亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于MaxEnt模型預(yù)測(cè)雪松疫霉在中國(guó)的潛在地理分布

        2025-08-09 00:00:00張曉瑞焦彬彬林司曦談家金戴婷婷皇甫思融
        關(guān)鍵詞:適生區(qū)預(yù)測(cè)因子

        中圖分類號(hào):S791.21 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2025)07-0091-13

        Predicting potential geographic distribution of Phytophthora lateralis in China using MaxEnt model

        ZHANG Xiaorui1, JIAO Binbin,LIN Sixi1,TANJiajin1,DAI Tingting',HUANGFUSirong

        1.a.Co-InnovationCenterfortheustaableForestryinouthna;bchooloforestryandGrassand,jgrtry University,Nanjingoo37,Jiangsu,China;2.TechnologyCenterofnimal,PlantandFoodIspectionadQuaratine, Shanghai Customs, Shanghai 201210, China)

        Abstract:【Objective】Inorder tofurthergrasptheexpansionscopeanddegreeofdamageofP.lateralis inChinaand providea theoreticalbasis,epredictedandnaledtepotentialdistributionofPytophtoralateralisinChina,elucidateditsaicsn thepast,urrentandfuture(3sads)eviontsandinvestigatedtheifueceofevirometalfactorsoitsotetial distribution.【Method】Firstly,a global sample distribution of 56 data points on the P. lateralis was obtained using the R language and ArcGISscreening.SecondlybasedonthePearson’soelationtest,tereeingprocsswasompletedtoidentify9evioetal factorsrequired formodelling.Then,theMaxEnt model wascalled topredictthe distributionof P. lateralisand theArcGIS softwarewas usedtosimulatetebiatsoitiinaFnalltomanteviometalactorsdeoldngsoftebiatses basedontheknifecutmetod,ndtheeliabilityofthemodelrsultswasassessdusingthesbjects’joharacteristicue(AUC). 【Result】1)The areaundertheROCcurve (AUC)ofthe MaxEnt model predictions was foundtobegreaterthan 0.90in alcases; 2)The most significant environmental factors influencing the distribution of suitable areas for P. lateralisare seasonal variations in temperature and precipitation, with the most notable being SP4,SP26,Bio 6,Biol2 and Bio17.And P. lateralis is suitable to grow in the environment where SP4 is 4.0%-6.1% and 6.9%68% ,SP26is 4.0%6-9.3% ,Bio6is ,Biol2is higher than 937mm ,and theBio17ishigher than 56mm :3)Theresults of themodel predictions indicatethat the highand medium fertile areasof P. lateralisin China are primarilyconcentrated in central, southern and eastern China, with a total area of 283.95×104km2 .In the future,under different climate scenarios, P. lateralis suitable area is expected toexpand toencompassChina’s tropical,subtropicalandwarm temperatezones. Theareafsitableabitatfoitipedictedtoexpadihegsteaofeitableabiatpedicteduderth245ate scenario for the 207Os.The current centre of mass of the P. lateralisfertileareais located in Cuoqin County,Ali Prefecture,Xizang autonomousregion,China.HoweverthereisatendencyfortecentrefmassofitsfertileareatomigratetojunctionofHunan Hubei,GuizhouandChongingprovincesinfuture.【Conclusion】TheMaxEntmodeloffrsanacuraterefectionofthedistriution characteristicsof P. lateralis inChina.Thespecies’suitableareais mainlydistributedsouthof theYangtzeRiver,and temperature and precipitationretemaiimitigenvironmentalfctorsafectingitsgrowthiCina.Itianticipatedtatfutureclimatewarngwil resultnalterationstotehabitatofPlateralis,withanexpansionofitsrangetowardsig-latitudeandhigh-altitudeareas.

        Keywords:Phytophthoralateralis;MaxEntmodel; fitnessanalysis;invasionrisk

        雪松疫霉Phytophthoralateralis作為腐霉科Pythiaceae疫霉屬Phytophthora檢疫性的土傳病原菌,主要危害雪松Cedrusdeodara[、花旗松Pseudotsuga menziesil2]、日本扁柏Chamaecyparisobtusa[3]、獼猴桃屬Actinidia spp.4等植物。雪松疫霉于1923年首次于美國(guó)華盛頓被發(fā)現(xiàn),嚴(yán)重威脅著森林生態(tài)安全,且對(duì)當(dāng)?shù)剞r(nóng)林經(jīng)濟(jì)造成巨大損失[5。隨后該病原菌又相繼侵入法國(guó)、荷蘭、加拿大、愛(ài)爾蘭、英國(guó)、美國(guó)、新西蘭、中國(guó)臺(tái)灣等地區(qū)[6-7]。由于該病原菌致病性強(qiáng),目前還沒(méi)有找到根除的措施,為防止其對(duì)農(nóng)林業(yè)、生態(tài)環(huán)境造成重大威脅,歐盟國(guó)家施行禁止引進(jìn)扁柏、弼猴桃、雪松等寄主植物的管理?xiàng)l例。隨著現(xiàn)代運(yùn)輸業(yè)的發(fā)展、國(guó)際貿(mào)易的加強(qiáng)以及我國(guó)在城市綠化過(guò)程中對(duì)苗木的需求量增多,為抑制該病原菌對(duì)我國(guó)林木經(jīng)濟(jì)的危害,該病菌于2007年被列入《進(jìn)境植物檢疫性有害生物名錄》[]。2009 年,EPPO又將雪松疫霉列入A2名單并建議各國(guó)將其作為檢疫性有害生物病原菌進(jìn)行管理[。為降低雪松疫霉在中國(guó)入侵和傳播、危害的風(fēng)險(xiǎn),本研究通過(guò)MaxEnt模型預(yù)測(cè)雪松疫霉在中國(guó)的潛在適生區(qū),并確定影響其分布的環(huán)境因素,對(duì)雪松疫霉病原菌的管理和預(yù)防提供理論基礎(chǔ)。

