M].California:College of Agriculture,Universigy of California,1950:1-32.
[19] Cataldo D A,Haroon M,Schrader L E,etal.Rapid colorimetric determination of nitrate in the plant tissue by nitration of salicylic-acid[J].Communications in Soil Science and Plant Analysis,1975,6:71-80.
[20] Lichtenthaler H K,Wellburn A R.Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J].Biochemical Society Transactions,1983,11(5):591-592.
[21] Ventura Y,Wuddineh W A,Ephrath Y,etal.Molybdenum as an essential element for improving total yield in seawater-grownSalicorniaeuropaeaL.[J].Scientia Horticulture,2010,126:395-401.
[22] Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72:248-254.
[23] Brychkova G,Alikulov Z,Fluhr R,etal.A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in theAtxdh1Arabidopsismutant[J].Plant Journal,2008,54:496-509.
[24] Vogels G D,van der Drift C.Differential analyzes of glyoxylate derivatives[J].Analytical Biochemistry,1970,33:143-157.
[25] 趙可夫,范海.鹽生植物及其對鹽漬生境的適應(yīng)生理[M].北京:科學(xué)出版社,2005:111-114.
[26] Lawlor D W.Carbon and nitrogen assimilation in relation to yield:Mechanisms are the key to understanding production systems[J].Journal of Experimental Botany,2002,53:773-787.
[27] 王忠.植物生理學(xué)[M].北京:中國農(nóng)業(yè)出版社,1999.
[28] Buchanan-Wollaston V.The molecular biology of leaf senescence[J].Journal of Experimental Botany 1997,48:181-199.
[29] Gepstein S.Leaf senescence-not just a‘wear and tear’ phenomenon[J].Genome Biology,2004,5:212.
[30] Zrenner R,Stitt M,Sonnewald U,etal.Pyrimidine and purine biosynthesis and degradation in plants[J].Annual Review of Plant Biology,2006,57:805-836.
[31] Omarov R T,Sagi M,Lips S H.Regulation of aldehyde oxidase and nitrate reductase in roots of barley (HordeumvulgareL.) by nitrogen source and salinity[J].Journal of Experimental Botany,1998,49:897-902.