【關(guān)鍵詞】 小學(xué)數(shù)學(xué)自主探究
主導(dǎo)
【文獻(xiàn)編碼】 doi:10.3969/j.issn.0450-
9889(A).2011.04.011
新課程特別強(qiáng)調(diào)要讓學(xué)生在數(shù)學(xué)課堂上開展自主探究。縱觀目前的一些小學(xué)數(shù)學(xué)課堂,學(xué)生的自主探究存在“放任自流”“華而不實(shí)”的現(xiàn)象。教師始終是學(xué)生學(xué)習(xí)活動(dòng)的組織者和引導(dǎo)者,因此,為了讓學(xué)生的自主探究更有效,教師要積極發(fā)揮“導(dǎo)”的作用。
一、 自主探究之前要注重內(nèi)容引導(dǎo)
目前,課堂上學(xué)生的自主探究活動(dòng)停留于表面的重要原因是學(xué)生對(duì)要開展的自主探究活動(dòng)的內(nèi)容和步驟不清楚。因此,探究之前讓學(xué)生明確自主探究的內(nèi)容和步驟很重要。教學(xué)中,我們可用“探究指南”來引導(dǎo)學(xué)生開展有效地探究。例如,在《圓的周長(zhǎng)》一課中,我是這樣設(shè)計(jì)“探究指南”的:
①想一想:怎樣利用繩子、直尺、軟尺等測(cè)量出圓片的周長(zhǎng)?與同桌交流。
②做一做:用自己想出來的方法測(cè)一測(cè)學(xué)具袋里的三個(gè)圓片的周長(zhǎng),并做好記錄。
③議一議:圓的周長(zhǎng)和什么有關(guān)系?有沒有計(jì)算公式?
④驗(yàn)一驗(yàn):同桌交換圓片,利用自己剛才的猜測(cè)算一算周長(zhǎng),從而驗(yàn)證猜測(cè)是否正確。
在以上“探究指南”中,“想一想、做一做、議一議、驗(yàn)一驗(yàn)”不僅讓學(xué)生明白了自主探究的內(nèi)容,而且讓學(xué)生明確了開展自主探究的步驟,有效地引導(dǎo)學(xué)生在接下來的學(xué)習(xí)中去自主探究圓的周長(zhǎng)公式。
二、 自主探究時(shí)要注重方法指導(dǎo)
由于小學(xué)生的年齡還比較小,他們的認(rèn)知水平和思維能力都還比較低,因此,課堂上我們給學(xué)生留足了探究的時(shí)間和空間后,在學(xué)生進(jìn)行自主探究時(shí)還要注重對(duì)學(xué)生探究方法的指導(dǎo),這樣才能讓他們對(duì)探究的過程和結(jié)果進(jìn)行內(nèi)化。 例如,在教學(xué)《周長(zhǎng)的認(rèn)識(shí)》一課時(shí),我給學(xué)生創(chuàng)設(shè)了這樣一個(gè)探究情境:“小朋友們,三只小螞蟻圍繞以下圖形邊緣爬(課件出示三個(gè)圖形,如下),爬完以后它們都說是自己爬的圖形周長(zhǎng)最長(zhǎng),你們能當(dāng)當(dāng)裁判嗎?”
生1:我想可以用尺子量出三個(gè)圖形每條邊的長(zhǎng)度,然后加起來,比一比就行了。
師:很好,你能上來選擇一個(gè)圖形演示一下你的方法嗎?
生1:(生邊演示邊說)我選擇三角形來說一說吧。我用尺子量出三角形三條邊的長(zhǎng)度,然后加起來,就是它的周長(zhǎng)。其他圖形也可以用同樣的方法。
師:小朋友們,你們聽明白他的意思了嗎?誰來說一說?
生2:他的意思就是把圖形每條邊的長(zhǎng)度先量出來再相加就可以了。我還有一個(gè)建議,就是量好以后,我們要及時(shí)記下來,這樣才不會(huì)忘記。
師:你真細(xì)心。是的,這三個(gè)圖形的邊都是直的,它們的周長(zhǎng)我們只要把圖形各邊所有的長(zhǎng)度加起就可以了。
接下來,學(xué)生開展了自主探究活動(dòng),在他們自主探究的過程中我參與到他們的學(xué)習(xí)中,對(duì)有困難的學(xué)生進(jìn)行了指導(dǎo),收到了良好的教學(xué)效果。
以上教學(xué)片斷中,我創(chuàng)設(shè)比較三個(gè)圖形的周長(zhǎng)這一探究情境,誘發(fā)了學(xué)生的好奇心,提出了探究的主題。在學(xué)生開展探究活動(dòng)時(shí),對(duì)探究的方法進(jìn)行了有效指導(dǎo),這樣,學(xué)生的自主探究活動(dòng)才能開展得井然有序,培養(yǎng)了學(xué)生進(jìn)行探究性學(xué)習(xí)的能力。
三、 自主探究之后要注重梳理推導(dǎo)
小學(xué)生的抽象概括能力較差,當(dāng)學(xué)生進(jìn)行自主探究得出相應(yīng)的結(jié)論以后,教師要引導(dǎo)學(xué)生對(duì)相關(guān)的探究過程和探究結(jié)論進(jìn)行梳理,這樣學(xué)生才能對(duì)所學(xué)的知識(shí)進(jìn)行回顧、反思、總結(jié)和提煉。例如,學(xué)生經(jīng)過自主探究得出“商不變性質(zhì)”以后,我通過這樣一組判斷題讓學(xué)生對(duì)所探究的知識(shí)進(jìn)行“梳導(dǎo)”。
①25÷5=(25×2)÷(5×2)
②48÷6=(48÷3)÷(6÷3)
③32÷7=(32÷3)÷(7÷3)
前面兩道題學(xué)生判斷起來很簡(jiǎn)單,因?yàn)槎际窃趯W(xué)生的已有認(rèn)知范圍以內(nèi)。但是,對(duì)于32÷7=(32÷3)÷(7÷3)這道題,學(xué)生卻產(chǎn)生了意見上的分歧。
生1:我覺得這道題是錯(cuò)的,因?yàn)?2÷3和7÷3是除不盡的,除都除不盡,怎么可能對(duì)呢?
生2:那也不能這么認(rèn)為,因?yàn)?2÷7也是除不盡的。
生3:我覺得應(yīng)該是對(duì)的,這題也符合商不變性質(zhì)呀。題目中的被除數(shù)32和除數(shù)7都同時(shí)除以3,它的商應(yīng)該是不變的。
生4:我也覺得是對(duì)的,這和除得盡除不盡沒有關(guān)系。
……
此時(shí),同學(xué)們開展了爭(zhēng)論,這也是教師進(jìn)行提煉的最佳時(shí)機(jī),應(yīng)該及時(shí)發(fā)揮“梳導(dǎo)”的作用。課堂上,我是這樣引導(dǎo)學(xué)生進(jìn)行梳理的:只要是“被除數(shù)和除數(shù)同時(shí)縮小相同的倍數(shù)”,那么商就是不變的,至于與能不能除盡是沒有關(guān)系的。這樣,學(xué)生對(duì)商不變性質(zhì)的本質(zhì)內(nèi)涵就有了更深刻的認(rèn)識(shí)。
(責(zé)編林劍)