        生態(tài)位模型(ENM)是預(yù)測(cè)生物的潛在適生區(qū)分布、棲息地適宜性及傳播途徑的有力工具[。目前,相較于已經(jīng)建立的Climex模型[o]、Bioclim模型[]、Garp模型[12],MaxEnt模型因其應(yīng)用范圍廣、預(yù)測(cè)精度高、預(yù)測(cè)能力好等優(yōu)點(diǎn),被廣泛應(yīng)用于物種潛在適生區(qū)的預(yù)測(cè),已在預(yù)測(cè)銀杏Ginkgo biloba[13]、川甘槭Aceryui[14]、多花黑麥草Loliummultiflorum[15]等物種的潛在適生區(qū)中得到應(yīng)用。

        本研究構(gòu)建MaxEnt模型預(yù)測(cè)雪松疫霉的潛在適生區(qū),不僅考慮了過(guò)去、當(dāng)前環(huán)境因子的影響,還探討了未來(lái)社會(huì)經(jīng)濟(jì)變化和政策干預(yù)下的溫室氣體排放情景[1]。情景模式相互比較項(xiàng)目是聯(lián)合國(guó)政府間氣候變化專門(mén)委員會(huì)(IPCC)為編制第6次評(píng)估報(bào)告(AR6)而發(fā)布的未來(lái)社會(huì)發(fā)展新路徑,與RCP相比,SSP的起點(diǎn)更高,其預(yù)測(cè)情景更平滑、更接近真實(shí)值[1]。本研究選擇了高強(qiáng)迫情景、中強(qiáng)迫情景和低強(qiáng)迫情景路線,預(yù)測(cè)雪松疫霉當(dāng)前、2050年代和2070年代的潛在適生區(qū)域:1)提出了物種分布格局與環(huán)境因子之間的關(guān)系模型;2)根據(jù)全球氣候變化情景(當(dāng)前、2030s和2070s),預(yù)測(cè)了雪松疫霉的適宜生境面積;3)分析了3種不同情景(當(dāng)前、2030s和2070s)下雪松疫霉在中國(guó)的適生區(qū)質(zhì)心的分布的變化,為雪松疫霉的防治、監(jiān)測(cè)提供理論依據(jù)。

        1 材料與方法

        1.1 物種分布數(shù)據(jù)來(lái)源及處理

        通過(guò)查詢?nèi)蛏锒鄻有孕畔⒔粨Q平臺(tái)(Global BiodiversityInformationFacility,GBIF,https://www.gbif.org/)[18]、CABI 數(shù)字(https://www.cabidigitallibrary.org/topics)、EPPO等數(shù)據(jù)庫(kù)并結(jié)合查閱相關(guān)研究文獻(xiàn)等方式,獲取74個(gè)雪松疫霉的分布數(shù)據(jù),主要分布在長(zhǎng)江流域以南地區(qū)。為刪除錯(cuò)誤及重復(fù)分布點(diǎn),并且利用ArcGIS軟件設(shè)置緩沖區(qū)(距離 lt;5km ),排除距離過(guò)近的分布點(diǎn)。

        1.2 環(huán)境因子

        此次研究選用49個(gè)環(huán)境因子作為建模變量,包括19個(gè)氣候因子、3個(gè)氣象因子和27個(gè)土壤因子(表1)。歷史、當(dāng)前(1971—2000年)和未來(lái)(2030s、2070s)的氣候因子數(shù)據(jù)源于世界氣候數(shù)據(jù)庫(kù)(http://www.worldclim.org),由溫度和降水3部分組成;在世界土壤數(shù)據(jù)庫(kù)(http://www.fao.org/faostat/en/#data.)下載土壤因子和地形因子數(shù)據(jù)[19],用ArcGis軟件提取地形和土壤因子,空間分辨率為 2.5 ,由于沒(méi)有過(guò)去及未來(lái)的土壤、地形因子,所以用提取的地形和土壤數(shù)據(jù)補(bǔ)充。研究中使用的未來(lái)的氣象因子源于國(guó)家(北京)氣候中心氣候系統(tǒng)模式的中等分辨率氣候系統(tǒng)模式下的SSP5-8.5、SSP2-4.5和SSP1-2.6情景模式[20]。SSP1-2.6為可持續(xù)發(fā)展路線,即低能耗的綠色發(fā)展路線;SSP2-4.5為適度發(fā)展路線,代表未來(lái)社會(huì)經(jīng)濟(jì)發(fā)展模式,即沿用現(xiàn)有的社會(huì)經(jīng)濟(jì)發(fā)展模式;SSP5-8.5代表高輻射強(qiáng)度的氣候變化[21]。

        本研究涉及的矢量地圖審圖號(hào)為GS(2022)1873號(hào),下載于自然資源部官網(wǎng)(http://www.mnrgov.cn/)。為避免部分環(huán)境因子的共線性而導(dǎo)致模型預(yù)測(cè)結(jié)果過(guò)度擬合,本研究進(jìn)行了皮爾遜相關(guān)性分析,篩選 Plt;0.05 且相關(guān)系數(shù) |r|?0.85 的環(huán)境因子,兩個(gè)環(huán)境變量的相關(guān)系數(shù)大于0.85時(shí)剔除貢獻(xiàn)率較低的相關(guān)環(huán)境變量[22]。

        1.3 模型的構(gòu)建與評(píng)價(jià)

        將篩選后的雪松疫霉分布數(shù)據(jù)和環(huán)境變量導(dǎo)入MaxEnt3.4.4軟件,預(yù)測(cè)不同情景條件下雪松疫霉的潛在適生區(qū)。為提高模型的準(zhǔn)確度,驗(yàn)證數(shù)據(jù)比例設(shè)置為 25% ,訓(xùn)練數(shù)據(jù)設(shè)置為 75% ,并通過(guò)10次自舉法抽樣重復(fù)迭代,每次最大迭代次數(shù)為10000,將平均適生區(qū)的適宜性指數(shù)作為最終模型結(jié)果[23];以Jackknife評(píng)估評(píng)價(jià)環(huán)境因子權(quán)重確定主導(dǎo)環(huán)境因子。

        利用Rstudio軟件的kuenm包對(duì)正則化倍數(shù)與特征組合進(jìn)行參數(shù)優(yōu)化。具體而言,RM設(shè)置范圍包括兩部分: 0.5~6.0 (步長(zhǎng)為0.5)和 1.1~2.9 (步長(zhǎng)為0.1),得到28個(gè)候選RM組合,即0.5、1.0、1.5、2.0,2.5,3,3,5,4,4.5,5,5.5,6,1.1,1.2,1.3,1.4, 1.6、1.7、1.8、1.9、2.1、2.2、2.3、2.4、2.6、2.7、2.8、2.9。FC包含31種組合,即:1、q、p、t、h、lq、lp、lt、lh、qp、qt、qh、pt、ph、th、lqp、lqt、lqh、lpt、lph、lth、qpt、qph、qth、pth、lqpt、lqph、lqth、lpth、qpth、lqpth。運(yùn)用kuenm包對(duì)上述868種參數(shù)組合進(jìn)行測(cè)試,基于部分顯著性、遺漏率以及小樣本條件下的Akaike信息準(zhǔn)則(AICc)對(duì)模型性能進(jìn)行評(píng)估,篩選遺漏率低于預(yù)設(shè)閾值且統(tǒng)計(jì)顯著的模型,在符合條件的模型中選擇最小的delta.AICc值的RM和FC為最佳模型參數(shù)[24]。

        表1環(huán)境因子含義

        1.4 數(shù)據(jù)處理

        利用AUC值( |0~1 )將雪松疫霉的生境適宜性劃分為4個(gè)區(qū)域,即非適生區(qū)(0,0.1]、低適生區(qū)(0.1,0.3]、中適生區(qū)(0.3,0.5]、高適生區(qū)(0.5,1.0][25],并運(yùn)用ArcGIS軟件將其可視化。過(guò)去及未來(lái)的雪松疫霉的潛在適生區(qū)與當(dāng)前的適生區(qū)分布進(jìn)行交叉比對(duì)分析,統(tǒng)計(jì)其保留區(qū)、新增區(qū)和喪失區(qū)域,并計(jì)算適生區(qū)變化的面積,以適生區(qū)面積收縮或擴(kuò)張的變化表示其適生區(qū)空間分布的遷移方向。調(diào)用SDMToolbox工具,探索雪松疫霉?jié)撛谶m生區(qū)的動(dòng)態(tài)遷移趨勢(shì),計(jì)算其不同時(shí)期的潛在適生區(qū)的質(zhì)心位置,分析其隨時(shí)間變化的大小和方向。

        2 結(jié)果與分析

        2.1 MaxEnt模型構(gòu)建

        通過(guò)設(shè)置緩沖區(qū),最終篩選得到56個(gè)雪松疫霉的有效分布點(diǎn),主要分布在江蘇、上海、福建、江西、安徽等區(qū)域。通過(guò)Pearson相關(guān)分析,最終篩選到最冷月份最低溫度、年降水量、最干月份降水量、最干季度降水量、海拔、底層可交換鈉鹽、頂層碎石體積百分比、底層黏性層土壤的陽(yáng)離子交換能力、底層黏土含量、土壤有效水含量等10個(gè)環(huán)境變量用于模型構(gòu)建(圖1A)。參數(shù)優(yōu)化為 RM=1.2 ,F(xiàn)C=QT 時(shí),delta.AICc值降至0,有1個(gè)分布模型符合 5% 的遺漏率標(biāo)準(zhǔn),表明該模型為最優(yōu)模型,依據(jù)上述篩選和優(yōu)化結(jié)果進(jìn)行建模(圖1B)。

        2.2 模型精度檢驗(yàn)

        依據(jù)AUC值、統(tǒng)計(jì)顯著性、AIC值和 5% 訓(xùn)練存在遺漏率來(lái)評(píng)估MaxEnt模型預(yù)測(cè)結(jié)果的準(zhǔn)確性,發(fā)現(xiàn)AUC值均大于0.9,deltaAICc為0, 5% 訓(xùn)練存在遺漏率值為0(表2),由以上數(shù)據(jù)建立的模型運(yùn)算得出的雪松疫霉的適宜度具有很高的可信度和準(zhǔn)確度,適合他的潛在適生區(qū)預(yù)測(cè)。

        2.3 環(huán)境因子分析

        采用刀切法分析環(huán)境變量影響雪松疫霉分布的重要程度,藍(lán)色條帶越長(zhǎng),表示該變量對(duì)物種分布的影響越大。從9個(gè)環(huán)境變量中篩選出的6個(gè)環(huán)境變量對(duì)雪松疫霉?jié)撛诜植加绊戄^大,其中影響雪松疫霉分布最大的環(huán)境變量是頂層碎石體積百分比(SP4)和底層可交換鈉鹽(SP26),其次是年降水量(Bio12)、最冷月最低溫(Bio6)。以0.5為閾值,影響雪松疫霉分布的環(huán)境變量變化趨勢(shì)(圖2)。結(jié)果顯示,影響雪松疫霉分布的底層可交換鈉鹽(SP26)的適宜范圍為 4.0%~6.1% 和 6.9%~9.3% ,其底層可交換鈉鹽為 7.2% 時(shí),雪松疫霉適生區(qū)的面積達(dá)到峰值的可能性最大(圖2B);頂層碎石體積百分比(SP4)的適宜范圍為4.0%~9.3% ,雪松疫霉適生區(qū)的面積達(dá)到峰值的頂層碎石體積百分比為 4.0% (圖2C);最冷月最低溫(Bio6)的適宜范圍為 -4.5~3.7°C ,雪松疫霉適生區(qū)的面積達(dá)到峰值的最適溫度為 0.3°C (圖2D);年降水量(Bio12)的適宜范圍為 937mm 以上,雪松疫霉適生區(qū)的面積達(dá)到峰值的最適降水量為 1479mm (圖2E);最干季降水量(Bio7)高于 56mm 有利于雪松疫霉的繁殖、擴(kuò)增,雪松疫霉適生區(qū)的面積達(dá)到峰值的最干季降水量為164mm (圖2F)。

        2.4 基于當(dāng)前氣候條件下模型預(yù)測(cè)結(jié)果

        利用MaxEnt模型預(yù)測(cè)雪松疫霉當(dāng)前適生分布區(qū)(圖3),當(dāng)前氣候條件下總適生區(qū)的(高、中、低適生區(qū))面積為 283.95×104km2 ,占我國(guó)國(guó)土總面積的 29.58% 。雪松疫霉在我國(guó)的適生區(qū)以中適生區(qū)為主,占中國(guó)國(guó)土面積的 12.05% ,主要位于中部、東部及南部省份,中適生區(qū)主要分布在福建、廣西、廣東、河南、山東、貴州、重慶等區(qū)域。

        無(wú)論是在過(guò)去、當(dāng)前或未來(lái)雪松疫霉適生區(qū)主要分布我國(guó)的熱帶、亞熱帶以及暖溫帶的部分區(qū)域(圖4)。相較于當(dāng)前適生區(qū),未來(lái)氣候條件下,其適生區(qū)面積均有變化,中適生區(qū)的面積變化最為明顯,其次是高適生區(qū)和低適生區(qū),非適生區(qū)整體面積變化不大。在未來(lái),2070s的SSP5-8.5情境下,雪松疫霉適生區(qū)面積新增區(qū)域最大(占總面積的3.42% ),有 32.84×104km2 的非適生區(qū)轉(zhuǎn)變?yōu)檫m生區(qū),新增區(qū)域主要分布在遼寧中部、渤海沿線區(qū)域、甘肅南部、云南中部及東部地區(qū)、臺(tái)灣島和海南島(圖5)。2070s的SSP2-4.5情景下,雪松疫霉的適生區(qū)面積約為 283.85×104km2 (表3),該情境下的收縮面積最大( 24.30×104km2, ,約占總面積的 1.41% (表4),收縮區(qū)域主要分布在西藏南部、四川與云南交界處、云南和緬甸交界地區(qū)(圖5)。

        審圖號(hào)為GS(2022)1873號(hào),底圖無(wú)修改。The mapisbasedonthe standard mapofGS (2022)1873,andthe map has notben modi
        圖3當(dāng)前氣候條件下雪松疫霉在中國(guó)的潛在分布 Fig.3Suitable areas for P. lateralis in China under current climatic conditions圖4未來(lái)不同氣候變化情景下雪松疫霉在中國(guó)的潛在適宜氣候分布 g.4Potentiallysuitable climatic distributionofP lateralis under different future climate change scenarios in China
        該圖審圖號(hào)為GS(2022)1873號(hào),底圖無(wú)修改。ThemapisbasedonthestandardmapofGS(2022)1873,andthe maphasnotbeenmodified.續(xù)圖4Continuation of Fig. 4

        在未來(lái),不同氣候情景下的雪松疫霉的潛在適生區(qū)分布及面積有差異(圖5)。SSP1-2.6情景和SSP5-8.5氣候情景下雪松疫霉的適生區(qū)面積隨時(shí)間變化呈現(xiàn)逐漸增加的趨勢(shì);然而SSP2-4.5情景下,適生區(qū)總面積隨時(shí)間變化呈現(xiàn)先增后減的趨勢(shì),說(shuō)明氣候變化對(duì)雪松疫霉病原物的產(chǎn)生和傳播影響較大,SSP2-4.5情景的預(yù)測(cè)的結(jié)果可能不準(zhǔn)確。

        圖5不同氣候變化情景下雪松疫霉在中國(guó)潛在適宜氣候分布變化 ig.5Potentiallysuitableclimatic distributionchangeofP lateralis underdifferentclimatechange scenariosin China
        該圖審圖號(hào)為GS(2022)1873號(hào),底圖無(wú)修改。Themapis basedon the standard mapofGS (2022)1873,and the map has notbe
        表3不同氣候條件下雪松疫霉適生區(qū)的面積Table3 SuitableareasforP.lateralisunderdifferentclimaticconditions 104km2

        2.6 雪松疫霉適生區(qū)的質(zhì)心遷移

        通過(guò)分析雪松疫霉的過(guò)去、當(dāng)前及未來(lái)的分布變化表明,在不同氣候情景下,其適生區(qū)質(zhì)心的遷移距離和遷移方向存在一定差異,但隨時(shí)代的變遷,總體有向南部地區(qū)遷移的趨勢(shì)。在過(guò)去的末次間冰期,雪松疫霉的適生區(qū)質(zhì)心位于懷化市溆浦縣三江鎮(zhèn)( 110°55E , 28°00N. ),末次盛冰期,適生區(qū)面積的質(zhì)心向東南方遷移,位于貴州省畢節(jié)市大方縣( 106°01E , 27°18N) ,全新中世紀(jì)時(shí)期,質(zhì)心位于四川省瀘州市敘永縣( 105°l3E , 28°00N) )。當(dāng)前雪松疫霉的適生區(qū)質(zhì)心位于中國(guó)西藏自治區(qū)阿里地區(qū)措勤縣( 99°28E , 32°08N) ),未來(lái)不同時(shí)期雪松疫霉適生區(qū)的質(zhì)心向南遷移,位于湖南、湖北、貴州、重慶4省市交界處(圖6)。

        表4與當(dāng)代相比未來(lái)情境下雪松疫霉適生區(qū)變化 able4 Changesinsuitable zonesofP.lateralisin future scenarios compared to contemporary ones

        3討論

        3.1 模型預(yù)測(cè)的可靠性分析

        MaxEnt模型是一種基于最大熵原理的機(jī)器學(xué)習(xí)算法,通過(guò)分析物種在已知分布地點(diǎn)的生態(tài)位特征,預(yù)測(cè)物種在新地點(diǎn)的適宜性[2。本研究通過(guò)綜合考慮氣候、土壤和地形等關(guān)鍵生態(tài)因子,采用最新的Checkerboard2方法優(yōu)化MaxEnt模型的參數(shù)(RM、FC),調(diào)整背景數(shù)據(jù)的選擇和正則化水平,以確保模型預(yù)測(cè)的分布區(qū)能夠精確覆蓋物種的實(shí)際分布點(diǎn),有效地降低模型的復(fù)雜度,提高模型預(yù)測(cè)的準(zhǔn)確性[27]。在Rawien等[2]和吳卓瑾等[29]的研究中,MaxEnt模型被用于預(yù)測(cè)蛙壺菌Batrachochytriumdendrobatidis和解淀粉歐文氏菌Erwiniaamylovora的適生區(qū),但原始研究并未對(duì)模型參數(shù)進(jìn)行優(yōu)化,這可能造成較大的預(yù)測(cè)誤差,降低實(shí)驗(yàn)結(jié)果的準(zhǔn)確性。本研究通過(guò)R語(yǔ)言優(yōu)化模型的參數(shù),delta.AICc值從109.50降低至0,顯著降低了模型的復(fù)雜度,調(diào)整了原始模型存在過(guò)擬合問(wèn)題,且優(yōu)化后的模型預(yù)測(cè)結(jié)果與查閱資料結(jié)果相似[30]??梢?jiàn),參數(shù)優(yōu)化是提高M(jìn)axEnt模型預(yù)測(cè)能力、推動(dòng)生態(tài)位模型研究方法改進(jìn)的重要途徑。疫霉菌喜溫暖潮濕的環(huán)境,一般在雷雨季節(jié)發(fā)生嚴(yán)重,寄生于弼猴桃、雪松、花旗松Pseudotsugamenziesii和黃扁柏Nootkacypress等暖溫帶、亞熱帶植物[31]。通過(guò)查閱雪松疫霉分布的文獻(xiàn)可知,我國(guó)雪松疫霉當(dāng)前實(shí)際分布區(qū)主要在福建、上海、江蘇、浙江、陜西、臺(tái)灣等地區(qū)[32],而本研究通過(guò)MaxEnt模型所預(yù)測(cè)雪松疫霉的潛在適生區(qū)也恰好主要位于福建、上海、江蘇、山東、陜西等地區(qū),預(yù)測(cè)結(jié)果與實(shí)際分布區(qū)基本一致,由此說(shuō)明MaxEnt模型可用于雪松疫霉的分布區(qū)預(yù)測(cè)。目前,本研究?jī)H應(yīng)用單一模型(MaxEnt模型)預(yù)測(cè)雪松疫霉的潛在適生區(qū)分布,這可能導(dǎo)致預(yù)測(cè)結(jié)果有偏差,建議在后續(xù)研究中結(jié)合Bioclim、Domain等其他模型與MaxEnt模型進(jìn)行綜合分析,通過(guò)多種模型集成預(yù)測(cè)的方法提高研究結(jié)果的可靠性。

        該圖審圖號(hào)為GS(2022)1873號(hào),底圖無(wú)修改。The mapisbasedonthestandardmapofGS(2022)1873,andthe map hasnotbenmodifed.圖6不同氣候情景下雪松疫霉的適生區(qū)質(zhì)心遷移Fig.6Heart-of-massmigration of P.lateralis in suitableareasunderdifferentclimatic scenarios

        3.2 環(huán)境因子分析

        氣候和地形是影響物種分布的關(guān)鍵要素。本研究基于10個(gè)環(huán)境因子,利用MaxEnt模型預(yù)測(cè)雪松疫霉在中國(guó)的潛在適生區(qū),結(jié)果表明,土壤因子(SP4、SP26)、溫度(Bio6)、降水量(Bio12、Bio17)是影響雪松疫霉分布的主要環(huán)境變量。疫霉屬喜在陰冷環(huán)境下生長(zhǎng), 20°C 為其最佳生長(zhǎng)溫度;其次潮濕陰暗的環(huán)境促進(jìn)菌絲的生長(zhǎng)和孢子的萌發(fā)[33]。年降水量會(huì)影響雪松疫霉侵染循環(huán)的歷程,決定著病原菌的繁殖擴(kuò)散和林木受病害的程度;其次最干季度降水量影響雪松疫霉孢子的萌發(fā);當(dāng)受到外界脅迫時(shí)(寒冷、干旱條件)疫霉會(huì)通過(guò)有性生殖產(chǎn)生孢囊孢子和卵孢子度過(guò)逆境[34,最冷月適當(dāng)?shù)淖畹蜏貨Q定著雪松疫霉的繁殖體存活率,防止長(zhǎng)時(shí)間處于低溫環(huán)境中的卵孢子或孢囊孢子受到迫害??山粨Q鈉鹽的增加會(huì)導(dǎo)致土壤結(jié)構(gòu)的惡化,鈉離子會(huì)破壞土壤顆粒之間的聯(lián)系,導(dǎo)致土壤團(tuán)聚體分散,形成緊密排列的土壤顆粒,降低土壤的通氣性和滲透性,導(dǎo)致氧氣供應(yīng)不足,影響卵菌的呼吸作用和能量代謝。除氣候因素外,地形因素對(duì)雪松疫霉的潛在適生分布的影響也不能忽略,雖然溫度和降水量的刀切法的貢獻(xiàn)值大于地形因子和土壤因子,但坡度、坡向、海拔因素也是較復(fù)雜的環(huán)境因子,并且它們間接影響溫度和降水的再分配,針對(duì)四者(土壤因子、地形因子、溫度和降水量)間存在何種關(guān)系,還需后期的進(jìn)一步研究。

        3.3 全球變暖影響潛在適生區(qū)分布

        通過(guò)比較雪松疫霉不同時(shí)期的潛在適生區(qū)表明,在末次間冰期,雪松疫霉分布于我國(guó)中部、東部、南部及西南地區(qū),面積約為當(dāng)前適生區(qū)的1.05倍;末次盛冰期的氣候變化,雖然使得雪松疫霉的西南地區(qū)的潛在適生區(qū)擴(kuò)張,但華北地區(qū)適生區(qū)嚴(yán)重收縮;全新中世紀(jì),全球變暖使雪松疫霉適生區(qū)擴(kuò)張(約為末次盛冰期的10.3倍),并向北遷移,擴(kuò)張區(qū)主要集中于四川盆地。隨氣溫升高,物種的適生區(qū)向北遷移,本次研究結(jié)果與這一規(guī)律相符[35]。雪松疫霉的潛在適生區(qū)在其歷史上經(jīng)歷了動(dòng)態(tài)分布的變化,從末次間冰期到末次盛冰期,雪松疫霉的潛在適生區(qū)發(fā)生了顯著變化,特別是山東半島地區(qū)的適生區(qū)明顯收縮。然而,從末次盛冰期到全新中世紀(jì),西南地區(qū)和華中地區(qū)新增雪松疫霉的適生區(qū)??梢?jiàn),末次間冰期、末次盛冰期和全新中世紀(jì)的歷史氣候的變更影響了雪松疫霉當(dāng)前的分布格局,但其影響程度和作用機(jī)制仍不明晰,后續(xù)需要進(jìn)行更深入的研究。

        與當(dāng)前相比,未來(lái)環(huán)境下雪松疫霉的新增適生區(qū)主要分布在云南地區(qū)和環(huán)渤海地區(qū),且新增面積遠(yuǎn)高于喪失面積,已有研究發(fā)現(xiàn)解淀粉歐文氏菌[29]、馬爾尼菲籃狀菌病Talaromycosismarneffei3的潛在適生區(qū)有向高緯度、高海拔地區(qū)擴(kuò)張的趨勢(shì),這些研究與本研究中預(yù)測(cè)的雪松疫霉在中國(guó)的潛在適生區(qū),未來(lái)將向更高的緯度方向遷移的結(jié)論一致。

        然而,雪松疫霉適生區(qū)的質(zhì)心變化分析卻表明,在低溫室氣體排放情景下,適生區(qū)的質(zhì)心遷移距離相對(duì)較?。欢赟SP1-2.6和SSP3-7.0氣候情景下,適生區(qū)的質(zhì)心遷移距離則顯著增加。雖然這項(xiàng)研究存在一些不太符合雪松疫霉正常分布的現(xiàn)象,但是結(jié)果表明雪松疫霉的適生區(qū)質(zhì)心將在中國(guó)向南偏移的趨勢(shì),這些發(fā)展趨勢(shì)也是具有一定的參考意義。此次研究預(yù)測(cè)結(jié)果的誤差可能是有以下原因造成的:1)用MaxEnt模型模擬雪松疫霉的潛在適生區(qū)時(shí)所涉及的9個(gè)環(huán)境氣候變量為當(dāng)?shù)氐臍夂驑O值,即最大值和最小值,其存在一定的局限性,所以最大熵模型所顯示的是雪松疫霉分布區(qū)的最大可能性,無(wú)法準(zhǔn)確地預(yù)測(cè)雪松疫霉在現(xiàn)實(shí)的分布;2)最大熵模型是基于生態(tài)位構(gòu)建的理論模型,本研究在對(duì)雪松疫霉的適生區(qū)進(jìn)行預(yù)測(cè)時(shí)只考慮了環(huán)境因素,而影響物種分布的因素不僅包括非生物因素,也包括生物因子(如不同物種之間的競(jìng)爭(zhēng)、共生等作用、寄主植被類型、土壤類型和物種的特性等)對(duì)預(yù)測(cè)物種適生區(qū)有著重要的影響。因此在預(yù)測(cè)雪松疫霉的適生區(qū)時(shí),可將人類活動(dòng)、物種作用關(guān)系等生物因素納入模型中,這樣可能會(huì)使模型預(yù)測(cè)的結(jié)果更加準(zhǔn)確。

        4結(jié)論

        本研究結(jié)果揭示了當(dāng)代和未來(lái)的雪松疫霉在中國(guó)的潛在地理分布,長(zhǎng)江南部地區(qū)被預(yù)測(cè)為雪松疫霉的高、中適生區(qū)。影響雪松疫霉分布的最重要的環(huán)境因子是溫度、降水和海拔。頂層碎石體積百分比(SP4)、底層可交換鈉鹽(SP26)、最冷月最低溫(Bio6)、年降水量(Bio12)、最干季度降水量(Bio17),它們能夠代表適生環(huán)境的大部分信息,同時(shí)說(shuō)明這5個(gè)環(huán)境因子對(duì)模擬潛在適生分布區(qū)的必要性。此外,未來(lái)不同模式的氣候條件下,雪松疫霉的適生區(qū)有向更高緯度擴(kuò)增的趨勢(shì),但其適生區(qū)的質(zhì)心將向南方遷移,因此為防止雪松疫霉的進(jìn)一步擴(kuò)散入侵,必須執(zhí)行嚴(yán)格的檢查和雙重安全檢疫措施。

        參考文獻(xiàn):

        [1] 紀(jì)睿,張正光,廖太林,等.雪松疫霉根腐病菌[J].植物檢疫, 2016,30(2):77-79. JIR,ZHANGZG,LIAOTL,etal.Detectionandidentification ofPhytophthora lateralisTuckeretMibrath[J].PlantQuarantine, 2016,30(2):77-79.

        [2] SINCLAIRSJ,WHITEMD,NEWELLGR.Howuseful are species distribution models for managing biodiversity under future climates?[J].Ecologyand Society,2010,15(1):299-305.

        [3] WEBBERJF,VETTRAINOAM, CHANGTT, etal. Isolation ofPhytophthora lateralis from Chamaecyparis foliage in Taiwan[J].ForestPathology,2012,42(2):136-143.

        [4] HANSEN E M, GOHEEND J, JULESE S,et al.Managing port-orford-cedar and the introduced pathogen Phytophthora lateralis[J].PlantDisease,20oo,84(1):4-14.

        [5]ERWIN D C,RIBEIRO O K. Phytophthora diseases worldwide[J]. Plant Pathology,1998,47:224-226.

        [6]ROBIN C, PIOU D,F(xiàn)EAU N, et al. Root and aerial infections ofChamaecyparis lawsonianabyPhytophthora lateralis:anew threat for European countries[J]. Forest Pathology,2011,41(5): 417-424.

        [7]BRASIER C M,VETTRAINO A M, CHANG T T, et al. Phytophthora lateralisdiscoveredinanoldgrowthChamaecyaris forest in Taiwan[J].Plant Pathology,2010,59(4):595-603.

        [8]PETERSON E K, RUPP F, EBERHART J, et al. Root rot of JuniperusandMicrobiotabyPhytophthoralateralisinOregon horticultural nurseries[J].Plant Disease,2020,104(5):15001506.

        [9]邱靖.水榆花楸種群變異與譜系地理研究[D].南京:南京林 業(yè)大學(xué),2019. QIU J. The population variation and phylogeography of Sorbus alnifolia (Sieb. et Zucc.)K.Koch[D].Nanjing: Nanjing Forestry University,2019.

        [10]涂少鑫.基于物種分布模型預(yù)測(cè)氣候變化下廣東省荔枝的空 間格局變化[D].湛江:廣東海洋大學(xué),2023. TU SX.Predicting changes in the spatial pattern of litchi in Guangdong Province under climate change based on species distribution models[D]. Zhanjiang: Guangdong Ocean Univeristy 2023.

        [11] CARNAVAL A C, MORITZ C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest[J].JournalofBiogeography20o8,35(7):187-1201.

        [12] 張心怡,趙健,李志鵬,等.基于4種生態(tài)位模型的長(zhǎng)芒莧潛 在適生區(qū)預(yù)測(cè)[J].植物保護(hù),2023,49(2):73-82. ZHANG X Y, ZHAO J, LI Z P. et al. Prediction of the potential suitableareaofAmaranthuspalmeriinChinabasedonfour ecological niche models[J].PlantProtection,2023,49(2):-82.

        [13]邱漢周,陳存友.基于隨機(jī)森林和 MaxEnt 模型的長(zhǎng)沙市 銀杏古樹(shù)生境適宜性評(píng)價(jià)[J].中南林業(yè)科技大學(xué)學(xué)報(bào), 2024,44(11):87-97. QIU HZ, CHEN C Y.Habitat suitability evaluation of ancient ginkgo trees in Changsha based on random forest and MaxEnt model[J]. Journal of Central South University ofForestryamp; Technology,24,44:97

        [14]劉楊,唐斌,羅建勛,等.基于MaxEnt 和GIS 的川甘槭潛在 適宜分布區(qū)評(píng)估[J].湖南林業(yè)科技,2023,50(5):7-13. LIUY, TANGB,LUOJX, etal.Potential suitable distribution assessment of Acer yui based on MaxEnt and GIS[J]. Hunan Forestry Science amp;Technology,2023,50(5):7-13.

        [151陳玲場(chǎng)熟折 陳麗麗筆其工牛太位措刑的夕共豐營(yíng))侵風(fēng)險(xiǎn)分析[J].陜西師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,52(1): 70-78. CHEN Y, YANG Y Z,CHENLL, et al. Analysis of the invasion risk for Lolium multiflorum Lam.based on niche model[J]. Journal of Shaanxi Normal University (Natural Sience Edition), 2024,52(1):70-78.

        [16] ALI S, MAKANDA TA, UMAIR M, et al. MaxEnt mode1 strategies to studying current and future potential land suitability dynamics of wheat, soybean and rice cultivation under climatic change scenarios in east Asia[J]. PLoS ONE,2023,18(12): e0296182.

        [17]TEBALDI C, DEBEIRE K, EYRING V, et al. Climate model projections from the scenario model intercomparison project (ScenarioMIP) of CMIP6[J]. Earth System Dynamics,2021, 12:253-293.

        [18]唐繼敏,殷曉潔,高偉杰,等.氣候變化下中國(guó)珍稀瀕危 柏科樹(shù)種潛在適生區(qū)分布[J].中南林業(yè)科技大學(xué)學(xué)報(bào), 2024,44(8):49-61. TANG J M, YIN XJ, GAO W J, et al. Distribution of potential suitable areas of rare and endangered Cupressaceae species in China under climate change[J]. Journal of Central South UniversityofForestry amp; Technology,2024,44(8):49-61.

        [19]王義貴,何學(xué)高,胡云云,等.基于MaxEnt模型的大果圓 柏生境適宜性評(píng)價(jià)[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023,43(7): 41-51. WANG Y G, HE XG,HUY Y, et al. Predictionof potentially suitable distribution areas for Juniperus tibetica based on MaxEnt model[J]. Journal of Central South University of Forestry amp; Technology,2023,43(7):41-51.

        [20] 吳統(tǒng)文,宋連春,李偉平,等.北京氣候中心氣候系統(tǒng)模式 研發(fā)進(jìn)展——在氣候變化研究中的應(yīng)用[J].氣象學(xué)報(bào),2014, 72(1):12-29. WU T W, SONG L C,LI W P, et al. An overview on progressin Beijing climate center climate system model: its development and application to climate change studies[J]. Acta Meteorologica Sinica, 2014,72(1):12-29.

        [21]SHIM, S, SEO J, KWON S H, et al. Impact of future air quality in east Asia under SSP scenarios[J]. Atmosphere,2020,30(4): 439-454.

        [22]XU DP,ZHUO Z H, WANG R L, etal. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling[J]. Global Ecology and Conservation,2019,19:e00691.

        [23].ZHENG Y X, YUAN C, MATSUSHITA N, et al. Analysis of the distribution pattern of the ectomycorrhizal fungus Cenococcum geophilum under climate change using the optimized MaxEnt model[J]. Ecology and Evolution,2023,13(9):e10565.

        [24] MORALES N S, FERNANDEZ IC,BACA-GONZALEZV. MaxEnt’s parameter configuration and small samples:are we paying attention to recommendations? A systematic review[J]. PeerJ,2017,5:e3093.

        [25] ZENG JR, LI C M, LIU J Z, et al. Ecological assessment of current and future Pogostemon cablin potential planting regions in China based on MaxEnt and ArcGIS models[J]. Journal of Applied ResearchonMedicinal and AromaticPlants,2021,24: 100308.

        [26] 李福瀧,李瑞,馬長(zhǎng)樂(lè),等.氣候變化情景下百日青在中國(guó)的 潛在適生區(qū)預(yù)測(cè)[J].西部林業(yè)科學(xué),2024,53(2):38-44,63. LIFL,LI R,MACL,etal.Prediction of potential suitable areas of Podocarpus nerifolius in China under climate change scenarios[J]. Journal ofWest China Forestry Science,2024,53(2): 38-44,63.

        [27] PHILLIPS S J, ANDERSON R P, DUDIK M, et al. Opening the black box: an open-source release of MaxEnt[J]. Ecography, 2017,40(7):887-893.

        [28]RAWIENJ, JAIRAM-DOERGA S. Predicted Batrachochytrium dendrobatidis infection sitesinGuyana,Suriname,and French Guiana using the species distribution model MaxEnt[J].PLoS ONE,2022,17:e0270134.

        [29]吳卓瑾,梁特,石娟.基于MaxEnt 模型預(yù)測(cè)梨火疫病菌的潛 在地理分布[J].植物保護(hù)學(xué)報(bào),2023,50(6):1518-1527. WUZJ,LIANGT,SHIJ, etal. Predictionof the global potential geographical distribution offire blight pathogen Erwinia amylovora byusing the MaxEnt model[J]. Journal of Plant Protection, 2023,50(6):1518-1527.

        [30]LIMZ,GUOQ,LIANG MY,etal.Population dynamics, effective soil factors,andLAMP detection systems for Phytophthora speciesassociatedwithkiwifruitdiseasesin China[J].Plant Disease,2022,106(3):846-853.

        [31]SCHLENZIG A,CAMPBELLRB,ROBERTS A MI. The susceptibility of selected conifer foliage to infection with Phytophthora lateralis[J].Forest Pathology,2017,47(3):e12333.

        [32]畢曉瓊.陜西省獼猴桃主要栽培區(qū)致病疫霉菌的種類、數(shù)量 及分布特征分析[D].西安:陜西師范大學(xué),2020. BI XQ.Analysis on species,quantity and distribution characteristicsofpathogenicPhytophthorainmaincultivation areasof kiwifruit in Shaanxi Province[D].Xi'an:Shaanxi Normal University,2020.

        [33]OH E, HANSEN E M.Histopathology of infection and colonization of susceptible and resistant port-orford-cedar by Phytophthora lateralis[J].Phytopathology,2007,97(6):684-693.

        [34]ENGLANDERL.Growth and sporulationof Phytophthora lateralisinvitroasinfluencedbythechemical and physical environment[D].Eugene:Oregon State University,1972.

        [35]白偉寧,張大勇.植物親緣地理學(xué)的研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 生命科學(xué),2014,26(2):125-137. BAIWN,ZHANGDY.Currentstatusand futuredirections in plant phylogeography[J].Chinese Bulletin of Life Sciences, 2014,26(2):125-137.

        [36]包秀麗,韋吳迪,何錦豪,等.基于MaxEnt模型預(yù)測(cè)全球馬 爾尼菲籃狀菌病的潛在分布[J].中國(guó)熱帶醫(yī)學(xué),2023,23(1): 10-15. BAOXL,WEIWD,HEJH,etal.MaxEntmodelingfor predictingthe global potential distribution of Talaromycosis marneffei[J].ChinaTropicalMedicine,2023,23(1):10-15.

        [本文編校:吳毅]

        猜你喜歡
        適生區(qū)預(yù)測(cè)因子
        基坑工程地質(zhì)環(huán)境適宜性評(píng)價(jià)研究
        科技資訊(2025年13期)2025-08-18 00:00:00
        基于粒子群算法優(yōu)化的灰色預(yù)測(cè)模型路基沉降預(yù)測(cè)分析
        橡膠樹(shù)HbMVD1基因啟動(dòng)子克隆及轉(zhuǎn)錄調(diào)控因子篩選
        未來(lái)氣候變化對(duì)屏邊三七地理分布的影響評(píng)價(jià)
        口譯學(xué)習(xí)者負(fù)動(dòng)機(jī)影響因素研究
        基于時(shí)間序列的城市軌道交通客流預(yù)測(cè)研究
        青島市重型柴油車污染物排放變化特征研究
        国产精品久久久av久久久| av剧情演绎福利对白| 黑人巨茎大战俄罗斯美女| 日韩精品无码av中文无码版| AV人人操| 国产亚洲日本精品二区| 国产一二三四2021精字窝| 久久精品国产亚洲av大全| 女的把腿张开男的猛戳出浆| 久久久免费精品国产色夜| 97丨九色丨国产人妻熟女| 国产激情内射在线影院| 日韩丝袜亚洲国产欧美一区| 综合久久加勒比天然素人| 久久精品99国产精品日本| 蜜桃视频一区二区三区在线观看| 亚洲欧美国产日产综合不卡| 国产午夜三级精品久久久| 亚洲综合色无码| 亚洲中文无码永久免| 日日躁欧美老妇| 色播视频在线观看麻豆| 无码va在线观看| 98色花堂国产精品首页| 亚洲黄片av在线免费观看| 中文字幕亚洲乱码成熟女1区| 国产成人av性色在线影院色戒| 二区久久国产乱子伦免费精品| 亚洲一区二区三区在线高清中文| 国产精品186在线观看在线播放| 国产精品污www一区二区三区| aⅴ色综合久久天堂av色综合| 少妇太爽了在线观看免费| 香港三级精品三级在线专区| 制服丝袜视频国产一区| 少妇久久一区二区三区| 伊人大杳焦在线| 精品人妻少妇一区二区不卡| 在线亚洲免费精品视频| 国产香港明星裸体xxxx视频| 久久国产精品二国产精品|